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Abstract: Artificial neural networks are data processing
systems which originate from human brain tissue stud-
ies. The remarkable abilities of these networks help us to
derive desired results from complicated raw data. In this
study, we intend to duplicate an efficient iterative method
to the numerical solution of two famous partial differen-
tial equations, namely the wave-like and heat-like prob-
lems. It should be noted that many physical phenomena
such as coupling currents in a flat multi-strand two-layer
super conducting cable, non-homogeneous elastic waves
in soils and earthquake stresses, are described by initial-
boundary value wave and heat partial differential equa-
tions with variable coefficients. To the numerical solu-
tion of these equations, a combination of the power se-
ries method and artificial neural networks approach, is
used to seek an appropriate bivariate polynomial solution
of the mentioned initial-boundary value problem. Finally,
several computer simulations confirmed the theoretical re-
sults and demonstrating applicability of the method.

Keywords: wave-like and heat-like equations; bivariate
power series polynomial; artificial neural network; crite-
rion function; back-propagation learning algorithm

PACS: 07.05.Mh; 02.60.Jh

1 Introduction
As known, differential equations occur in many science
phenomena. Whenever, there is a meaningful relation be-
tween different values, states or times in which the rate of
variable changes at different times or states are known, it
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can be modeled via differential equations. Hence, various
applications of differential equations have ledmathemati-
cians and engineer scientist to focus on appropriate meth-
ods in solving these kinds ofmathematical problems.More
complicated differential equations arising from the mod-
eling of complex phenomena can not be solved simply by
existing conventionalmethods. Therefore, finding alterna-
tive numerical techniques seems to be necessary. During
recent decades, various numerical techniques have been
used for approximating different types of differential equa-
tions in linear and nonlinear cases. Among these, we can
mention the homotopy perturbation method [2, 4, 5], vari-
ational iteration method [21, 22, 26], Adomian decomposi-
tion method [1, 3, 10], etc. An effective method in solving a
wide variety of complicatedmathematical problems is arti-
ficial neural networks (ANNs) approach. Since, these net-
works have high efficiency in approximating solutions of
mathematical problems. Recently, some structures of neu-
ral networks have been applied for solving variety ofmath-
ematical problems [11–13].
In this paper, a suitable structure of neural networks will
be applied for solving initial-boundary one-dimensional
wave-like and heat-like equations. The heat-like equation
can be a mathematical modeling for temperature changes
of the composite materials. The solution of the mentioned
partial differential equation is proportional to kinetic en-
ergy of particles in the material. Meanwhile, the wave-like
equation can describe moving the particles under Hook’s
law in the disordered systems. In this kind of equation,
the standard initial and boundary conditions can be con-
sidered. In recent years, some researchers have solved nu-
merically these problems [14, 18–20, 24, 25]. To do this, a
four-layer feed-forward neural network corresponding to
the mentioned bivariate power series solution is designed
satisfying both initial and boundary conditions. The de-
signed neural architecture can easily approximate solu-
tion functions on the space of unknown constant coeffi-
cients using a suitable learning algorithm. In other words,
after discretizing the differential domain using a standard
rule and doing some simplifications, the origin problem is
transformed to solve a minimizing optimization problem.
The yield nonlinear problem is solved iteratively using a
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back propagation learning rule, which is based on the gra-
dient descent method. Approximating the constant series
coefficients lead to finding the mentioned series solution
on the given differential domain. In Section 2, we will first
have an overview of artificial neural nets and their compu-
tational process. Then, having the introduction of the pro-
posed neural architecture, the numerical solution of the
mentioned differential equations will be considered us-
ing the defined combination iterativemethod. Two numer-
ical examples with computer simulations are presented
in Section 3. Also, to better express the effectiveness of
the presented technique, the obtained numerical results
will compare via the ones achieved from another classical
method. Finally, conclusions and recommendation for fu-
ture research are presented in Section 4.

2 Description of the method
The general purpose of this section is to introduce a

combination iterative method for approximating solution
of two well known partial differential equations. In or-
der to better clarify all the fundamental mathematical fea-
tures of the method presented in this research, we first
deal with more general theories of neural networks issue.
The proposed iterative technique which is based on the
combination of power seriesmethod and amodification of
ANNs approach, is used to find approximate solutions of
boundary-initial value wave-like and heat-like equations
on a given closed domain.

2.1 Basic idea of ANNs

Artificial neural networks theory revolves around the
idea that certain keyprocessing properties of humanbeing
brain can be modeled and applied to approximate com-
putational methods using biological processes. In other
words, artificial neural networks attempt to get knowledge
of the relation between a set of data through training and
finally store the knowledge gained for similar purpose. The
main ideas of these networks are partly inspired by a way
biological nervous system functions, to process data and
information for learning and createing knowledge. In a
neural network, simple processing elements are known as
"neurons", which can display complex global behavior de-
termined by the connection between processing elements
and element parameters. A neural net can not be adaptive
itself. The practical application of this network is needed
to enable employing algorithms which are designed to al-

ter and adjust unknown parameters. For this purpose, us-
ing knowledge of computer programming,we can design a
structure that acts as anervous system. So, a learning algo-
rithm is defined for networks by creating a network of in-
terconnected artificial neurons. Mentioned networks have
exhibitedhighperformanceonestimationandapproxima-
tion. There aremany references onneural nets field, see for
example Ref. [6–8].
Now, let’s consider the neural architecture shown in Fig-
ure 1. This network is a four-layer feed-forward neural ar-
chitecture with two input signals and one output neuron.
Each input signal ismultiplied by its respectiveweight val-
ues, and theseweighted signals are thenperfectly summed
to produce the next layer’s inputs. In other words, each
hiddenor output layer receives its inputs from theprevious
weighted neurons and then presents it to a suitable activa-
tion function. The network output can be calculated. The
remarkablenotation in this area is that thebias term inout-
put layer is addedwith theweighted signals of second hid-
den layer and then makes up the overall input of the final
layer. According to the above, each neuron’s input-output
relation can be written as follows:

• Input units:
o11 = x, (1)

o12 = t.

• First hidden units:

o21,i = (o11)i , i = 1, ..., n, (2)

o22,j = (o12)j , j = 1, ...,m.

• Second hidden units:

o3i,j = o
2
1,i .o22,j , i = 1, ..., n, j = 1, ...,m. (3)

• Output unit:

N(x, t) =
n∑︁
i=1

m∑︁
j=1

(ai,j .o3i,j) +
n∑︁
i=1

(ai,0.o21,i) (4)

+
m∑︁
j=1

(a0,j .o22,j) + a0,0.

The designed neural structure is a prototypemodel, which
should be created having some minor changes caused
by conditions of problem. In other words, by presenting
boundary or initial conditions of a givenpartial differential
equation problem, the neural architecture will be ready to
learn. Thiswill cause thenetworkoutput desirability to the
solution of the mentioned math problem.
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Figure 1: The designed neural network architecture

2.2 Implementation of the method

Asmentionedbefore, themain idea of this study is to apply
the designed multi-layer feed-forward neural architecture
to the function approximation of two famous types of par-
tial differential equations. Consider the one-dimensional
wave-like Equation (5) and heat-like Equation (6):

∂u
∂t2 − k(x, t)∂

2u
∂x2 = h(x, t), 0 < x < 1, t > 0, (5)

∂u
∂t − k(x, t)

∂2u
∂x2 = h(x, t), 0 < x < 1, t > 0, (6)

subject to the initial conditions:

u(x, 0) = g0(x),
∂u(x, t)
∂t |t=0 = g1(x),

and the boundary conditions:

u(0, t) = f0(t), u(1, t) = f1(t).

In the above relations, k and h are given continuous pos-
itive and real-valued functions, respectively. The defined
wave-like and heat-like equations are more applicable in
modeling different physical phenomena. The main prob-
lemoccurswhenweencountermore complicatedmodeled
problems of these types, in which the existing analytical

or numerical methods can not solve them. Therefore, find-
ing an effective alternative method seems to be necessary.
In the last decade, some modifications of the power se-
ries method have been employed for solving several types
of partial differential equations with initial or boundary
conditions [16, 17, 23]. Extensive studies on these polyno-
mials, show that this series solution technique is really a
powerful tool for solving complexmathematical problems.
As previously mentioned, a combination of these polyno-
mials and ANNs approach will be considered as an itera-
tive method for solving the above partial differential equa-
tions. The basic idea in this issue is that the solution func-
tion u(x, t) on domainΩ = [0, 1]×[0, T], can be completely
represented in a polynomial series of degree (n,m) as:

un,m(x, t) =
n∑︁
i=0

m∑︁
j=0

ai,jxi tj , (7)

for the constant coefficients ai,j (for i = 0, ..., n; j =
0, ...,m). It should be noted that the solution function can
be represented as the power series (7) if and only if it is
complex differentiable in the open set (0, 1) × (0, T). It is
reasonable to consider that the designed neural architec-
ture are fully associatedwith the polynomial series (7). The
interesting point in this approach is that the growing de-
gree of basis polynomials, increases the accuracy of the
recommended combinationmethod. Itmust be considered
that, this work will lead to more complex relations.

2.2.1 Discretization of the problems

Power seriesmethod is basedon the fact that anymodifi-
cation of these series before being used, must be satisfied
in the initial or boundary conditions. For the introduced
partial differential equations, the trial solution is written
as follows:

ũ(x, t) = A(x, t) + x(1 − x)t(N(x, t) − N(x, 0)), (8)

where

A(x, t) = (1 − x)f0(t) + xf1(t) + g0(x) −
[︀
(1 − x)g0(0)

+xg0(1)
]︀
+ t{g1(x) − [(1 − x)g1(0) + xg1(1)]},

in which the function A(x, t) has been chosen in amanner
that satisfies in the both initial and boundary conditions,
simultaneously. The introduced trial function involves the
given feed-forward architecture that satisfies in both ini-
tial and boundary conditions. Supposedly ̃︀u(x, t) symbol-
izes the trial solution with adjustable parameter ai,j, the
problem is transformed from the original construction to
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an unconstrained one by direct substitution (8) in the pri-
mary equations. So, the Eqs. (5) and (6) are shape changes
into the form (9) and (10), respectively:

ũtt(x, t) − k(x, t)ũxx(x, t) = h(x, t), (x, t) ∈ Ω, (9)

ũt(x, t) − k(x, t)ũxx(x, t) = h(x, t), (x, t) ∈ Ω, (10)

where

ũxx(x, t) = Axx(x, t) + t(−2(N(x, t) − N(x, 0))
+ (2 − 4x)(Nx(x, t) − Nx(x, 0))
+ (x − x2)(Nxx(x, t) − Nxx(x, 0))),

ũt(x, t) = At(x, t) + x(1 − x){N(x, t) − N(x, 0) + tNt(x, t)},
ũtt(x, t) = Att(x, t) + x(1 − x)(2Nt(x, t) + tNtt(x, t)),

and

Nt(x, t) =
n∑︁
i=0

m∑︁
j=1

jai,jxi tj−1,

Ntt(x, t) =
n∑︁
i=0

m∑︁
j=2

j(j − 1)ai,jxi tj−2,

Nx(x, t) =
n∑︁
i=1

m∑︁
j=0

iai,jxi−1tj ,

Nxx(x, t) =
n∑︁
i=2

m∑︁
j=0

i(i − 1)ai,jxi−2tj ,

At(x, t) = (1 − x)f ′0(t) + xf ′1(t) + g1(x)
− ((1 − x)g1(0) + xg1(1)),

Att(x, t) = (1 − x)f ′′0 (t) + xf ′′1 (t),

Axx(x, t) = g′′0 (x) + tg′′1 (x).

Now, we intend to define a set of acceptable mesh points
for the discretization of Equations. (9) and (10). For pos-
itive integers n′ and m′, let Ωp,q be a partition of square
Ω with the mesh points (xp , tq) = ( pn′ ,

qT
m′ ), (for p =

0, ..., n′; q = 0, ...,m′). Substituting collocation point
(xp , tq) into the resulted relations, reduces the problems
into the following systems of equations:

ũtt(xp , tq) − k(xp , tq)ũxx(xp , tq) = (11)
h(xp , tq), p = 0, ..., n′,

ũt(xp , tq) − k(xp , tq)ũxx(xp , tq) (12)
= h(xp , tq), q = 0, ...,m′.

Continuing, we intend to construct an iterative procedure
with the help of artificial neural networks approach to
solve the resulting systems.

2.2.2 Proposed error function

As it is known, in iterative methods a valid criterion is
required to measure the produced error of each iteration.
Here, the differentiable least mean square (LMS) function
is employed tomeasure the accuracy of solutions. This rule
is stated forwave-like andheat-like equations, respectively
as follows:

EWp,q =
1
2
(︀
ũtt(xp , tq) − k(xp , tq)ũxx(xp , tq) (13)

−h(xp , tq)
)︀2 ,

EHp,q =
1
2
(︀
ũt(xp , tq) − k(xp , tq)ũxx(xp , tq) (14)

−h(xp , tq)
)︀2 .

Minimizing the defined error functions over the space of
possible weight parameters can be an interested issue. To
do this, a set of training rules is build to minimize EW
and EH by adaptively adjusting the network parameters.
Hence, one suitable error correction techniquemust be es-
sentially employed to achieve this goal. More details con-
cerning minimizing techniques can be found in Ref. [9].

2.2.3 Proposed learning algorithm

What makes this particular use of neural networks so
attractive in many applications is that they express the
ability to learn, though this remarkable property might be
challenged by some researchers. In terms of ANNs, "learn-
ing" simply means changing the weights and biases of the
network in response to some input data. Once a partic-
ular learning algorithm succeeds, programming the net-
work to have a particular unequivocal performance is not
vitally important. In other words, we need no prior knowl-
edge to adjust the weights and biases. The designed neu-
ral architecture adjusts its parameters for a learning algo-
rithm. That is, the error alters as the weights and bias term
are changed. In this sense, the neural network learns from
experience. Therefore, the back-propagation algorithm is
the most widely-used method for feed-forward networks.
The learning rules are mathematical formalizations that
are believed to bemore effective in theANN’s performance.
To fine-tune the neural network, the network parameters
are first quantified with arbitrary initial guesses; then, the
neural network calculates the output for each input signal.
Next, the defined error rule is employed by substituting
the proposed network model instead of the solution func-
tion in the origin problem. To train the present network,
we have employed an optimization technique that in turn
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required the computation of the gradient of the error with
respect to the net parameters.
Now, a suitable error correction rule must be initially used
for single units training. This rule essentially drives the
output error of the network to zero. We start with the clas-
sical generalized delta learning rule and give a brief de-
scription for its performance. Throughout this section, an
attempt is made to point out the criterion function that is
minimized byusing this rule. Learning in neural nets is ap-
propriate selecting the connection weights, which yields
tominimize the error function on a set ofmeshpoints. Dur-
ing the training, the initial parameters ai,j are put into the
network and flow through the network generating a real
value on the output unit. As seen in the last part, the calcu-
lated output is compared with the desired one, and an er-
ror is computed. The differentiable cost functions EW and
EH are always decreasing in the opposite direction of its
derivative. It means that if we want to find one of the lo-
cal minima of this function starting from a initial guess.
We employ the supervised back-propagation learning al-
gorithm to reach this goal. The mentioned self learning
mechanism starts with randomly quantifying the initial
parameters ai,j (for i = 0, ..., n; j = 0, ...,m). The men-
tioned algorithm is well presented for wave-like equation
as follows:

ai,j(r + 1) = ai,j(r) + ∆ai,j(r), (15)

∆ai,j(r) = −η. ∂EWp,q
∂ai,j

+ 𝛾.∆ai,j(r − 1),

p = 0, ..., n′; q = 0, ...,m′,

where η and 𝛾 are the learning rate and momentum term,
respectively. In the above, the index r in ai,j(r) ascribes to
the repetition number and the subscript i, j in ai,j is the la-
bel of the training connection weight. Moreover, ai,j(r + 1)
and ai,j(r) depict the adjusted and current weight param-
eter, respectively. To complete the derivation of learning
procedure for the output layer weights, the above partial
derivative can be expressed as follows:

∂EWp,q
∂ai,j

= (ũtt(xp , tq) − k(xp , tq)ũxx(xp , tq) − h(xp , tq))

×
(︂
∂ũtt(xp , tq)

∂ai,j
− k(xp , tq)

∂ũxx(xp , tq)
∂ai,j

)︂
,

where

∂ũtt(xp , tq)
∂ai,j

= ∂Att(xp , tq)∂ai,j

+ x(1 − x)
(︂
2∂Nt(xp , tq)∂ai,j

+ t ∂Ntt(xp , tq)∂ai,j

)︂
,

∂ũxx(xp , tq)
∂ai,j

= ∂Att(xp , tq)∂ai,j

+ tq
(︂
−2

(︂
∂N(xp , tq)
∂ai,j

− ∂N(xp , 0)∂ai,j

)︂
+ (2 − 4xp)

(︂
∂Nx(xp , tq)

∂ai,j
− ∂Nx(xp , 0)∂ai,j

)︂
+(xp − x2p)

(︂
∂Nxx(xp , tq)

∂ai,j

)︂
− ∂Nxx(xp , 0)∂ai,j

)︂
,

and

∂N(xp , tq)
∂ai,j

= xip tjq ,
∂Nx(xp , tq)

∂ai,j
= ixi−1p tjq ,

∂Nxx(xp , tq)
∂ai,j

= i(i − 1)xi−2p tjq ,

∂Nt(xp , tq)
∂ai,j

= jxip tj−1q , ∂Ntt(xp , tq)∂ai,j
= j(j − 1)xip tj−2q .

The above computational process can similarly be em-
ployed for heat-like equation. To prevent taking much of
the time on this part, the behavior of adjusting weight pa-
rameters for this equation is not provided. It should be
mentioned clearly that Matlab v7.10 is a high quality and
easy to use mathematical computing software, which re-
searchers and students can employ to omit wasting time
and enhance the accuracy of calculations.

3 Numerical examples
In this section two test problems with computer simu-
lations are provided to illustrate ability and accuracy of
the iterative technique proposed in this research. Further-
more, the obtained numerical results of this techniquewill
be compared with those obtained by Taylor series method
[15]. Here, the mean absolute error Emid i.e.:

Emid =
1

(n′ + 1)(m′ + 1)

n′∑︁
i=0

m′∑︁
j=0

|u(xi , tj) − ũ(xi , tj)|,

will be implemented to compare the effectiveness of both
methods.

Example 3.1. The following heat-like equation is consid-
ered:

∂u
∂t −

x2
6 . ∂

2u
∂x2 = 0, 0 < x < 1, t > 0,

with initial conditions:

ut(x, 0) = u(x, 0) = x3,
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Table 1:Measured Emid errors for different number of network elements

− − − − − − n = 5 − − − − − − − − − − − − n = 7 − − − − − −
r n′ = 5 n′ = 10 n′ = 15 n′ = 5 n′ = 10 n′ = 15

1000 2.9323e − 08 2.7833e − 08 1.6822e − 08 3.5860e − 11 3.3621e − 11 2.7600e − 11
2500 8.7340e − 09 7.0041e − 09 6.9740e − 09 8.1071e − 12 6.0731e − 12 4.9617e − 12
5000 1.1375e − 09 5.6823e − 10 3.0116e − 10 3.2074e − 12 9.4698e − 13 3.6220e − 13
7500 7.9910e − 11 6.1845e − 11 6.4731e − 11 5.8193e − 13 2.1633e − 13 9.0790e − 14
10000 9.2155e − 11 5.0160e − 11 1.7147e − 11 6.0514e − 14 5.7311e − 14 4.9321e − 14

− − − − − − n = 9 − − − − − − − − − − − − n = 11 − − − − − −
r n′ = 5 n′ = 10 n′ = 15 n′ = 5 n′ = 10 n′ = 15

1000 1.6340e − 12 1.4333e − 12 1.2173e − 12 5.2961e − 14 4.8245e − 14 3.6175e − 14
2500 7.1327e − 13 5.0108e − 13 2.9388e − 13 2.3799e − 14 9.3693e − 15 8.6722e − 15
5000 2.9110e − 13 1.2940e − 13 8.4830e − 14 1.0861e − 14 6.7127e − 15 4.2973e − 15
7500 7.6931e − 14 6.1577e − 14 5.7827e − 14 7.1911e − 15 5.0409e − 15 2.2500e − 15
10000 4.2780e − 14 3.0091e − 14 1.3786e − 14 5.7860e − 15 2.0617e − 15 9.8476e − 16

Table 2: Absolute error comparison for different number of iterations

ANNs approach
x = t TE method − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −−

r = 1000 r = 2500 r = 5000 r = 10000
0.1 1.4090e − 12 3.5275e − 08 6.5374e − 09 7.3595e − 11 8.0373e − 12
0.2 7.3195e − 10 3.2403e − 08 8.2796e − 09 3.4572e − 10 8.4933e − 12
0.3 2.8555e − 08 3.1375e − 08 8.7914e − 09 7.6941e − 10 1.0855e − 11
0.4 3.8598e − 07 1.9725e − 08 9.0478e − 09 6.7459e − 10 2.4573e − 11
0.5 2.9193e − 06 1.7860e − 08 5.4376e − 09 6.1150e − 10 3.0391e − 11
0.6 1.5293e − 05 2.3485e − 08 6.7328e − 09 9.3688e − 10 5.9043e − 11
0.7 6.2183e − 05 2.0389e − 08 6.1107e − 09 3.7592e − 10 7.6900e − 11
0.8 2.1005e − 04 1.3481e − 08 7.6833e − 09 7.8927e − 11 6.8627e − 11
0.9 6.1590e − 04 2.1768e − 08 8.3284e − 09 8.9380e − 11 2.0981e − 11

and the boundary conditions:

u(0, t) = 0, u(1, t) = et .

Note that the exact solution of the problem is given as
u(x, t) = x3et. Now, we intend to approximate the solu-
tion function by using the defined combination method
on the domain Ω = [0, 1]2. Here, we use the regular dis-
cretization technique on the given differential domain in x
and t directions.We intend to show that the proposed four-
layer feed-forward neural architecture is sufficient to solve
the defined math problem. Hence, the incremental learn-
ing process begins to work by quantifying the connection
weights ai,j (for i = 0, ..., n; j = 0, ...,m) with small
real-valued random constants. The convergence speed of
back-propagation is directly related to the learning rate
and momentum constant parameters. The optimal tuning
parameters for fast convergence of back-propagation gra-
dient descent search is the inverse of the largest eigen-

value of the Hessian matrix of the defined error function,
evaluated at the local point. Thus, the norm of the con-
verged weight vector gives a good estimate of learning rate
in back-propagation. In this study, for better comparison
of the obtained numerical and simulation results, we had
to use same quantities for rate and momentum parame-
ters. This work makes easy to compare the obtained re-
sults from using different initial parameters and iterations
numbers. In other words, using same valued learning rate
and momentum constant makes better comparison of the
obtained results. Then, the training patterns were used to
successively adjust the connectionweights until a suitable
solution was found. Typically, more than one step using
the training set is needed toderive anappropriate solution.
To demonstrate the accuracy of technique presented in
the previous section, the indicated mean absolute errors
for different network parameters are shown in Table 1, for
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Figure 2: The cost function for different iteration steps

Figure 3: Exact and approximate solutions for r = 1000

Figure 4: Performance of proposed neural architecture over different
neural elements for r = 1000

n = m and n′ = m′. The absolute errors between the ap-
proximate and exact solutions on the mesh points are nu-
merically compared for n = m = 5 and n′ = m′ = 10 in
Table 2. As can be seen, with increasing number of itera-
tions the ANNs approach offers more accurate approxima-
tions rather than the Taylor series method of order 5. The

indicated error function is plotted inFigure 1, form = n = 5
andm′ = n′ = 5. It can be easily concluded that by increas-
ing the number of iterations, the network error is rapidly
reduceduntil it go to zero. The exact andapproximate solu-
tions are plotted in Figure 3. The performance of proposed
neural structure for different control elements is using the
mean absolute error function in Figure 4.

Example 3.2. Consider the following one-dimensional
wave-like equation:

∂2u
∂t2 − x

2

2 . ∂
2u
∂x2 = 0, 0 < x < 1, t > 0,

with initial conditions:

u(x, 0) = x + x2, ut(x, 0) = 0,

boundary conditions:

u(0, t) = 0, u(1, t) = 1 + cosh(t),

and exact solution:

u(x, t) = x + x2 cosh(t).

Similarly, the proposed neural architecture has been em-
ployed for approximating solution of this initial-boundary
problem on square Ω = [0, 1] × [0, 0.5] for m = n = 5
and m′ = n′ = 10. The obtained numerical results are pre-
sented in Table 2. We are now allowed to claim that the
combination method proposed in this paper can be ap-
plied to accurately approximate the unknown functions to
any desired degree of preciseness. In particular, thanks to
this unique characteristic of artificial neural networks, the
algorithmic power series method can be converted into an
iterative non-algorithmic one. Here, if we consider an ar-
bitrarily large number of iterations, the proposed boosting
methodwill be able to approximate the unknown function
with high precision.

4 Conclusion
Certain properties of artificial neural networks are typ-

ically configured to distinguish the networks based on
iterative approach from other classical numerical meth-
ods. In this research, a combination of ANNs approach
and power series methods, was used for numerical solu-
tion of two special types of partial differential equations.
Wave equations and heat equations are considered as two
main boundary-initial value partial differential equations
which have played pivotal part in modeling physics phe-
nomena. The proposed approach could convert solving
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Table 3: Absolute error comparison for r = 10000

t = 0 t = 0.1
− − − − − − − − − − − − −− − − − − − − − − − − − − −− − − − − − − − − − − − − −− − − − − − − − − − − − − −−

x TE method ANNs approach TE method ANNs approach
0.1 0 0 1.3891e − 11 9.8640e − 12
0.2 0 0 5.5565e − 11 5.8647e − 11
0.3 0 0 1.2502e − 10 3.8402e − 11
0.4 0 0 2.2226e − 10 2.8223e − 11
0.5 0 0 3.4728e − 10 4.7073e − 11
0.6 0 0 5.0009e − 10 6.9314e − 11
0.7 0 0 6.8068e − 10 3.8425e − 11
0.8 0 0 8.8905e − 10 5.8014e − 11
0.9 0 0 1.1252e − 09 7.3592e − 11

t = 0.2 t = 0.3
− − − − − − − − − − − − −− − − − − − − − − − − − − −− − − − − − − − − − − − − −− − − − − − − − − − − − − −−

x TE method ANNs approach TE method ANNs approach
0.1 8.8952e − 10 2.7518e − 11 1.0141e − 08 2.7468e − 11
0.2 3.5581e − 09 2.8677e − 11 4.0565e − 08 4.3099e − 11
0.3 8.0057e − 09 5.0046e − 11 9.1272e − 08 4.4029e − 11
0.4 1.4232e − 08 3.9617e − 11 1.6226e − 07 3.6418e − 11
0.5 2.2238e − 08 4.8135e − 11 2.5353e − 07 3.9214e − 11
0.6 3.2023e − 08 6.0175e − 11 3.6509e − 07 4.7109e − 11
0.7 4.3587e − 08 6.1482e − 11 4.9692e − 07 6.9243e − 11
0.8 5.6930e − 08 4.0841e − 11 6.4904e − 07 7.2390e − 11
0.9 7.2051e − 08 3.6940e − 11 8.2144e − 07 7.8814e − 11

t = 0.4 t = 0.5
− − − − − − − − − − − − −− − − − − − − − − − − − − −− − − − − − − − − − − − − −− − − − − − − − − − − − − −−

x TE method ANNs approach TE method ANNs approach
0.1 5.7052e − 08 3.8425e − 11 2.1799e − 07 3.9627e − 11
0.2 2.2821e − 07 3.1208e − 11 8.7194e − 07 3.0281e − 11
0.3 5.1347e − 07 6.0172e − 11 1.9619e − 06 3.0127e − 11
0.4 9.1283e − 07 4.8466e − 11 3.4878e − 06 4.8692e − 11
0.5 1.4263e − 06 1.4370e − 11 5.4496e − 06 6.3484e − 11
0.6 2.0539e − 06 1.3692e − 11 7.8475e − 06 6.9107e − 11
0.7 2.7955e − 06 8.2410e − 11 1.0681e − 05 8.1123e − 11
0.8 3.6513e − 06 7.3596e − 11 1.3951e − 05 9.3271e − 11
0.9 4.6212e − 06 7.1104e − 11 1.7657e − 05 1.3504e − 10

a differential problem into related optimization minimiz-
ing problem. This work combined initial and boundary
conditions of the problem, which could be easily mod-
eled with suitable network architecture. Discretizing the
differential domain and then using the back-propagation
learning algorithm lead to solveing the optimization prob-
lem for the unknown series of coefficients. The validity of
our method was based on the supposition that the con-
vergence rate quickly rises by increasing the number of
node points and learning steps. However, the initial val-
ues for thenetworkparameters had a considerable impact.

The learning rate and momentum constant were sensi-
tive tools that were considered as convergence speed con-
trol parameters. Inappropriate choices for these parame-
ters led to a lack of convergence or an excessive increase
in the number of repeating steps. To make a better de-
scription of the offered technique, one numerical example
was presented with computer simulations. Also, compar-
ison of numerical results with exact solutions and those
of another classical method has helped us to precisely un-
derstand this exercise. The achieved results support our
claim that the designed neural architecture gives better
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convergent approximationwithout any restrictive assump-
tions. However, most of the equations belong to math-
ematical applications in real-world problems; therefore
they require complex solutions. According to the numer-
ical results obtained from two examples, it was natural to
claim that the proposed procedures were valid and pos-
sessed unique properties along with high efficiency. The
proposed method was more efficient than other methods.
With a little care in the performance of this method, it
can be easily concluded that our combination technique
can be classified in row of non-algorithmic methods. De-
spite having control levers such as learning rate, momen-
tum constant or variety of learning algorithms and cost
functions increase the accuracy in determining the math-
ematicalmystery. It is obvious thatmost classicalmethods
are not available to solve a variety of complex mathemati-
cal problems. In many cases, these non-algorithmic meth-
ods can solve difficult mathematical problems. Research
in this area can provide great benefits to the related fields,
while extension of the fractional partial differential equa-
tions can be a milestone for the near future research.
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