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Abstract

Main subject of this study is the final boundary value problem of a microstretch thermoelastic body. In fact, using an
elementary transformation, this problem is reformulated as a known mixed problem with initial and boundary conditions.
We prove some results of uniqueness of solutions avoiding any conservation law of energy. We also give up any hypothesis
regarding the boundedness of the thermoelastic coefficients. c©2017 All rights reserved.
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1. Introduction

The problem of uniqueness of solutions and other related problems have been extensively investigated
in the last decade. There are a lot of studies on this topic, of which we mention a few: Brun [2], Knops
and Payne [13], Levine [15], Wilkes [20], and so on. In the specific case of a problem with final boundary
value, we can highlight the studies [1] by Ames and Payne, [5] by Ciarletta and Chirita and [12] by Iovane
and Passarella. In general, the results are deduced by means of a joining of a Gronwall type inequality
with some identities of Lagrange type. However, in the case of the paper by Koch and Lasiecka [14], the
authors establish some results of backward in time uniqueness for waves in thermoelastic plates by means
of appropriate Carleman estimates.

The microstretch elastic materials were first studied by Eringen in [6–8]. As we know, it is specific
to this theory the fact that each material point is characterized by three deformable directors. These
directors can only undergo breathing-type microdeformations in a microstretch continuum. Moreover,
all the material points of this body can contract or stretch without being influenced by any rotations or
translations.
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The goal of the microstretch theory is to remove the differences which occur between experiments
classical theory of elasticity. Indeed, the results of classical old elasticity prove not to be appropriate when
the body’s overall deformations are subject to effects of material microstructure. For instance, this happens
in the case of graphite, human bones, polymers (that is, some granular bodies with large molecules), and
so on.

The theory of microstretch elastic solids, as established by Eringen, was continuously studied in var-
ious papers, such as [3, 10, 11]. For example, the basic results of Eringen were employed by Ciarletta in
[3] for the investigation bending of plates consist of microstretch elastic material in isothermal case. Fur-
thermore, the boundary value problem is presented with a solution of Boussinesq - Somigliana - Galerkin
type by Iesan and Pompei in paper [10]. We also tackle some problems of these materials in the studies
[17–19].

We want to outline that precedent papers regarding results of uniqueness of solutions or different
kind of continuous dependence in elasticity or thermoelasticity are based very often on the fact that the
thermoelastic coefficients or elasticity tensor are assumed be positive definite. In this regard, we recall the
paper [20].

Other authors approach the same issues by using different types of energy conservation laws, means
of an energy conservation law. Also, Green and Laws indicate in [9] a uniqueness result that is derived by
adding certain definiteness assumptions to the restrictions arising from thermodynamics. As an exception
to the rule, the uniqueness result of Brun in [2] is obtained using medium restrictions. More exactly, Brun
employs a specific conservation law of energy and an identity of Lagrange type in order to establish a
uniqueness result in the isothermal theory.

Our present study approaches the problem of uniqueness for solutions for the problem called back-
ward in time, in the case of microstretch bodies. We will obtain two main results on uniqueness by means
of some identities of Lagrange type in conjunction with some differential inequalities. To be more specific,
we will show that under no strong hypotheses on the thermoelastic coefficients, the final boundary value
problem of the microstretch thermoelasticity has sure a solution if the displacement and temperature
fields satisfy no strong conditions. Namely, the conductivity tensor is assumed to be positive definite.
Also, the density mass, the specific coefficient of heat and the coefficients of inertia are assumed to be
strictly positive.

2. Basic equations

We consider that a microstretch elastic body occupies a bounded region B of the three-dimensional
Euclidean space R3. This is related to the reference configuration and a fixed system of rectangular
Cartesian axes. Let ∂B be the boundary of B which is assumed to be a surface, piecewise smooth, surface
and let ni be the components of the outward unit normal to the surface ∂B.

The material time derivative is represented by a superposed dot. The usual summation and differ-
entiation conventions are employed and the subscripts are assumed to range over the integers (1,2,3).
Repeated subscripts imply summation and subscripts that have before them a comma imply partial dif-
ferentiation with respect to the appropriate Cartesian coordinate. By convention, we will omit writing the
spatial and time arguments functions where there is no possibility of confusion.

The motion of the body will be related to a fixed system of orthogonal Cartesian axes Oxi, i = 1, 2, 3.
Vector fields are represented by letters in boldface. The notation vi stands for the component i of v, which
is a vector field in the corresponding orthogonal Cartesian coordinate system.

The displacement vector field u has the components ui and the microrotation vector field ϕ has
the components ϕi. Moreover, we consider ω to be the function of microstretch and denote by θ the
temperature field which is reported to the constant temperature T0 of the medium in its initial state.

As usual, we will use the notations tij for the components of the classic stress tensor and mij repre-
sents the components of the couple stress tensor over B. Also, we consider that the microstress vector has
the components λi .
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For a good formalization of the problem with final boundary value for microstretch thermoelastic
bodies on the interval (−∞, 0], we will systematize the basic equations. So, according to Iesan and
Pompei [10], if the thermoelastic microstretch body is a homogeneous and anisotropic material, we can
write the constitutive equations as follows

tij = Aijrs εrs +Bijrsµrs +Dijrγr + aijω−Dijθ,
mij = Bijrs εrs +Cijrsµrs + Eijrγr + bijω− Eijθ,
λi = Drsi εrs + Ersiµrs +Cijγj + diω− Fiθ,
τ = aij εij + bijµij + diγi +mω−αθ,

η = Eij εij +Dijµij + Fiγi +αω+
a

T0
θ,

qi = kijθ,j.

(2.1)

The constitutive coefficients Aijrs, Bijrs, Cijrs, Dijr, Eijr, aij, bij, cij, di, Eij, Dij, Fi, m, α, a, and kij are
features for each type of material. Also, the motion equations are

tji, j + fi = ρüi, mji, j + εijktjk + gi = Iijϕ̈j, λi, i − τ+ l = Jω̈, (2.2)

and the equation of energy is given by

T0η̇ = qi, i + r. (2.3)

Finally, the strain tensors have the components εij, µij, and γi and these are obtained from the geometric
equations

εij = uj,i + εijkϕk, µij=ϕj,i, γi = ω,i. (2.4)

We must emphasize that the above equations (2.1)-(2.4) are satisfied for (t, x) ∈ (−∞, 0]× B̄. Also, in
equations (2.1)-(2.4) we used some notations which have the signification that follows

- fi the body force;
- gi the body couple force;
- εijk the alternating symbol;
- l the generalized external body load;
- τ the generalized internal body load;
- ρ the reference constant mass density;
- J and Iij = Iji are the coefficients of microinertia;
- η the entropy;
- r the heat supply;
- qi heat flux vector.
Considering the geometric equations, we deduce that the constitutive elastic tensors satisfy the fol-

lowing relations of symmetry.

Aijrs = Arsij, Cijrs = Crsij, Cij = Cji, kij = kji.

Using fifth equation in (2.1), the equation of energy (2.3) get the next form

−qi, i + r− T0
(
Dijε̇ij + Eijµ̇ij + Fiγ̇i +αω̇

)
= aθ̇.

We denote the surface traction components by ti, the surface couple components by mi, the microsurface
traction by p, and the specific heat flux by q and these notions are defined by

ti = tijnj, mi = mijnj, p = λini, q = qini.
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As per usual, we denote by n = (ni) the unit normal of the surface ∂B, outward oriented.
In the following, the system of basic equations (2.1)-(2.4) will be accompanied by the final conditions

ui(x, 0) = u0
i(x), u̇i(x, 0) = u1

i(x), ϕi(x, 0) = ϕ0
i(x), ϕ̇i(x, 0) = ϕ1

i(x),
ω(x, 0) = ω0(x), ω̇(x, 0) = ω1(x), θ(x, 0) = θ0(x), x ∈ B̄,

(2.5)

and by the prescribed boundary conditions

ui = ũi, (x, t) ∈ ∂B̄1 × (−∞, 0], ti = t̃i, (x, t) ∈ ∂Bc1 × (−∞, 0],
ϕi = ϕ̃i, (x, t) ∈ ∂B̄2 × (−∞, 0], mi = m̃i, (x, t) ∈ ∂Bc2 × (−∞, 0],
ω = ω̃, (x, t) ∈ ∂B̄3 × (−∞, 0], p = p̃, (x, t) ∈ ∂Bc3 × (−∞, 0],
θ = θ̃, (x, t) ∈ ∂B̄4 × (−∞, 0], q = q̃, (x, t) ∈ ∂Bc4 × (−∞, 0].

(2.6)

Here ∂B̄1, ∂B̄2, ∂B̄3 and ∂B̄4 together with their complements ∂Bc1 , ∂Bc2 , ∂Bc3 and ∂Bc4 are parts of the
boundary ∂B and have properties

∂B1 ∩ ∂Bc1 = ∂B2 ∩ ∂Bc2 = ∂B3 ∩ ∂Bc3 = ∂B4 ∩ ∂Bc4 = ∅,
∂B̄1 ∪ ∂Bc1 = ∂B̄2 ∪ ∂Bc2 = ∂B̄3 ∪ ∂Bc3 = ∂B̄4 ∪ ∂Bc4 = ∂B.

Also, the functions u0
i, u

1
i, ϕ

0
i, ϕ

1
i, ω0, ω1, θ0, ũi, t̃i, ϕ̃i, m̃i, ω̃, p̃, θ̃, and q̃ are known in respective

domains of definitions.
Regarding the assumptions of regularity, from the beginning we suppose that

(i) all the constitutive coefficients are assumed be continuously differentiable functions on the domain
B̄;

(ii) the functions ρ, Ijk, and J are assumed to be continuous on the domain B̄;
(iii) the functions fi, gi, l, and r are assumed to be continuous on the cylinder B̄× (−∞, 0];
(iv) the functions u0i, u1i, ϕ0i, ϕ1i, ω0, ω1, and θ0 are assumed to be continuous on the domain B̄;
(v) the functions ũi, ϕ̃i, ω̃, and θ̃ are assumed to be continuous on the cylinders ∂B1 × (−∞, 0],

∂B2 × (−∞, 0], ∂B3 × (−∞, 0], and ∂B4 × (−∞, 0], respectively;
(vi) the functions t̃i, m̃i, ω̃, p̃, and q̃ are almost everywhere regular with regard to x on the cylinders

∂Bc1 × (−∞, 0], ∂Bc2 × (−∞, 0], ∂Bc3 × (−∞, 0], and ∂Bc4 × (−∞, 0], and continuous with regard to time.

Let us denote by (PF) the final problem consisting of equations (2.1)-(2.4), the boundary conditions
(2.6) and the final conditions (2.5). The main aim of our study is to prove the uniqueness of solutions of
problem (PF) without imposing strong conditions on thermoelastic coefficients. Using a suggestion given
by Ciarletta in [4], we substitute t by −t such that the final problem is transformed in an initial boundary
value problem, denoted by (PI). To this end, considering the constitutive equations (2.1), from (2.2) and
(2.3) we are led to the system of equations that follows

ρüi =
(
Aijrsεrs

)
,j +

(
Bijrsµrs

)
,j +

(
Dijrγr

)
,j +

(
aijω

)
,j −

(
Dijθ

)
,j + fi,

Iijϕ̈j =
(
Bijrsεrs

)
,j +

(
Cijrsµrs

)
,j +

(
Eijrγr

)
,j +

(
bijω

)
,j −

(
Eijθ

)
,j+

+ εijk
(
Ajkrsεrs +Bjkrsµrs +Djkrγr + ajkω− Ejkθ

)
+ gi,

Jω̈ = (Drsiεrs),i + (Ersiµrs),i +
(
Cijγj

)
,i + (diω),i − (Fiθ),i

− aijεij − bijµij − diγi −mω+αθ+ l,
−aθ̇ =

(
kijθ,j

)
,i − r+ T0

(
Eijε̇ij +Dijµ̇ij + Fiγ̇i +αω̇

)
,

(2.7)

which are satisfied in cylinder B× (0,∞). Also, the initial data receive exactly the same form as the final
conditions (2.5), namely

ui(x, 0) = u0
i(x), u̇i(x, 0) = u1

i(x), ϕi(x, 0) = ϕ0
i(x), ϕ̇i(x, 0) = ϕ1

i(x),
ω(x, 0) = ω0(x), ω̇(x, 0) = ω1(x), θ(x, 0) = θ0(x), x ∈ B̄,

(2.8)
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and the boundary conditions (2.6) receive the form

ui = ũi, (x, t) ∈ ∂B̄1 × [0,∞), ti = t̃i, (x, t) ∈ ∂Bc1 × [0,∞),
ϕi = ϕ̃i, (x, t) ∈ ∂B̄2 × [0,∞), mi = m̃i, (x, t) ∈ ∂Bc2 × [0,∞),
ω = ω̃, (x, t) ∈ ∂B̄3 × [0,∞), p = p̃, (x, t) ∈ ∂Bc3 × [0,∞),
θ = θ̃, (x, t) ∈ ∂B̄4 × [0,∞), q = q̃, (x, t) ∈ ∂Bc4 × [0,∞).

(2.9)

Based on these considerations, our problem with final boundary value (PF) was transformed in the prob-
lem with initial boundary value (PI), which consists of partial differential equations (2.7), the boundary
data (2.9) and the initial data (2.8).

3. Main result

Because of linearity of equations (2.7) and of conditions (2.8) and (2.9) we conclude that if we consider
the difference of two arbitrary solutions of the problem (PI) then it is also a solution to this problem,
but corresponding to zero loads and zero initial conditions and also zero boundary conditions. For this
reason, in the following we will use the conditions (2.8) and conditions (2.9) in their homogeneous form.
At first we will prove some identities which are useful in getting of main result.

Proposition 3.1. For any solution of problem (PI) corresponding to zero loads, null initial data, and null boundary
data, we have ∫

B

[
ρ(x)u̇iu̇i + Iijϕ̇iϕ̇j + Jω̇

2+ +Aijrsεrsεij + 2Bijrsεrsµij +Cijrsµrsµij

+2Dijrεijγr + 2Eijrµijγr +Cijγiγj
]
dV

= −2
∫t

0

∫
B

[
Dijθ(s)ε̇ij(s) + Eijθ(s)µ̇ij(s) + Fiθ(s)γ̇i(s)

]
dVds,

(3.1)

∫
B

1
T0
aθ2(t)dV − 2

∫t
0

∫
B

1
T0
kijθ, i(s)θ, j(s)dVds

= 2
∫t

0

∫
B

[
Dijθ(s)ε̇ij(s) + Eijθ(s)µ̇ij(s) + Fiθ(s)γ̇i(s)

]
dVds

(3.2)

for all t ∈ [0,∞).

Proof. Both identities are obtained by direct calculation. Elementary combinations are made between
equations (2.7) and constitutive equations (2.1) and geometric equations (2.4). Then the divergence theo-
rem is used by taking into account the null conditions.

Proposition 3.2. For any solution of problem (PI) corresponding to zero loads, null initial data, and null boundary
data, we have∫

B

[
ρ(x)u̇iu̇i + Iijϕ̇iϕ̇j + Jω̇

2 +
1
T0
aθ2 +Aijrsεrsεij + 2Bijrsεrsµij +Cijrsµrsµij

+2Dijrεijγr + 2Eijrµijγr +Cijγiγj
]
dV − 2

∫t
0

∫
B

1
T0
kijθ, i(s)θ, j(s)dVds = 0,

(3.3)

∫
B

[
ρ(x)u̇iu̇i + Iijϕ̇iϕ̇j + Jω̇

2]dV =

∫
B

[
Aijrsεrsεij + 2Bijrsεrsµij +Cijrsµrsµij

+2Dijrεijγr + 2Eijrµijγr +Cijγiγj +
1
T0
aθ2
]
dV ,

(3.4)
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B

[
ρ(x)u̇iu̇i + Iijϕ̇iϕ̇j + Jω̇

2]dV =

∫t
0

∫
B

1
T0
kijθ, i(s)θ, j(s)dVds (3.5)

for all t ∈ [0,∞).

Proof. Identity (3.3) can be achieved by adding term by term the identities (3.1) and (3.2). Identity (3.4)
is obtained by direct calculation, with combinations between equations (2.7) and constitutive equations
(2.1) and geometric equations (2.4). Then the divergence theorem is used by taking into account the null
conditions. Finally, identity (3.5) is obtained with the help of (3.3) and (3.4).

To establish that the solution of problem (PI) is unique, we suppose that a is strictly positive in B (a
being the specific heat). Also, we need to assume that

Iijξiξj > m0ξiξi, ∀ξi, (3.6)

where m0 is a positive constant.
According to the second law of thermodynamics, we have that the tensor of thermal conductivity kij

is a positive definite one, that is, there exists a constant k0 > 0 so that

kijξiξj > k0ξiξi, ∀ξi. (3.7)

Now we can state the main result of uniqueness.

Theorem 3.3. We suppose the following assumptions are met

i) ρ > 0, J > 0, Iij satisfies (3.6);
ii) the tensor kij is positive definite and the elastic coefficients are positive semi-definite tensors;

iii) the specific coefficient of heat, a, is assumed to be strictly positive;
iv) meas(∂B4) 6= 0;
v) there are constants M1 and c0 > 0 so that

∫t
0

∫
B

1
T0
kijθ, i(s)θ, j(s)dVds 6M

2
1e
c0t, ∀t ∈ [0,∞). (3.8)

Then the problem (PI) has at most one solution.

Proof. If (ui(t, x),ϕi(t, x),ω(t, x), θ(t, x)) is a solution of problem (PI), that is, that corresponds to null
loads and null initial data and also null boundary data, then it is necessary to prove that

(ui,ϕi,ω, θ) (t, x) = 0,∀(t, x) ∈ [0,∞)×B.

To this aim we will use the identities (3.1)-(3.5). As a first step, from (3.4) and (3.5) we lead to∫
B

[
Aijrsεrs(t)εij(t) + 2Bijrsεrs(t)µij(t) +Cijrsµrs(t)µij(t) + 2Dijrεij(t)γr(t) + 2Eijrµij(t)γr(t)

+Cijγi(t)γj(t) +
1
T0
aθ2(t)

]
dV =

∫t
0

∫
B

1
T0
kijθ, i(s)θ, j(s)dVds,

(3.9)

and this identity holds true for all t ∈ [0,∞).
Assuming that all elasticity tensors are negative semi-definite, from (3.9) we obtain∫t

0

∫
B

1
T0
kijθ, i(s)θ, j(s)dVds 6

∫
B

1
T0
aθ2(t)dV , ∀t ∈ [0,∞). (3.10)
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On the other hand, if we denote by λ0 > 0 the minimum eigenvalue of the conductivity tensor, then taking
into account that meas(∂B4) 6= 0, we obtain∫

B

θ, i(s)θ, j(s)dV > λ0

∫
B

θ2(t)dV . (3.11)

Let us introduce the notation

w2 =
supB̄ a
λ0k0

,

in which k0 has been introduced in (3.7).
Now combine inequalities (3.7), (3.10), and (3.11) so we are led to∫t

0

∫
B

1
T0
kijθ, i(s)θ, j(s)dVds 6 w

2
∫
B

1
T0
kijθ, i(s)θ, j(s)dV , ∀t ∈ [0,∞).

Obviously, this inequality is of the form

f2(t) 6 2w2f(t)ḟ(t), ∀t ∈ [0,∞), (3.12)

in which, clearly, function f(t) is

f2(t) =

∫t
0

∫
B

1
T0
kijθ, i(s)θ, j(s)dVds, ∀t ∈ [0,∞). (3.13)

Let us prove that f(t) 6 0, ∀t ∈ [0,∞). Suppose by contradiction that there exists s > 0 such that f(s) > 0
then we have

f(t) > 0, ∀t ∈ [s,∞). (3.14)

Taking into account the property of f, from (3.12), we deduce

d

dt

[
f(t)e−t/(2w2)

]
> 0, ∀t ∈ [s,∞),

from where, through integration, we are led to

f(s)e−s/(2w2) 6 f(t)e−t/(2w2) 6 lim
t→∞

[
f(t)e−t/(2w2)

]
, ∀t ∈ [s,∞). (3.15)

Now, by choosing of c0 in inequality (3.8) so that

0 6 c0 <
1
w2 ,

we will find that

lim
t→∞

[
f(t)e−t/(2w2)

]
= 0.

This relation together with (3.15) leads to the conclusion

f(t) = 0, ∀t ∈ [s,∞),

that contradicts the inequality (3.14).
Thus we concluded that f(t) = 0, ∀t ∈ [0,∞), such that from (3.13) we obtain

θ, i(t, x) = 0, in [0,∞)×B (3.16)



M. Marin, D. Baleanu, C. Carstea, R. Ellahi, J. Nonlinear Sci. Appl., 10 (2017), 1908–1918 1915

and, because, we get

θ(t, x) = 0, in [0,∞)× B̄.

Finally, from (3.16) and (3.5), taking into account the null initial conditions, we deduce

ui = 0, ϕi = 0, ω = 0, in [0,∞)× B̄.

So, the proof of Theorem 3.3 is complete.

The following theorem is also dedicated to the uniqueness of the solution, but we abandon the hy-
potheses that the elasticity tensors are negative semi-definite and meas(∂B4) 6= 0.

Theorem 3.4. We assume that the following assumptions are met

i) a > 0, ρ > 0, J > 0, Iij satisfies (3.6);
ii) kij is a positive definite tensor and meas(∂B4) = 0;

iii) the conductivity tensor kij satisfies the additional hypothesis

lim
t→∞

∫t
0

∫s
0

∫
B

1
T0
kijθ, i(τ)θ, j(τ)dVdτds = 0. (3.17)

Then the problem (PI) has at most one solution.

Proof. In the context of the coupled theory of thermoelasticity, we have

m =
(
DijDij + EijEij + FiFi

)1/2
> 0.

Also, we set

m∗ =
(
Dij,kDij,k + Eij,kEij,k + Fi,kFi,k

)1/2
> 0.

With the help of the smallest eigenvalue defined in (3.11), we introduce the constant M2 by

M2 = max

{
sup
B̄

m
√
ρ

, sup
B̄

m∗√
λ0ρ

}
.

Then, we apply the arithmetic-geometric mean inequality and the Cauchy-Schwarz inequality in the
right-hand side of the identity (3.1), so we find that for all t ∈ [0,∞) the following estimate holds true

−2
∫t

0

∫
B

[
Dijθ(s)ε̇ij(s) + Eijθ(s)µ̇ij(s) + Fiθ(s)γ̇i(s)

]
dVds

6
M2

ε
√
k0

∫
B

[
ρ(x)u̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) + Jω̇

2(t)
]
dV

+
4T0M2√
k0

ε

∫t
0

∫
B

1
T0
kijθ, i(s)θ, j(s)dVds,

(3.18)

where we donoted by ε a positive constant which is convenient chosen for the inequality of arithmetic-
geometric mean.

Now, we shall use (3.2) taking into account (3.5) and (3.18) so that we get(
2 −

4T0M2√
k0

ε

) ∫
B

[
ρu̇iu̇i + Iijϕ̇iϕ̇j + Jω̇

2]dV
6
∫
B

1
T0
aθ2dV+

M2

ε
√
k0

∫t
0

∫
B

[
ρu̇i(s)u̇i(s)+Iijϕ̇i(s)ϕ̇j(s)+Jω̇

2(s)
]
dVds,

(3.19)
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If we use the notations

α(t) =

∫
B

[
ρu̇iu̇i + Iijϕ̇iϕ̇j + Jω̇

2]dV , β(t) =

∫
B

1
T0
aθ2dV , M0 =

4T0M
2
2

k0
, (3.20)

and choose for ε the value

ε =

√
k0

4T0M2
,

then the inequality (3.19) can be rewritten formally in a very simple form, namely

α(t) 6 β(t) +M0

∫t
0
α(s)ds. (3.21)

Also, with the help of notation

γ(t) = e−M0tM0

∫t
0
α(s)ds, (3.22)

using (3.21), we immediately deduce that

γ̇(t) =M0e
−M0t

[
α(t) −M0

∫t
0
α(s)ds

]
6M0e

−M0tβ(t). (3.23)

As such, from (3.22) and (3.23) it results

γ(t) 6M0

∫t
0
e−M0sβ(s)ds

for all t ∈ [0,∞).
As such, from (3.22) and (3.23) for all t ∈ [0,∞) we obtain the estimate∫t

0
α(s)ds 6

∫t
0
e−M0(s−t)β(s)ds. (3.24)

If we take into account (3.7) and (3.11), from (3.20) we deduce

β(t) 6
supB̄ a
λk0

∫
B

1
T0
kijθ, i(τ)θ, j(τ)dV ,

and this estimate introduced in (3.24) leads to∫t
0
α(s)ds 6

supB̄ a
λk0

eM0tα(t), ∀t ∈ [0,∞). (3.25)

On the other hand, if we introduce the notation

ψ(t) =

(∫t
0
α(s)ds

)1/2

, t ∈ [0,∞),

then the inequality (3.25) can be rewritten in the form

ψ2(t) 6
2 supB̄ a
λk0

eM0tψ(t)ψ̇(t), ∀t ∈ [0,∞). (3.26)

In the following we will prove that

ψ(t) = 0, ∀t ∈ [0,∞). (3.27)
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Suppose by contradiction that we find a τ ∈ (0,∞) so that ψ(τ) > 0. Then we deduce

ψ(t) > 0, ∀t ∈ [τ,∞). (3.28)

If we set

ξ(t) =
λk0

2M0 supB̄ a
(
e−M0t − 1

)
,

then from (3.26) we obtain

d

dt

[
eξ(t)ψ(t)

]
> 0, ∀t ∈ [τ,∞),

so that for all t ∈ [τ,∞) we can write

eξ(t)ψ(τ) 6 eξ(t)ψ(t) 6 lim
t→∞

[
eξ(t)ψ(t)

]
.

On the other hand, taking into account the hypothesis (3.17) and notation (3.20) we are led to

lim
t→∞

[
eξ(t)ψ(t)

]
= e

−
λk0

2M0 supB̄ a

[
lim
t→∞

∫t
0

∫s
0

∫
B

1
T0
kijθ, i(τ)θ, j(τ)dVdτds

]1/2

= 0. (3.29)

Clearly, from (3.29) it results that
ψ(t) = 0, ∀t ∈ [τ,∞),

which is in contradiction with (3.28).
Therefore we infer that only the situation (3.27) is possible. In accordance with (3.27), from (3.20) we

obtain
u̇i(t, x) = 0, ϕ̇i(t, x) = 0, ω̇(t, x) = 0, in [0,∞)× B̄,

so that remembering that we consider zero initial data, we are led to

ui = 0, ϕi = 0, ω = 0, ∀(t, x) ∈ [0,∞)× B̄.

Finally, the hypothesis a > 0 in B̄ and inequality (3.11) assure that

θ = 0, ∀(t, x) ∈ [0,∞)× B̄,

and the proof of Theorem 3.4 is complete.

Conclusion

We want to emphasize that the theorems of uniqueness were proved even if we give up any con-
servation law of energy. Also, we do not recourse to any boundedness assumptions on the coefficients
of elasticity. Our results are obtained under the assumptions that the density mass, the coefficients of
microinertia and the specific heat are strictly positive. We also use the hypothesis that the conductivity
tensor is positive definite. In various other papers, these results are obtained by assuming some stronger
restrictions.
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