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A time-fractional non-linear diffusion equation of two orders is considered to in-
vestigate strong non-linearity through porous media. An equivalent integral equa-
tion is established and Adomian polynomials are adopted to linearize non-linear 
terms. With the Taylor expansion of fractional order, recurrence formulae are pro-
posed and novel numerical solutions are obtained to depict the diffusion behaviors 
more accurately. The result shows that the method is suitable for numerical simu-
lation of the fractional diffusion equations of multi-orders. 
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Introduction

As is well known, porous media hold rich nanoscale pores, the governing equations 
based on continue media mechanics and differential or partial differential equations often be-
come invalid. As a result, fractal geometry and fractional calculus are becoming the two effec-
tive tools. They have been considered into the application of permeability and heat diffusion 
[1-5]. Due to memory effects of fractional calculus and other operator properties, the fractional 
partial differential equation methods are often used to depict anomalous diffusion equation in 
discrete media such like soil, salt rock, nanomaterials, and so on.

Recently, fractional diffusion equations of multi-orders were proposed. More frac-
tional parameters were included in the models which can depict more complicated diffusion 
behaviors. Several numerical methods have been developed [6-16]. As a popular analytical 
method, Adomian decomposition method was applied to various fractional models. In this pa-
per, a numerical method based on Adomian polynomials is given and diffusion behaviors are 
discussed for various fractional orders. 

Problems 

Let’s revisit the definitions of the fractional calculus [14]. The fractional integral is 
defined by:
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where a is an initial point. 
The famous Caputo derivative of α order is defined:
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From previous definition, we can see the fractional derivative has a memory effect for 
α ≠ 1. That’s the main reason the fractional derivative has been used in diffusion issue as well 
as the space is non-locality [10, 15-16] and often appeared as a fractional partial differential 
equation method. For example, the time fractional diffusion equation reads: 

 D , 0 1C
a t xxu Ku αα = < <  (3)

where K is a diffusion coefficient. In this paper, we consider a complicated case with two frac-
tional terms:

 1D D , 0 1
R

C C
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subjected to conditions:

 ( , ) sin( ), ( ,0) ( ,1) 0u a x x u t u t= π = =  
We can see the diffusion depends on the past statues through two memory terms 0 DC

t u
α  

and 0 DC
t u
β . But this also results in difficulty to find solutions, particularly the calculations for 

engineering researchers. In the next section, we adopt new Adomian polynomials [17-19] and 
give a simple and efficient numerical method.

Numerical solutions

We take the fractional integral eq. (1) to both sides of eq. (4) such that an integral 
equation is obtained:

 [ ] 0
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Using finite difference method, replace the second order partial derivative uxx by:
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where h = 1/N, ui = ui(t) = u(t, ih), and ui(0) = sin(ih).
Now we can obtain an integral system:
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According to the successive iteration method, we can have an analytical iteration 
solution:
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For simplicity, we consider:

 2 2α β λ= =  

In order to find the solution, the main problem is to deal with the non-linear terms. 
Here we adopt new Adomian polynomials [17-19] of the m-variable is calculated by:
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Using a Taylor expansion of ui as:
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we can successively have: 
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Substituting the results into eq. (6), we can 
obtain the analytical solution ui ≈ ϕn(t, t0, ci,0). 
For t = t0 = a, we have ui(t0) = ui(a) = ci,0. 
According to the multi-steps idea in [17], let  
t1 = t0 + h. Obviously, we derive ui(t1) =  
= ϕn(t1, t0, ci,0) and successively other numeri-
cal values ui(tj), tj = t0 + jh, 2 ≤ j.

Let K = 0.1, n = 10 and N = 20. We can 
vary the fractional orders and plot the solu-
tions in figs.1-3.

Figure 1. Diffusion behaviors for  
α = 0.9, β = 45, K = 0.1, and κ = 1.8
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Conclusions

This paper numerically investigates fractional non-linear diffusion equation with two 
time fractional terms. New Adomian polynomials are adopted to derive analytical solutions. 
Then numerical formulae are obtained with the help of Taylor series of fractional order. The 
numerical solutions for diffusion behaviors are illustrated which show a perspective of the 
method.  
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Figure 2. Diffusion behaviors for different 
fractional orders at t = 0.25

Figure 3. Diffusion behaviors for different orders 
at x = π/2

a – initial time, [s]
D

a

C v
t  – Caputo derivative, [–]
v

a tI −  – fractional integral, [–]
j – integer, [–]
K – diffusion coefficient, [m2s–1]
N – integer set, [–]
n – integer, [–]
R – universal gas constant, [J mol–1 K–1]

t – time, [s]
u – concentration, [mol cm–3]
x – displacement, [cm]

Greek symbols

α, β – fractional order, [–]
Γ – gamma function, [–]
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