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Starting from the Cattaneo constitutive relation with a Jeffrey's kernel the deriva-
tion of a transient heat diffusion equation with relaxation term expressed through
the Caputo-Fabrizio time fractional derivative has been developed. This approach
allows seeing the physical background of the newly defined Caputo-Fabrizio time
fractional derivative and demonstrates how other constitutive equations could be
modified with non-singular fading memories.
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Introduction

This article refers to a hot topic in modelling of dissipative phenomena [1-3] by appli-
cation of fractional derivatives. As it is stated in the seminal works of Caputo and Fabrizio [1, 3]
many classical constitutive equations (see the comments in [1] and [3] and the references
therein) can not model the transport properties of new materials with advanced characteristics.
To satisfy these requirements a new time-fractional derivative with a non-singular smooth expo-
nential kernel was conceived by Caputo and Fabrizio [1]:
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where M(«) in eq. (1a) is a normalization function such that M(0) = M(1) = 1. With suggested
for convenience in [1] we get the final definition of the Caputo-Fabrizio time-fractional deriva-
tive [1, 3] in the form of eq. (1b). The derivative of a constant is zero as in the classical Caputo
derivative [2], but now the exponential (Jeffrey's) kernel has no singularity [1, 3, 4].

The Caputo-Fabrizio derivative [1] already has been applied to various practically rel-
evant problems such as: elasticity [3], resistance and numerical modelling of fractional electric
circuit [5, 6], the Keller-Segel model [7], Fisher's reaction-diffusion equation [8], coupled sys-
tems of time-fractional differential problems [9], mass-spring damped systems [10], groundwa-
ter flow [11], etc.
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In the previous note [12] it was demonstrated that starting with the general Cattaneo
constitutive equation see eq. (4), and exponential Jeffrey's kernel it was possible to derive the
model of 1-D transient heat condition in a homogeneous medium in terms of the
Caputo-Fabrizio time fractional derivative (1), namely:

2
0T _, TGO |\ 1 g OT(0)

Py e e >0 )

Now, we refer to the extreme case of steady-state (t — «) heat conduction in a medium
with a spatial memory of the heat flux and consequently to a model in term of Caputo-Fabrizio
space-fractional derivative with an exponential Kernel matching the construction of that in the
time-fractional derivative (1).

From the Cattaneo concept to time and
space memory effects

Starting from the conservation law, the transient heat conduction is generally de-
scribed as:
oT 0q oT (x, t) or 0T
—_— =, 1)y=—k ——= C,—=k
P=r ot Ox 9.0 = Ox =P ot Ox?
The basic assumption (3b) states that the flux g(x, ) is proportional to the temperature
gradient, thus defining the thermal conductivity, k. Consequently the Fourier law (3c) can be
easily derived but it defines unphysical infinite speed of flux's propagation.
The Cattaneo concept [13] is a generalization of the Fourier law through a linear su-
perposition of the heat flux and its time derivative related to its history [14, 15] related to the
time-delay, s:

(3a-c)

q(x, t):—jR(x, HVT (x,t —s)ds (4a)

Let express the flux in the form (4) with memories (delay with respect to both the time
and space:
0T (x,1)

qx + At +71)=—k,
Ox

(4b)

The memory distance, 4, is finite (i. e. A =const.) and it is the length scale of spatial ef-
fects on the heat flux correlation to the temperature gradient. The first order approximation, in ¢
and A, which can be simply developed by a conventional Taylor expansion, results in a modified
Fourier law, namely:

gx+A,t+1)=q(x,t)+71 (5)

0q(x 1), 34(x.1)
ot ox
Temporal memory only: the guiding example

If R(x, ?) is space-independent and represented by the Jeffrey kernel [1, 16] as R(¢) =
= exp [—(t — s)/t], then, the energy balance yields the Cattaneo equation [13]:

oI (x,1) __a T (x,s) Kk
o I H ﬂ o 75, ©
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The first order approximation see eq. (5) with respect to 7 results in a modified Fourier
law is [16]:

q(x,t+7)=~k, Ma g(x, 1+ 1)~ q(x, l)+T—aq(x’ t) (7)
ox ot
This leads to a first order differential equation [17]:
lq(x,t)+ Oq(x,t) __ky oT'(x,1) )
T 0 T Ox

Further, with a modified relaxation function [16, 17]:

k s 0+
Ry =k 8,9+ 2 exg{——} [3,(ope=1 ©)
T T
where 0 (s) is Dirac delta function and _[5 (s)ds =1, we may define the flux as [16, 17]:

6T(x,t) _k_2 _[e [t S] 6T(x,s)ds

10
. (10)

Q(x: t) = _kl
T ——

Equation (10) defines the effective thermal conductivity, &, and the elastic conductiv-
ity, k,. The energy conservation equation [18] results in the Jeffrey type integro-differential
equation [17]:

02T (x, s)
+a e “plt-s) 277 ’ a, =
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k_, a, = , =l(11)
pC, pC, T

The integration by parts of the last term of eq. (11) (see [12] for details) leads to eq. (2).

Spatial memory: an analysis by analogy

Now, for the steady-state heat conduction in a medium with space memory effects we
may define by analogy that the heat flux is related to the temperature gradient as eq. (12a):

()=~ REOVT(x —wdu, q(x)=-]c ) d](;)(c“)d (12a,b)

—o0 —o0

If the kernel is defined as R(x) = exp [-(x —u)/A] we get eq. (12b). As mentioned ear-
lier, A is the spatial memory length scale while its inverse y = 1/4 is a space memory constant.
The first order approximation of the heat flux with respect to Ais:

d d
q(x + )=k, Zix), g+ )~ q(x) + 4 ‘éix) (13a,b)

Repeating, by analogy, the concept of a modified space-related memory function [17]
we may define:
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. k, u 0=
R*(x) =k, 5, (u) + 7 exp — [8,(w)=1 (14a)
Then, the flux can be defined: ’
dT() ky 154 drw)
x)=—k ——=L e \ 4 /) ——du 14b
go) =k =D -2 ]‘ - (14b)

Equation (14b) defines the effective thermal conductivity, k,, which is the same as that
in eq. (8). The conductivity k,, can be defined as a structural elastic conductivity related to the
spatial memory effects. If no memory effects exist, then:

a0 =~ +h) S k= ky ks, (14¢)

Now, after differentiation we may present eq. (14b) as:

d AT (x) ke ¥ | d2T ()
~q)=—k v_szf & Jvdu (15)

Further, applying the basic relation (3a) we get integro-differential equation of
Jeffrey's type:

2
or _ dTw)
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2
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ot dx? e dx? pC, pC, A

The integration by parts of the last term of eq. (16) and denoting F(x) = dT (x)/dx we
get:

et ds=e I [F@-F|' +r fe " IF@-FORs A7)

The second term in the RHS of eq. (17) one resembles the definition of the
Caputo-Fabrizio fractional derivative [3] with a Jeffrey's kernel with respect to the space vari-

able x, namely:
X

or DIF () = —ﬂmz j [/ @)= f, )] exp{— 1 fu (x - u)}du, t>0 (18)

By analogy of the results from [12] a pro-Caputo (non-normalized) space-derivative
denoted as - DY, can be defined:

pcDIF(x) =y Te%‘*“) [F(x) - F(u)]du=y Tefy(t—x) dF@) o
- - dr (19)

Obviously, the space memory constant y in eq. (19) controls the kernel and y € (0, ).
If we like to refine ,- D7 as an integral operator controlled by a single parameter 1 we have to
satisfy the conditions: for y €[0.1]= 1/y €[0, «°]. With y () =pu/(1— ) [1,2] the desired prop-
erties are obtained, namely:
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Further, following the basic definition of the Caputo-Fabrizio derivative [1, 2] with
Jeffrey's kernel, see eq. (1), and considering the lower limit of integral in eq.(15)atx=0, 1. e.
a =0, we have:

DTN i T vu)dF(u)d M(,u)f e dF @)
' 0 v (21a-)

In the terms used here y = 1/, while N (y) and M (1) are normalization functions [1, 2].
The problem of definition of M (u) is still open [1, 4] and in accordance with the general defini-
tion we should have M (0) = M (1) = 1. It was demonstrated that for a special case studied by
Losada and Nieto [4] M (1) = 2/(2 — i) which in the present case works correctly for o = 0 but
gives M (1) =2. Further, if M (u)=1/(2 —u) then we have M (0)=1/2 and M (1) = 1. It is obvi-
ous that both conditions can not be satisfied simultaneously by these simple expressions of
M(u). Then, for convenience, we define M (1) = 1 as it was suggested by Caputo and Fabrizio in
[1]. Consequently, the form eq. (21c) reduces to Caputo-Fabrizio space-fractional derivative of
T(x) eq. (22a) defined by analogy of eq. (1b) and its Laplace transform is eq. (22b):

o DA = fen” TS 1 DT )] - 22T 22a)

l-pg p+ud-p)
From the general rule of differentiation -~ DY7(x) eq. (23a) [1] we have:
D® [ DY f () J=er DE[D® £ ()] (23a)

For n =1 we may derive equivalent expressions, eqs. 23b,c, [1], namely:

D® [CF chlf(x)] =

L [ew e [ ]y, 3b)
l-—p| dx  I-pyg dx 1-pu
DO [y D! £ () e D@'[d’;ﬁ‘)j 230)

It is worthnoting that from the definition of the exponential kernel the physical dimen-
sion of y is length [m]. However, the fractional order i is dimensionless. Therefore, to avoid this
conflict, we may present A =1/y =/ [(1 —u)/i] where the dimension of the factor / is length
[m]. Without loss of generality we may assume that /, = 1. In this way, as it will be mentioned
further in this work the ratio (1 — u)/u has a dimension of length but at the same time u is
dimensionless.

Now, expressing eq. (15) in terms of 7(x) we get the complete heat transfer equation
expressed by the space-fractional Caputo-Fabrizio derivative:
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Now, after differentiation using eqs. (23a-c) we may present eq. (14b) in three equiva-
lent forms: ( ) )
d d2T(x) k,, ¥ 15" d2T(u)
—gx)=—k ——=—-—== e\t /) —Zdu 25a
L0 =k — === J = (25a)
or _ d2T(x, 1) d7T'(x)
— " ta, (1- D* 25b
o a a2 ay (1= ) cr ,{ & (25b)
or  d2T(x,t)
— =g, ———=+a, (1-u)—[#DiT(x 25¢
o a a2 ay (1-p) [CF ()] (25¢)

The steady-state condition at # — « yields three equivalent expressions:

2 2
0=a, d°7(x) + aZXyTe*V(X*“) mdu (26a)

dx?2 0 dx?2
2

0=0, T80 i 1-p)r Dﬁ{dT (")} (26b)

dx
d2T(x, ¢
0=a 220 a0, (1) L DAT0)] (260)

Short and long range governing equations: analyses and solutions

Let us consider a material with a spatial memory arranged as a long bar of length, Z,
with thermally insulated surface and subjected to a thermal loads at x = 0 and x = L, that is:

T0)=T,, T(L)=T,, D{Ty=D4T, =0, T,>T, (27a,b)

Without loss of generality, we may assume that 7; =0 (this is only a shift in the tem-
perature scale), that will simplify the calculations. Moreover, the condition (27b) follows from
the definition of the Caputo-Fabrizio derivative [1].

Short-range memory effects: Space memory only

If the Cattaneo kernel is only taken into account, that is the modified relaxation func-
tion R"(x) is omitted, then we have to use eq. (12) which is a spatial analogue of eq. (6). Now,
we may write in terms of Caputo-Fabrizio spatial derivative the flux relation:

4y =—ky (1= ) e DT (x) (28)

This is the equation used by Yang et al. [19] despite the fact that the fractional deriva-
tive used by these authors (it is of pseudo-Riemann-Liouville type) does not match exactly (see
more details in [19]). Physically, eq. (28) means that the macroscopic temperature field is ig-
nored and the zonal temperature distribution is considered only. Further, eq. (28) accounts only
the spatial structural memory affect on the heat diffusion and it is valid only within a zone de-
fined as x, <x <x,+A where 0 <x,<L and 0 <A <L. The space-memory related thermal
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diffusivity, a,,, accounts only short-distance structural memory effects. For u = 1 we get the
transient (29a) and the steady-state (29b) versions, namely:

2 2
8Ta();, 0_,, $T@ 4T

R e Rinds (29a,b)

Assuming T(x,) > T(x;) > T(L) where eq. (28) is expressed in the local co-ordinate sys-
tem with origin at x =x, and an axis extending up to x =x, =x,=A. Applying the Laplace trans-
form to eq. (28) we get:

1 pT(p)-T(x 1 1
L1 _PEDZTO0) s 1) <[y, - -T, - +qm—  G0ab)
l-pp p+uld-p) p p
g, =12
g k2x

The inverses Laplace transform L' 7 yields:

T,—-T(x
—T(m=[ql<1—u>—T(xl>+qluxi:»”q—(”=<1—u)+m (31a,b)
A
xg<x,<xg+A and T, >T(x;)>T ., (3lc)

The linear temperature profile egs. (31b) or (31c), confirms the solution of Yang et al.
[19] irrespective of the differences in the definition of the space-fractional derivatives used. For
1 =1eqs. (28b) and (38c) reduces to the classical Fourier solution. Futher, for x; =x, and x;, =x,
+ A we have see eq. (31a) correspondingly:

T =g, A=) = Too |+ g1 +2) (32a)
T =g, -1 ~To ]+ 41005, (32b)
Subtracting eq. (32b) from eq. (32a) we obtain:
T.,-T
Ty —T,=quh= q, =—2—2 (33¢)
HA

The relation (33c¢) is the linear Fourier law across the memory zone of thickness 1. Re-
placing g, in eq. (31a) by eq. (32¢) and with A = (1 — u)/u, the dimensionless profile in the zonal
co-ordinate system is:

Lo =TGp) % g, M X, (34a)
T;cO_T/l A l_lu

The transition to the global co-ordinate system defined by 0 <x <L, a simple shiftx;, =
=x —A results in:

=2z 0<z, <1 (34b)

Therefore, across the memory zone we have a linear temperature profile controlled by
the fractional order u. Figures 1(a) and (b) presents the solutions (31c¢) and (34b) for several val-
ues of u.
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Figure 1. Zonal temperature distribution, space memory only: (a) dimensional and
(b) dimensionless profiles

Space memory with extended relaxation function

With the complete relaxation function and the rules of differentiation of . D{T (x)
we have:

2 2
oD, &0 [E7E
ot dx2 dx2

L —u)%CF D;‘T(x)} (35)

Two steady-state equivalent versions of eq. (35) can be expressed:

d?T(x) d
0=(a, +a,, ) ——=+a, (1-u)— - D*T(x 36
(a, ) a2 2 ( ,u)dxCF 2T (x) (36)
d2T(x) d a,
0= +m( —py)—q DT (x), m=—"— 37
a2 ( :u)dxCF 2T (x) @ +a,, (37)

For u =1 we have that the thermal conductivity k, =k, + k,, (¢, = a, + a,,) as in the
case of a temporal memory [17]. The partition coefficient 0 <m < 1 accounts the contribution of
the space memory effect (the elastic structural thermal diffusivity a,,) to the total thermal
diffusivity a,. For u =1, we get m = 0.

Laplace transform solution

Te integration of eq. (37) yields:

¢, -7

+m(l = p)cg DT (x) (38)

This step in the solution is provoked by the fact that L[f, (x)] = p*/ (p) — pf.(0) — A0). If
we associate f{x) with 7(x) then from eq. (35), for example, we get a new problem since 7,(0) is
unknown and the Laplace transform can not be completed.

Now, applying the Laplace transform solution to eq. (38) we have:
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T(x)=T0+C{Ex+(b “](1 e’”‘)} a=—t" b=m+a (39)
b b2 1-u

Now, the constant C; should be defined. We continue with eq. (38) integrating both
sides, namely:

Cyx=T(x)+m(l—u)[[ep DAT (x)]dx +C, (40)

With the boundary conditions (27a) and the relations (27b) we get:
[[er DET@]dx = [ [ DET(L)]dx =0 (41a)
C, = I =10 gnd c, =-T, (41b)

Hence, in terms in the process variables the solution (39) can be presented:

b—a
2

_TO—T(x)_ax+la—b

[1-exp(—bx)] + (42a)

Alternatively, if assume 77 = 0, which means only a shift of the temperature scale, we
get:

_T(x) _ - ax+
Hn= bL L b2

(42b)

The equivalent forms of eqs. (42a) and (42b) are:
g, =l T0___ u (f}rl mU )" )y m+— (43a)
YT =T, pam-w\ L) L+ m(-p)P

_T(x) _, H x) 1 ml-p)? B M
KA #+m(1—u)(Lj L[ﬂ+m(1—/vt)]2{1 epoml—uH} )

Now, bearing in mind that y = 1/A = pu/(1 — u) we may express eq. (43a) in a
dimensionless form:

H i mu(l—p) 1—e-(r+mx 44
w0 Llemapp -

The ratio A/L and the product (y + m) x ~ x/A are dimensionless. Obviously, the contri-
bution of the non-linear term depends on the ratio A/L < 1.

The linear approximation of the exponential term in eq. (44) as a series within the
range where the space memory takes place (that is for 0 <x <A and A1 <L, as well as
x< L= x/L< 1) is:exp[—(y + m)x]~1—(y+m)(x — 1)+ O[(x — 1)2]. Then, we may approxi-
mate eq. (44) as:

#=

~

M

wx d-p mul-p) {(wm)(x—z)} s)
prml-w) L g [u+m@-p]? L
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Now, with (x— A)/L < 1 we may see that the first term of eq. (45) dominates. However,
if we look only at the range x, <x <A we may neglect the first term in eq. (45), that is assuming
x/L = 0 because x/L <A/L < 1 and eq. (45) reduces to two equivalent forms: (46a) and (46b).

0oy < H mlmp) {(“’”)(x"l)} iy =D e 2

po [u+m—w)]? L L [u+m-w)l]?
(46a,b)
The approximations (46a,b) represent a zonal solution (within the range defined by 4
with space memory effects) but with a temperature field defined by the thermal loads at the mac-
roscopic boundaries x = 0 and x = L. However, /L may reach values of order of magnitude of

unity as it shown further in this article and therefore, the results of (46a,b) are valid for cases
with small memory effects.

Direct integration approach and problems thereof

From the intermediate results (40) and (41a,b) we get:

ﬁ_T(x)—T0+ 1
L 1.-T, T -

—m(l =) [er DIT (r))dx (47)
0

Futher, from the linearity of . DYT (x) we have: . D{[T(x) — c]=cr DiT (x), as well
as ¢ DY[T(x)/c]=[ o DET (x)]/c, where c is a constant. Hence, eq. (47) can be expressed:

T, —T(x) X
O=z+ 1- D9 ldx, 6=-"L"""" = == 48
z mj [( M) cr DY ] T, -1, 7 (48)

The second term in eq. (48) is integer-order integral from the Caputo-Fabrizio frac-
tional derivative. To avoid its evaluation, we differentiate eq. (48) and this operation leads to a
fractional differential equation.
p 1 do N 1 1

D46 — —+——=0, O(z=1)=1, 0(z=0)=0 49
o D T T (z=D=1 6(z=0) (49)
The Laplace transform of eq. (49) yields:
0(p)=t LT gy L L L ety —— | (S0ab)
L p? p+(m+y) m+y L \m+y m+y

In terms of z = x/L only, we may express eq. (50b) as:

0(z) :(L]z - l{ ! exp[~L(m+7y)z] + ! } (50¢)
m+y L | m+y m+y

Equation (50b) is an analogue of the solutions (42a) and (43a). In addition, the coefficient of
the fist term in the RHS of eq. (44) in terms of yis u/(m + u) =y/[y + m(1 +y)]. Moreover, y = 1/4
is [m'] and therefore the product (m + y)x as well as L(m+y)~Ly=L/IA=(A/L)"! are
dimensionless. Physically, L/A4 is the ratio of the macroscopic length scale L to the spatial memory
length scale A and we have to define its relationship to the factional order p.
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The ratio //L and the fractional order u

The ratio A/L defines the rage of the total range of in-
terest with a length L by the zone of lengthA where the
spatial memory takes place. Obviously, A/L <1 an we
have to relate this ratio to the fractional order because
by the definition the space fractional derivative (see
23a) we have A = (1 —u)/u. Denoting A/L = K; we have
there equivalent relations:

u=)

1-—

=

1=

=KL’

1=

1
1+K,’

1-—

=

=]

=

I K, , L=1 0<K <l

Figure 2. Relationship between the
fractional order m and the ratio K;, =A/L

(51a,b,c)

Since, the global length, L, always can be defined as L = 1 irrespective of the real phys-
ical dimension and the units used for it this lead to eqgs. (51b) and (51¢).Then, from known K; we
may define, the fractional order i or at least to estimate the rage where it could vary. The rela-
tionship u=f(K;) expressed by (51b) is shown in fig. 2. Since 0 < K| =A/L <1, it follows that
0.5 < p < 1. The lower boundary i = 0.5 corresponds to A/L = 1 where the entire area is covered
by the memory zone, while 1 = 1 means A = 0 (no memory effects). The decrease in size of 4 in-
creases the fractional order ¢ and reduces the memory effect on the global transport process. The
reasonable question is: What happens of 4 < 0.5? Simply if 0 < < 0.5 it follows that 1/L > 1
which violates the physician meaning of a memory zone embedded in a large homogeneous area
of length L.

The redistribution coefficient m and the fractional order u

The developed solutions defined the redistribution coefficient m = a,,/a,, and it is natu-
ral to ask what is the relationship between m and fractional order p. From the physics we have
that when i — 1 consequently m — 0, and vice versa. Hence, if we define the relation m = (1 —
1)V the limits are obeyed. From the analysis of the
heat wave [17], which is used as a template, we
have that the slower relations effects, the larger the
value of k, and vice versa. Replacement of m by
(1 — )N in the solutions makes the fractional order
u the only parameter controlling the process. The
tests with different N of the coefficient of the linear
terms in the solution (43a and 43b) M = u/[y + m
(1 -u)] and m = (1 —u)" are shown in fig. 3. Since
the conditions K, = 1 and m = 0 are satisfied si-
multaneously only for N= 1, the numerical simula-
tions demonstrated next use N = 1.

Temperature profiles

Figure 3. Effect of the fractional order 1 and

. . the exponent /N on the functional relationship
effects are shown in figs. 4 and 5 we especially sepa- ;= ;1) = (1 — 1) and the coefficient Ky, of the

rated the profiles corresponding to the two terms of  first term of the solution (43)

The temperature profile accounting the memory
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Figure 4. Profiles determined by the first term of
the solution (43) in the range 0 < u < 1
corresponding to the range 0 <A/L <1
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the solution (43) in order to demonstrate how they
are affected by the value of the fractional order i
see fig. 5. It is clear that with low 2 — 0.5 the zone
with memory effects will cover the area of interest
and the ratio A/L approaches unity. The increase in
reduces the non-linearity of the temperature pro-
files which is clearly demonstrated by the profiles
corresponding to the exponential term (the lower
parts of figs. 5a-d) and the first term (see fig. 4)
where z = x/L. With increase in ¢ the contribution
of the non-linearity decreases, especially that of the
exponential term and the complete profile ap-
proaches the linear Fourier solution.

Conclusions

The article demonstrates how a space-frac-
tional derivative in the Caputo-Fabrizio sense
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Figure 5. Temperature profiles accounting memory effects for various values of the fractional order u
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can be developed starting from an analogue of the Cattaneo relation with a space-dependent fad-
ing memory and especially using the exponential non-singular kernel of Jeffrey's type. The solu-
tions developed stress the attention on the steady-state problem in the zonal frame (space mem-
ory effects only) and the entire macroscopic zone with a memory zone inclusion. It was
demonstrated that the Yang's solution [19] is valid only within the memory zone and it is related
only to the first term of the complete solution.

The definition of space fractional Caputo-Fabrizio with exponential kernel strongly
relates the fractional order 1 with the ratio of the memory length scale A to the macroscopic
length scale L: that is the range 1 > A/L > 0 corresponds to 0 <pu < 1.
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