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A B S T R A C T

The new exact solutions of nonlinear fractional partial differential equations (FPDEs) are established by adopting
first integral method (FIM). The Riemann-Liouville (R-L) derivative and the local conformable derivative defi-
nitions are used to deal with the fractional order derivatives. The proposed method is applied to get exact
solutions for space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation and coupled time-frac-
tional Boussinesq-Burgers equation. The suggested technique is easily applicable and effectual which can be
implemented successfully to obtain the solutions for different types of nonlinear FPDEs.

1. Introduction

Nowadays the use of nonlinear equations is extensive as the non-
linearity in the world exists everywhere. Nonlinear FPDEs is a special
case of nonlinear equations that have been attracted great interest due
to their frequent appearance in many applications such as in biology,
physics, chemistry, electromagnetic, polymeric materials, neutron point
kinetic model, control and vibration, image and signal processing,
acoustics and fluid dynamics [1–4]. Researchers devoted significant
efforts for the study of numerical as well as explicit solutions of non-
linear FPDEs due to their potential applications [5]. To attain exact and
approximate solutions of FPDEs various powerful techniques are pre-
sented such as hyperbolic function method [6], extended hyperbolic
tangent method [7,8], the sub-equation method [9], homotopy per-
turbation technique [10,11], exponential rational function method [12]
and homotopy analysis method [13].

Feng has proposed a very effectual and reliable method to in-
vestigate travelling wave solutions for nonlinear partial differential
equations also named as Feng’s first integral method (FIM) [14]. The
FIM is eminently used by many researchers to interpret results for
various kinds of nonlinear problems [15–19]. The basic scheme of FIM
is to establish a first integral of explicit form with polynomial coeffi-
cients by applying division theorem [14]. In contrast with other
methods, the proposed technique has many advantages, such as, it
avoids complex and tedious computations, and provides us exact and
explicit solutions. Based on these facts, we implemented the proposed
method to some nonlinear FPDEs to obtain their exact solutions using

two definitions of fractional derivative, namely, the R-L derivative
[2,20] and the conformable derivative [21].

The paper is arranged as follows. Section 2 comprises of the basic
definitions and properties for R-L and conformable derivative. Section 3
illustrates the main steps of FIM. In Section 4, the exact solutions of
fractional mBBM equation and fractional Boussinesq-Burgers equation
are given as an application of FIM. Finally, Section 5 consists of con-
clusions and remarks.

2. Preliminaries

2.1. Riemann-Liouville derivative

Riemann-Liouville introduce the following definition [2]:

Definition 1. Let there be a continuous function g such that
→ →g R R t g t: , ( ). Then its R-L derivative of fractional order α is

expressed below:
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From the above definition (1), we have

= +
+ −

> − < <−D t m
m α

t m αΓ(1 )
Γ(1 )

, 1, 0 1.α m m α
(2)
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2.2. Conformable derivative

Recently, Khalil et al. presented a new simple definition of deriva-
tive of fractional order which is called conformable fractional deriva-
tive [21]. The definition depends just on the basic limit definition of the
derivative, so first let us recall the basic limit definition.

Supppose ∞ →g R: [0, ) and >x 0. The definition for derivative of
function g at any point x is = →

+ −limdg
dx ε

g x ε g x
ε0

( ) ( ) . By this definition, we

have = −nxdx
dx

n 1n
. Based on this definition, Khalil et al. presented the

new definition for the fractional derivatives [21].

Definition 2. Let ∞ →g R: [0, ) be a function. Then its fractional
conformable derivative which is of αth order is as follows,

=
+ −

→

−
T g x

g x εx g x
ε

( )( ) lim
( ) ( )

,α
ε
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0

1
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where ∈α (0,1) and it holds for all >x 0. If the function g is
α-differentiable in l(0, ), for >l 0 and further → +g xlim ( )x

α
0

( ) exists,
then the conformable derivative at 0 is defined as

= → +g g x(0) lim ( )α
x

α( )
0

( ) .

Also conformable integral of function g is defined as:

∫= −I g x
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dt( )( )
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where ⩾l 0, and ∈α (0,1]. Here the integral in Eq. (4) represents usual
Riemann improper integral.

In account of the definition in Eq. (3), Khalil et al. presented fol-
lowing theorem [21], which provides some useful properties satisfied
by the conformable derivative.

Theorem. Suppose the functions u and v are α-differentiable at any point
>x 0, for ∈α (0,1]. Then

(1) + = +T au bv aT u bT v( ) ( ) ( )α α α ∀ �∈a b, .
(2) = −T x mx( )α

m m α ∀ �∈m .
(3) =T C( ) 0α ∀ =u x C( ) (Constant functions).
(4) = +T uv uT v vT u( ) ( ) ( )α α α .
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u
v

vT u uT v
v

( ) ( )α α
2 .

(6) Additionally, if the function u is differentiable, then
= −T u x x( )( )α

α du
dx

1 .

This new definition has gained significant attention these days due
to its simplicity, so a remarkable work has been done on it by many
scientists. For instance, Abdeljawad used conformable derivative to
express chain rule, integration by parts, exponential functions, Taylor
power series expansion, Gronwall’s inequality, and Laplace transform
[22]. Conformable time-scale calculus is introduced by Benkhettoua
et al. [23]. Many scientists used this new derivative in some physical
applications due to its convenience, simplicity and usefulness [24–26].
Chung discussed conformable Newtonian mechanics using this new
definition [27]. Hammad and Khalil interpret the results for the con-
formable heat equation [28].

3. First integral method

Here, a brief exposition of the FIM is presented:

Step 1 First, we take into account a nonlinear FPDE of the following
form:
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Step 2 Then, the following transformation is applied,

… =u x x x t U ξ( , , , , ) ( ).m1 2 (6)

In order to apply R-L derivative, we have
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In order to use conformable derivative, we have

=
+ +⋯+ ±

ξ
k x k x k x ct

α
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Using these transformations given in Eq. (7) and Eq. (8), we
reduce the FPDE into an integer order nonlinear ODE as follows:

′ ″ … =H U ξ U ξ U ξ( ( ), ( ), ( ), ) 0, (9)

where ′ =U ξ( ) dU ξ
dξ

( ) and ξ is a new transformed variable.
Step 3 Afterwards, introducing some new independent variables, we

get

=
=

U ξ X ξ
U ξ Y ξ

( ) ( ),
( ) ( ).ξ (10)

Then a new system of nonlinear ODE is generated which is given
as follows:

=

=

∂
∂
∂
∂

Y ξ
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( ( ), ( )).

X
ξ
Y
ξ (11)

Step 4 According to the qualitative theory of ODEs, the general solu-
tions of Eq. (11) can be directly obtained if one can find in-
tegrals to Eq. (11). Generally it is very difficult to obtain even
one first integral, because there is no systematic or logical
procedure to find first integrals for plane independent system.
The Division theorem presents us the idea to find first integrals.
One first integral to Eq. (11) is then obtained by applying the
Division theorem, which reduces our nonlinear ODE to an in-
tegrable first order ODE. Finally, we obtain exact solutions of
the problem after solving this system.

The division theorem is stated below which is defined in � for two
variables.

Division Theorem: Assume there are two polynomials P x y( , ) and
Q x y( , ) in complex domain � x y( , ), such that P x y( , ) is an irreducible
polynomial in � x y( , ). If at all the zero points of P x y( , ), the polynomial
Q x y( , ) vanishes, then a polynomial R x y( , ) exists in � x y( , ) so that fol-
lowing equality holds

=Q x y P x y R x y( , ) ( , ) ( , ). (12)

4. Applications

In this section, FIM is applied to solve space-time fractional mBBM
equation and time-fractional Boussinesq-Burgers equation. FIM is an
alternative method other than homotopy perturbation method,
Adomian decomposition method, and homotopy analysis method to
obtain solutions of different types of FPDEs. FIM is better than other
existing analytical and numerical techniques in different ways, for ex-
ample, FIM reduces successive applications of integration for higher
order problems as compared to homotopy perturbation technique and
Adomian decomposition method. FIM has not any restrictive assump-
tions and expansion of small parameters like in perturbation techni-
ques. Moreover, FIM is a direct and concise and provides explicit so-
lutions of FPDEs. Therefore, FIM is a reliable and efficient method to
establish solutions of non linear FPDEs arising in mathematical physics
[19].
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4.1. Exact solutions of the space-time fractional mBBM equation

Let us consider the mBBM equation fractional in space and time
[29]
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where ∈α (0,1). Eq. (13) describes propagation of surface long waves in
nonlinear dispersive channel. The model (c.f. Eq. (13)) has been solved
using modified Kudryashov method and by generalized Kudryashov
method [30,31].

Firstly, we apply R-L definition of fractional derivative. The fol-
lowing transformation is introduced:
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where ξ is the transformation variable and k c, be the constants. As a
result of this transformation, we obtain:
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Surrogating Eq. (14) and Eq. (15) into Eq. (13), we convert our problem
into an ODE:
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Integration of Eq. (16) with respect to ξ results in
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Then using Eq. (10), the 2-D autonomous system is attained
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Now, to find the first integral of Eq. (18) we implement the division
theorem. In accordance with the FIM, it is assumed that non-trivial
solutions of the above system (c.f. Eq. (18)) are X and Y respectively.
Thus, irreducible polynomial = ∑ =Q X Y a X Y( , ) ( )j

n
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and following holds
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for = …j n0,1, , , and ≠a X( ) 0n . Now a polynomial +r X s X Y( ) ( ) exists
in � X Y[ , ] so

∑∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

= +
⎛

⎝
⎜

⎞

⎠
⎟

=

Q
ξ

Q
X

X
ξ

Q
Y

Y
ξ

r X s X Y a X Y( ( ) ( ) ) ( ) .
j

n

j
j

0 (20)

Suppose =n 1. On equating coefficients of =Y j( 0,1)j in Eq. (20) on
both sides, we get:

′ =a X a X s X( ) ( ) ( ),1 1 (21)

′ = +a X r X a X s X a X( ) ( ) ( ) ( ) ( ),0 1 0 (22)
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As a X( )j are polynomials of X, then from Eq. (21) we come to know that
the polynomial a X( )1 is constant in nature, therefore =s X( ) 0. Let us
consider =a X( ) 11 , for convenience. After substituting these values we
balance the degrees of the functions r X( ) and a X( )0 and deduce the
deg r X( ( )) equal to 0 or 1. Assume that = +r X A X A( ) 1 0, therefore Eq.
(22) gives,

= + +a X A X A X B( ) 1
2

.0 1
2

0 (24)

Here, B is the integration constant.
Replacing the values of a a r, ,0 1 and s in Eq. (23), we get a nonlinear

system of algebraic equations by putting all coefficients equal to zero
for same powers of X. After some calculations, we get:
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Applying the conditions given in Eq. (25) and Eq. (24) in Eq. (19), we
have

= − −Y ξ A X B( ) 1
2

.1
2

(26)

Combining Eq. (26) with Eq. (18a), the solution of fractional mBBM
equation with R-L derivative is obtained as:
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Applying the conditions given in Eq. (28) and Eq. (24) in Eq. (19), we
have
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Combining Eq. (29) with Eq. (18a), the solution of fractional mBBM
equation with R-L derivative is obtained as:
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Now we apply conformable definition of fractional derivative. The
following transformation is introduced:
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where ξ is the transformation variable and k c, be the constants. As a
result of this transformation, we obtain:
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which is the same as in Eq. (15). Afterwards, adopting the same pro-
cedure given from Eq. (16) to Eq. (24), we get two different solutions:
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It is important to note that the solutions u u,1 2 are acquired by using R-L
derivative and u u,3 4 are obtained by using conformable derivative. In
Figs. 1 and 2, graphs of exact solutions of fractional mBBM equation are
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presented by using R-L and conformable derivatives. Fig. 3 shows the
effects of α on the solutions u x t( , )3 using the conformable definition.

4.2. Exact solutions of the time-fractional Boussinesq-Burgers equation

The Boussinesq-Burgers equation plays an important role for the
investigation of fluids flow in a dynamic system. The Boussinesq-
Burgers model also illustrates the proliferation of waves in shallow
water. Using residual power series method (RPSM), Sunil et al. in-
vestigated the numerical solutions for nonlinear time-fractional coupled
Boussinesq-Burgers equations [32] and accurate results were found as
compared with the result attained from modified homotopy analysis
transform technique. Mostafa et al. seek the exact solutions for time-
fractional coupled Boussinesq-Burgers equation using the generalized
Kudryashov method [33].

Let us consider the time fractional coupled Boussinesq-Burgers
equation [32]
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− ∂
∂

+ ∂
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Here, x and t represent the normalized space and time variables, u x t( , )
corresponds to velocity field along the horizontal, the water surface
height from horizontal level is represented by v x t( , ). In Eq. (1) frac-
tional derivative is αth order and ∈α (0,1).

Firstly, we apply R-L definition of fractional derivative. The fol-
lowing transformation is introduced:
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where ξ is the transformation variable and c be the constant. As a result
of this transformation, we obtain:
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Surrogating Eq. (37) and Eq. (36) into Eq. (1), we convert our problem
into an ODE:
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Integrating Eq. (38) w.r.t ξ and taking integration constant equal zero,
we get the following equations:
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From Eq. (39a), we get
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Surrogating Eq. (40) in Eq. (39b)
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Then using Eq. (10), the 2-D autonomous system is attained
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Fig. 1. Exact solutions u x t u x t( , ), ( , )1 3 of fractional mBBM equation at
= = = = =v k c γ α0.5, 1, 0.01, 1, 0.8.

0

2

4

6

8

0

1

2

3

4
−1.8

−1.6

−1.4

−1.2

−1

−0.8

 

xt
 

Conformable
R−L

Fig. 2. Exact solutions u x t u x t( , ), ( , )2 4 of fractional mBBM equation at
= = = = =v k c γ α0.5, 1, 0.01, 1, 0.8.
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Fig. 3. Exact solution u x t( , )3 of fractional mBBM equation at α =0.9, 0.8, 0.6,
0.5, = = = =v k c γ0.5, 1, 0.01, 1.
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= − +dY
dξ

X cX c X8 12 4 .3 2 2
(42b)

Now, to find the first integral to Eq. (42) we implement the division
theorem. In accordance with the FIM, it is assumed that non-trivial
solutions of the above system (c.f. Eq. (42)) are X and Y respectively.
Thus, irreducible polynomial = ∑ =Q X Y a X Y( , ) ( )j

n
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Suppose =n 1. On equating coefficients of =Y j( 0,1)j in Eq. (44) on
both sides, we get:

′ =a X a X s X( ) ( ) ( ),1 1 (45)

′ = +a X r X a X s X a X( ) ( ) ( ) ( ) ( ),0 1 0 (46)
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As a X( )j are polynomials of X, then from Eq. (45) we come to know that
the polynomial a X( )1 is constant in nature, therefore =s X( ) 0. Let us
consider =a X( ) 11 , for convenience. After substituting these values we
balance the degrees of the functions r X( ) and a X( )0 and deduce the
deg r X( ( )) equal to 0 or 1. Assume that = +r X A X A( ) 1 0, therefore Eq.
(46) gives

= + +a X A X A X B( ) 1
2

.0 1
2

0 (48)

Here, B is the integration constant.
Replacing the values of a a r, ,0 1 and s in Eq. (47), we get a nonlinear

system of algebraic equations by putting all coefficients equal to zero
for same powers of X. After some calculations, we get:

Case 1:

= = − =A A c B4, 2 , 0.1 0 (49)

Applying the conditions given in Eq. (49) and Eq. (48) in Eq. (43), we
have

= − +Y ξ X cX( ) 2 2 .1
2 (50)

Combining Eq. (50) with Eq. (42a), the solutions of fractional Boussi-
nesq-Burgers equation with R-L derivative are obtained as:

=
+ − − +( )

u x t c

cγe
( , )

1
.

c x
1

2 ctα
αΓ(1 ) (51)

⎜ ⎟

=
−

⎛
⎝

+ ⎞
⎠

− −

− −

+

+

( )
( )

v x t
c γe

cγe
( , )

2

1
.

c x

c x
1

3 2

2
2

ctα
α

ctα
α

Γ(1 )

Γ(1 )

(52)

Case 2:

= − = =A A c B4, 2 , 0.1 0 (53)

Applying the conditions given in Eq. (53) and Eq. (48) in Eq. (43), we
have

= −Y ξ X cX( ) 2 2 .2
2 (54)

Combining Eq. (54) with Eq. (42a), the solutions of fractional Boussi-
nesq-Burgers equation with R-L derivative are obtained as:

=
+ − +( )

u x t c

cγe
( , )

1
.

c x
2

2 ctα
αΓ(1 ) (55)

⎜ ⎟

=
−

⎛
⎝

+ ⎞
⎠

−

−

+

+

( )
( )

v x t
c γe

cγe
( , )

2

1
.

c x

c x
2

3 2

2
2

ctα
α

ctα
α

Γ(1 )

Γ(1 )

(56)

Now we apply conformable definition of fractional derivative. The
following transformation is introduced:

= −

=
=

ξ x

u x t u ξ
v x t v ξ

,

( , ) ( ),
( , ) ( ),

ct
α

α

(57)

where ξ is the transformation variable and c be the constant. As a result
of this transformation, we obtain:

∂
∂

= − ∂
∂

= ∂
∂

= ∂
∂

=
t

c d
dξ x

d
dξ x

d
dξ x

d
dξ

(.) (.) , (.) (.) , (.) (.) , (.) (.) .
α

α

2

2

2

2

3

3

3

3 (58)

which is the same as in Eq. (37). Afterwards, adopting the same pro-
cedure given from Eq. (38) to Eq. (48), we get two different solutions:

Case 1: For = = − =A A c B4, 2 , 01 0 ,

=
+ − −( )

u x t c

cγe
( , )

1
.

c x
3

2 ctα
α (59)

=
−

⎛
⎝

+ ⎞
⎠

− −

− −

( )
( )

v x t
c γe

cγe
( , )

2

1
.

c x

c x
3

3 2

2
2

ctα
α

ctα
α

(60)

Case 2: For = − = =A A c B4, 2 , 01 0 ,

=
+ −( )

u x t c

cγe
( , )

1
.

c x
4

2 ctα
α (61)

=
−

⎛
⎝

+ ⎞
⎠

−

−

( )
( )

v x t
c γe

cγe
( , )

2

1
.

c x

c x
4

3 2

2
2

ctα
α

ctα
α

(62)

It is important to note that the solutions u v u v, , ,1 1 2 2 are acquired by using
R-L derivative and u v u v, , ,3 3 4 4 are obtained by using conformable deri-
vative. In Figs. 4–7, exact solutions of fractional Boussinesq-Burgers
equation are presented by using R-L and conformable derivatives. Fig. 8
shows the effects of α on the solution u x t( , )1 using R-L definition.
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5. Conclusion

In this article, new exact solutions of FPDEs, namely, space-time
fractional mBBM equation and time-fractional Boussinesq-Burgers
equation were obtained using the FIM. R-L derivative and conformable
derivative definitions were used to deal with the fractionl terms in
FPDEs. The procedure indicates that the FIM is a direct and concise. The
proposed technique permits us to perform tedious and complicated al-
gebraic calculations easily using a computer. Therefore, FIM is very
effective and reliable to obtain new exact solutions to system of non-
linear fractional order problems emerging in the areas of engineering
and mathematical physics.
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