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Abstract: This paper deals with a numerical simulation of fractional conformable attractors of type
Rabinovich–Fabrikant, Thomas’ cyclically symmetric attractor and Newton–Leipnik. Fractional
conformable and β-conformable derivatives of Liouville–Caputo type are considered to solve the
proposed systems. A numerical method based on the Adams–Moulton algorithm is employed to
approximate the numerical simulations of the fractional-order conformable attractors. The results of
the new type of fractional conformable and β-conformable attractors are provided to illustrate the
effectiveness of the proposed method.

Keywords: fractional calculus; fractional conformable derivative; fractional β-conformable derivative;
chaos; Adams–Moulton scheme

1. Introduction

Fractional derivatives, which are a generalization of classical derivatives have been extensively
used in describing and solving integral equations, ordinary and partial differential equations in applied
sciences such as fluid mechanics, diffusive transport, electrical networks, electrodynamics, nonlinear
control theory, signal processing, nonlinear biological systems, astrophysics, among others [1–19].

Several definitions exist regarding the fractional derivatives, and some fundamental definitions
are Coimbra, Riesz, Riemann–Liouville, Hadamard, Weyl, Grünwald–Letnikov, Marchaud,
Liouville–Caputo, Caputo–Fabrizio, Atangana–Baleanu [20–22]. Based on the concept of local
derivative with fractional components, Khalil presented the “conformable derivative” in [23]. This
derivative allows for many extensions of some classical theorems in calculus (i.e., the product rule,
quotient rule, Rolle’s theorem, chain rule, mean value theorem and composition rule). Atangana in [24]
proposed a modified version of the conformable derivative proposed by Khalil, and this conformable
derivative is called the β-derivative. This derivative depends on the interval on which the function is
being differentiated. The conformable derivatives may not be seen as fractional derivative but can be
considered to be a natural extension of the conventional derivative. Some interesting works involving
these conformable derivatives have been reported in [25–35].
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Recently, in [36], new fractional integration and differentiation operators in Riemann–Liouville,
Hadamard and Liouville–Caputo sense were obtained iterating conformable integrals. These fractional
conformable operators have properties similar to the classical calculus. An important advantage of
these operators is that they depend on two fractional parameters naturally, which allows better
detection of the memory of the physical systems. Fundamental properties of these fractional
conformable derivatives and integrals are given in [36].

In this work, we propose a numerical algorithm based on the Adams–Moulton scheme together
with the Runge–Kutta method to get a numerical solution and chaotic behaviors of the fractional
conformable and β-conformable Rabinovich–Fabrikant, Thomas’ cyclically symmetric attractor
and Newton–Leipnik attractor in the Liouville–Caputo sense. The paper is organized as follows:
in Section 2, fractional derivatives and mathematical preliminaries are given. In Section 3, we apply
the numerical method proposed to simulate the Rabinovich–Fabrikant attractor, Thomas’ cyclically
symmetric attractor and Newton–Leipnik chaotic attractor. Finally, conclusions are given in Section 4.

2. Mathematical Preliminaries

Let us recall known definitions of fractional derivatives.

Definition 1. The Riemann–Liouville operator (RL) is the derivative of the convolution of a given function and
a power-law kernel. The RL fractional derivative with order (α > 0) is defined as follows [20]:

RL
a Dα

t f (t) =
1

Γ(n− α)

dn

dtn

∫ t

a
f (θ)(t− θ)n−α−1dθ, n− 1 < α < n. (1)

Definition 2. The Liouville–Caputo operator (C) is the convolution of the local derivative of a given function
with power-law function. The Liouville–Caputo fractional derivative with order (α > 0) is defined as
follows [20]:

C
aDα

t f (t) =
1

Γ(n− α)

∫ t

a

dn

dθn f (θ)(t− θ)n−α−1dθ, n− 1 < α < n. (2)

Definition 3. Let f : (0, ∞) −→ <, then, the conformable derivative of f (t) with order (α > 0) is given
by [23]

aDα
t f (t) = lim

ε→0

f
(

t + εt1−α
)
− f (t)

ε
, (3)

for all t > 0, α ∈ (0, 1). If f (t) is α-differentiable in some (0, a), a > 0, and lim
t→0+

f α(t) exist, then we define

f α(0) = lim
t→0+

f α(t).

We shall present some properties of this new derivative:

1. Dα(a f + bg) = aDα( f ) + bDα(g), for all a, b ∈ <.
2. Dα(tp) = ptp−α, for all p.
3. Dα(Ξ) = 0, if Ξ is a constant.
4. Dα( f g) = fDα(g) + gDα( f ).
5. Dα

(
f
g

)
= gDα( f )− fDα(g)

g2 .

Definition 4. The β-derivative is another type of conformable derivative. Let f : [− a
Γ(α) , ∞) −→ R, where

f (t) and α are differentiable. Then, the conformable derivative of type β is given by [24]

A
a Dα

t f (t) = lim
ε→0

f
(

t + ε
(

t + 1
Γ(α)

)1−α)
− f (t)

ε
, (4)
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where
(

t + 1
Γ(α)

)1−α
describes the inhomogeneous time scale.

Definition 5. Let Re(β) ≥ 0, n = [Re(β)] + 1, f ∈ Cn
α,a

(
[a, b]

)
,
(

f ∈ Cn
α,b
(
[a, b]

))
. Then, the fractional

conformable derivative in the Liouville–Caputo sense is given by [36]

c β
aDα

t f (t) =
1

Γ(n− β)

t∫
a

( (t− a)α − (x− a)α

α

)n−β−1 n
aDα

x f (x)
(x− a)1−α

dx,

=
c n−β

a Iα
t

(
c n

aDα
t f (t)

)
. (5)

Definition 6. Let Re(β) ≥ 0, n = [Re(β)] + 1, f ∈ Cn
α,a

(
[a, b]

)
,
(

f ∈ Cn
α,b
(
[a, b]

))
. Then, the fractional

conformable derivative in the Riemann–Liouville sense is given by [36]

RL β
aDα

t f (t) =
n
aDα

t
Γ(n− β)

t∫
a

( (t− a)α − (x− a)α

α

)n−β−1 f (x)
(x− a)1−α

dx,

=RL n
a Dα

t

(
RL n−β

a It f (t)
)

. (6)

Definition 7. Let Re(β) ≥ 0, n = [Re(β)] + 1, f ∈ Cn
α,a

(
[a, b]

)
,
(

f ∈ Cn
α,b
(
[a, b]

))
. Then, the fractional

conformable derivative of β-type in the Liouville–Caputo sense (AC) is given by [37]

AC β
a Dα

t f (t) =
1

Γ(n− β)

t∫
− a

Γ(α)

( (t + a
Γ(α) )

α − (x + a
Γ(α) )

α

α

)n−β−1 A n
a Dα

x f (x)
(x + a

Γ(α) )
1−α

dx,

=
A n−β

a Iα
t

(
A n

a Dα
t f (t)

)
. (7)

Definition 8. Let Re(β) ≥ 0, n = [Re(β)] + 1, f ∈ Cn
α,a

(
[a, b]

)
,
(

f ∈ Cn
α,b
(
[a, b]

))
. Then, the fractional

conformable derivative of β-type in the Riemann–Liouville sense (AR) is given by [37]

AR β
a Dα

t f (t) =
A n

a Dα
t

Γ(n− β)

t∫
− a

Γ(α)

( (t + a
Γ(α) )

α − (x + a
Γ(α) )

α

α

)n−β−1 f (x)
(x + a

Γ(α) )
1−α

dx,

=A n
a Dα

t

(
A n−β

a It f (t)
)

. (8)

3. Adams–Moulton Scheme for Fractional Conformable Derivatives

Fractional Adams’ method [38–40] is a numerical algorithm for solving nonlinear fractional
differential equation of the form

Dα
∗ y(t) = f (t, y(t)), α > 0, 0 ≤ t ≤ T, (9)

with initial conditions
y(k)(0) = y(k)0 , (10)

where k = 0, 1, 2, 3, . . . , dαe − 1 and Dα
∗ denotes the operator of fractional derivative in the

Liouville–Caputo sense. In addition, Equation (9) is equivalent to the Volterra integral equation
of the second kind
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y(t) =
n−1

∑
k=0

y(k)0
tk

k!
+

1
Γ(α)

∫ t

0
(t− s)α−1 f (s, y(s)) ds, n− 1 < α ≤ n. (11)

To get a numerical solution for Equations (5) and (7), we propose the predictor scheme [41–43]
used to discretize the Equation (11) and let us consider h = T

N , tj = jh, j = 0, 1, 2, 3, . . . , N with N steps
in an interval of [0, T], where Dα

∗ is the conformable derivative operator of Khalil’s or Atangana’s type.
Now, the new Adams–Moulton method [38–40] for the fractional conformable derivative in the

Liouville–Caputo sense (FCAMM) is given as follows:

xp
h(tn+1) = x0 +

1
Γ(β)

n

∑
j=0

bj,n+1D
α
∗ f (tj, xh(tj)),

0 < α < 1,
0 < β < 1,

(12)

where α denotes the order of the conformable derivative and β the fractional order of the
Liouville–Caputo fractional derivative

bj,n+1 =
hβ

β

[
(n + 1− j)β − (n− j)β

]
, 0 ≤ j ≤ n. (13)

In this work, we use the conformable derivative proposed by Khalil in Equation (3)

Dα
∗ f (tj, xh(tj)) :=

(
t1−α

) d
dt

f (tj, xh(tj)), (14)

and the β-conformable proposed by Atangana in Equation (4)

ADα
∗ f (tj, xh(tj)) :=

(
t +

1
Γ(α)

)1−α d
dt

f (tj, xh(tj)), (15)

to solve numerically fractional differential equations involving a fractional conformable derivative
and β-conformable derivative in the Liouville–Caputo sense.

4. Application and Numerical Examples

In this section, we consider some numerical experiments for different fractional-order values.

• Rabinovich–Fabrikant attractor. The model of Rabinovich–Fabrikant [44] was initially designed
as a physical model describing the stochasticity arising from the modulation instability in a
non-equilibrium dissipative medium. The Rabinovich–Fabrikant system is described by the
following equations:

ẋ = y
(

z− 1 + x2
)
+ ax,

ẏ = x
(

3z + 1− x2
)
+ ay,

ż = −2z (b + xy) ,

(16)

where a, b > 0. The system (16) is chaotic for some values of a and b, but for a < b, the system
is dissipative.

Figure 1 shows the numerical simulation of the Equation (16) for a = 0.10, b = 0.14, step size
h = 5× 10−3 and time simulation t = 70 [s], with initial conditions x(0) = −1, y(0) = 0, z(0) = 0.5.
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Figure 1. Numerical simulation for the Rabinovich–Fabrikant attractor (16) for a = 0.10, b = 0.14 with
initial conditions x(0) = −1, y(0) = 0, z(0) = 0.5.

If we replace the time derivative of the system (16) by the conformable derivative Equation (14)
and β-conformable derivative Equation (15), then we get the following fractional conformable
numerical schemes in the Liouville–Caputo sense.

• Conformable sense:
c β

0D
α
t x =

1
Φ

[
y
(

z− 1 + x2
)
+ ax

]
,

c β
0D

α
t y =

1
Φ

[
x
(

3z + 1− x2
)
+ ay

]
,

c β
0D

α
t z =

1
Φ

[−2z (b + xy)] .

(17)

Using the numerical scheme (12), we represent the system (17) in the following form:

xp
n+1(t) = x0(t) +

1
Γ(β)

n

∑
j=0

b1,j,n+1 f1 (xn, yn, zn, tn) ,

yp
n+1(t) = y0(t) +

1
Γ(β)

n

∑
j=0

b2,j,n+1 f2 (xn, yn, zn, tn) ,

zp
n+1(t) = z0(t) +

1
Γ(β)

n

∑
j=0

b3,j,n+1 f3 (xn, yn, zn, tn) ,

(18)

where
f1 (xn, yn, zn, tn) :=

1
Φ

[
y
(

z− 1 + x2
)
+ ax

]
,

f2 (xn, yn, zn, tn) :=
1
Φ

[
x
(

3z + 1− x2
)
+ ay

]
,

f3 (xn, yn, zn, tn) :=
1
Φ

[−2z (b + xy)] ,

(19)

and Φ := t1−α.
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• β-conformable sense:
AC β

0 D
α
t x =

1
ψ

[
y
(

z− 1 + x2
)
+ ax

]
,

AC β
0 D

α
t y =

1
ψ

[
x
(

3z + 1− x2
)
+ ay

]
,

AC β
0 D

α
t z =

1
ψ
[−2z (b + xy)] .

(20)

Using the numerical scheme (12), we represent the system (20) in the following form:

xp
n+1(t) = x0(t) +

1
Γ(β)

n

∑
j=0

b1,j,n+1g1 (xn, yn, zn, tn) ,

yp
n+1(t) = y0(t) +

1
Γ(β)

n

∑
j=0

b2,j,n+1g2 (xn, yn, zn, tn) ,

zp
n+1(t) = z0(t) +

1
Γ(β)

n

∑
j=0

b3,j,n+1g3 (xn, yn, zn, tn) ,

(21)

where
g1 (xn, yn, zn, tn) :=

1
ψ

[
y
(

z− 1 + x2
)
+ ax

]
,

g2 (xn, yn, zn, tn) :=
1
ψ

[
x
(

3z + 1− x2
)
+ ay

]
,

g3 (xn, yn, zn, tn) :=
1
ψ
[−2z (b + xy)] ,

(22)

and ψ :=
(

t + 1
Γ(α)

)1−α
.

• Observation. In the case when α→ 1, we obtain the numerical solution of the Rabinovich–Fabrikant
attractor in the Liouville–Caputo sense.

Figure 2a–d show numerical simulations from the Equation (18) for a = 0.10, b = 0.14, step size
h = 5× 10−3 and time simulation t = 70 [s], with initial conditions x(0) = −1, y(0) = 0, z(0) = 0.5,
for different particular cases of α and β, arbitrarily chosen.

To develop the simulations shown in the Figure 2a,b, we consider α = 1 and β 6= 1;
in this case, both simulations show numerical solutions for the Rabinovich–Fabrikant attractor
in the Liouville–Caputo sense. To develop the simulations shown in Figure 2c,d, we consider
α 6= 1 and β = 1; in this case, both simulations show numerical solutions for the conformable
Rabinovich–Fabrikant attractor.

Figure 3 shows numerical simulations from the Equation (18) for a = 0.10, b = 0.14, step size
h = 5× 10−3 and time simulation t = 70 [s], with initial conditions x(0) = −1, y(0) = 0, z(0) = 0.5,
for different particular cases of α and β, arbitrarily chosen.

Figure 4a,b shows numerical simulations from the Equation (21) for a = 0.10, b = 0.14, step size
h = 5× 10−3 and time simulation t = 70 [s], with initial conditions x(0) = −1, y(0) = 0, z(0) = 0.5,
for different particular cases of α and β, arbitrarily chosen.

To develop the simulations shown in Figure 4a,b, we consider α = 1 and β 6= 1; in this case, both
simulations show numerical solutions for the Rabinovich–Fabrikant attractor in the Liouville–Caputo
sense. To develop the simulations shown in the Figure 4c,d, we consider α 6= 1 and β = 1; in this case,
both simulations show numerical solutions for the β-conformable Rabinovich–Fabrikant attractor.

Figure 5 shows numerical simulations from the Equation (21) for a = 0.10, b = 0.14, step size
h = 5× 10−3 and time simulation t = 70 [s], with initial conditions x(0) = −1, y(0) = 0, z(0) = 0.5,
for different particular cases of α and β, arbitrarily chosen.
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Figure 2. Numerical simulation for the scheme given by Equation (18) for a = 0.10, b = 0.14 with
initial conditions x(0) = −1, y(0) = 0, z(0) = 0.5, for different particular cases of α and β. In (a), α = 1,
β = 0.998. In (b), α = 1, β = 0.997. In (c), α = 0.996, β = 1. In (d), α = 0.988, β = 1, all values were
arbitrarily chosen.
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Figure 3. Numerical simulation for the Rabinovich–Fabrikant attractor (18) for a = 0.10, b = 0.14 with
initial conditions x(0) = −1, y(0) = 0, z(0) = 0.5, for different particular cases of α and β, all values
were arbitrarily chosen.
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Figure 4. Numerical simulation for the scheme given by Equation (21) for a = 0.10, b = 0.14 with
initial conditions x(0) = −1, y(0) = 0, z(0) = 0.5, for different particular cases of α and β. In (a) α = 1,
β = 0.997. In (b) α = 1, β = 0.995. In (c) α = 0.994, β = 1. In (d) α = 0.992, β = 1, all values were
arbitrarily chosen.
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Figure 5. Numerical simulation for the Rabinovich–Fabrikant attractor (21) for a = 0.10, b = 0.14 with
initial conditions x(0) = −1, y(0) = 0, z(0) = 0.5, for different particular cases of α and β, all values
were arbitrarily chosen.
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Self-excited attractors can be visualized numerically, in which, after a transient process a trajectory,
starting from a point of a neighborhood of unstable equilibrium, attracted to the attractor. According
to the election of the orders of derivation, we have illustrated that the system may possess multiple
topologically different chaotic attractors.

• Thomas’ cyclically symmetric attractor. Thomas in [45] proposed a mathematically three-dimensional
cyclically symmetric attractor. This system is cyclically symmetric in the variables x, y, and z and
considers a frictional damping b. The Thomas’ cyclically symmetric attractor is described by the
following equations:

ẋ = sin (y)− bx,

ẏ = sin (z)− by,

ż = sin (x)− bz,

(23)

where b can be considered a frictional damping for a particle moving in a three-dimensional
lattice [46]. This attractor is tuned by a single value in any dimension of range 2 to 3; it also has
the quality of transition from a dissipative system to a conservative system.

Figure 6 shows the numerical simulation of the Equation (23) for b = 0.1998, step size h = 1× 10−2,
simulation time t = 150 [s] and initial conditions x(0) = 1, y(0) = 0 z(0) = 1.

-2
4

-1

0

4

1

z(
t)

2

2

y(t)

2

3

x(t)

4

0
0

-2 -2

Figure 6. Numerical simulation for the Thomas’ cyclically symmetric attractor (23) for b = 0.1998, step
size h = 1× 10−2, simulation time t = 150 [s] and initial conditions x(0) = 1, y(0) = 0 z(0) = 1.

Applying the operator c β
0Dα

t to Equation (23), we get

c β
0D

α
t x =

1
Φ

[sin (y)− bx] ,

c β
0D

α
t y =

1
Φ

[sin (z)− by] ,

c β
0D

α
t z =

1
Φ

[sin (x)− bz] .

(24)

If we proceed in a similar way applying the operator AC β
a Dα

t , then we have

AC β
0 D

α
t x =

1
ψ
[sin (y)− bx] ,

AC β
0 D

α
t y =

1
ψ
[sin (z)− by] ,

AC β
0 D

α
t z =

1
ψ
[sin (x)− bz] .

(25)
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Applying FCAMM to Equations (24) and (25), we set the parameters of Thomas’ attractor as
b = 0.1998, step size h = 1× 10−2, simulation time t = 150 [s] and initial conditions x(0) = 1, y(0) = 0
z(0) = 1, we get the numerical solution for the conformable systems (24) and (25).

• Observation. In the case when α→ 1, we obtain the numerical solution of the Thomas’ cyclically
symmetric attractor in the Liouville–Caputo sense.

Figure 7a–d shows numerical simulations from the Equation (24) for b = 0.1998, step size
h = 1× 10−2, simulation time t = 150 [s] and initial conditions x(0) = 1, y(0) = 0 z(0) = 1, for
different particular cases of α and β, arbitrarily chosen.

-2
4

-1

0

4

1

z(
t)

2

2

y(t)

2

3

x(t)

4

0
0

-2 -2

=1, =0.996

(a)

-2
4

-1

0

4

1

z(
t)

2

2

y(t)

2

3

x(t)

4

0
0

-2 -2

 =1, =0.993

(b)

-2
4

-1

0

4

1

z(
t)

2

2

y(t)

2

3

x(t)

4

0
0

-2 -2

=0.995, =1

(c)

-2
4

-1

0

4

1

z(
t)

2

2

y(t)

2

3

x(t)

4

0
0

-2 -2

=0.955, =1

(d)

Figure 7. Numerical simulation for the scheme given by Equation (24) for b = 0.1998, step size
h = 1× 10−2, simulation time t = 150 [s] and initial conditions x(0) = 1, y(0) = 0 z(0) = 1, for
different particular cases of α and β. In (a), α = 1, β = 0.996. In (b), α = 1, β = 0.993. In (c), α = 0.995,
β = 1. In (d), α = 0.955, β = 1, all values were arbitrarily chosen.

To develop the simulations shown in the Figure 7a,b, we consider α = 1 and β 6= 1, in this
case, both simulations show numerical solutions for the Thomas’ cyclically symmetric attractor in the
Liouville–Caputo sense. To develop the simulations shown in the Figure 7c,d, we consider α 6= 1 and
β = 1, in this case, both simulations show numerical solutions for the conformable Thomas’ cyclically
symmetric attractor.

Figure 8 shows numerical simulations from the Equation (24) for b = 0.1998, step size h = 1× 10−2,
simulation time t = 150 [s] and initial conditions x(0) = 1, y(0) = 0 z(0) = 1, for different particular
cases of α and β, arbitrarily chosen.

Figure 9a,b shows numerical simulations from the Equation (25) for b = 0.1998, step size
h = 1× 10−2, simulation time t = 150 [s] and initial conditions x(0) = 1, y(0) = 0 z(0) = 1, for
different particular cases of α and β, arbitrarily chosen.



Entropy 2018, 20, 384 11 of 23

0
4

3 3.5

2

z
(t

)

3

y(t)

2 2.5

x(t)

4

21 1.510 0.5

0
4

3 3.5

2

z
(t

)

3

y(t)

2 2.5

x(t)

4

21 1.510 0.5

-2
4

0

4

z
(t

)

2

2

3

y(t) x(t)

4

20
1

-2 0

1
3

3

2

z
(t

)

2 2.5

y(t)

2

x(t)

3

1 1.5
10 0.5

Figure 8. Numerical simulation for the Thomas’ cyclically symmetric attractor (24) for b = 0.1998,
step size h = 1× 10−2, simulation time t = 150 [s] and initial conditions x(0) = 1, y(0) = 0 z(0) = 1,
for different particular cases of α and β, all values were arbitrarily chosen.
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Figure 9. Numerical simulation for the scheme given by Equation (25) for b = 0.1998, step size
h = 1 × 10−2, simulation time t = 150 [s] and initial conditions x(0) = 1, y(0) = 0 z(0) = 1,
for different particular cases of α and β. In (a), α = 1, β = 0.994. In (b), α = 1, β = 0.992. In (c),
α = 0.994, β = 1. In (d), α = 0.985, β = 1, all values were arbitrarily chosen.
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To develop the simulations shown in the Figure 9a,b, we consider α = 1 and β 6= 1, in this
case, both simulations show numerical solutions for the Thomas’ cyclically symmetric attractor in
the Liouville–Caputo sense. To develop the simulations shown in the Figure 9c,d, we consider α 6= 1
and β = 1, in this case, both simulations show numerical solutions for the β-conformable Thomas’
cyclically symmetric attractor.

Figure 10 shows numerical simulations from the Equation (25) for a = 0.10, b = 0.14, step size
h = 5× 10−3, time simulation t = 70 [s], with initial conditions x(0) = −1, y(0) = 0, z(0) = 0.5, for
different particular cases of α and β, arbitrarily chosen.
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Figure 10. Numerical simulation for the Thomas’ cyclically symmetric attractor (25) for b = 0.1998,
step size h = 1× 10−2, simulation time t = 70 [s] and initial conditions x(0) = −1, y(0) = 0 z(0) = 0.5,
for different particular cases of α and β, all values were arbitrarily chosen.

The Thomas’ cyclically symmetric attractor has a single parameter b that controls the damping
and that is a natural bifurcation parameter for studying the route to chaos. For this example, the figures
show that when α < 1 and β < 1, the numerical results presented to continual transition from a chaotic
dissipative systems. This is because the different values of α and β modified the damping capacity of
the systems. For example, when α and β are equal to 0.996, the damping capacity is bigger than when
α and β are equal to 0.999.

• Newton–Leipnik attractor. The Newton–Leipnik system model was obtained by modifying Euler’s
rigid body equations with the addition of a linear feedback in 1981. For this example, we
consider a 3D system of fractional order nonlinear autonomous differential equations known as
Newton–Leipnik attractor [47,48]:

ẋ = −ax + y + cyz,

ẏ = −x− ay + dxz,

ż = bz− dxy,

(26)

where (a, c, d) ∈ R.
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Figure 11 shows the numerical simulation for the Equation (26) a = 0.4, b = 0.175, c = 10, d = 5,
step size h = 1× 10−2, simulation time t = 400 [s] and initial conditions x(0) = 0.349, y(0) = 0,
z(0) = −0.16.
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0
-0.2 -0.5

-0.4 -1

Figure 11. Numerical simulation for the Newton–Leipnik attractor (26) for a = 0.4, b = 0.175, c = 10,
d = 5, step size h = 1× 10−2, simulation time t = 400 [s] and initial conditions x(0) = 0.349, y(0) = 0,
z(0) = −0.16.

Replacing the time derivative in Equation (26) by the conformable operators Equations
(14) and (15), we get the following fractional conformable numerical solutions in the
Liouville–Caputo sense:

c β
0D

α
t x = −ax + y + cyz,

c β
0D

α
t y = −x− ay + dxz,

c β
0D

α
t z = bz− dxy,

(27)

and, for β-conformable in the Liouville–Caputo sense, we have

AC β
0 D

α
t x = −ax + y + cyz,

AC β
0 D

α
t y = −x− ay + dxz,

AC β
0 D

α
t z = bz− dxy.

(28)

We assume that the systems represented in Equations (27) and (28) generate a chaotic attractor
because we consider a = 0.4, b = 0.175, c = 10, d = 5 and initial conditions x(0) = 0.349, y(0) = 0,
z(0) = −0.16. The above equations can be solved numerically using the predictor scheme given in
Equation (12) considering a step size at h = 1× 10−2 and simulation time t = 400 [s].

• Observation. In the case when α → 1, we obtain the numerical solution of the Newton–Leipnik
attractor in the Liouville–Caputo sense.

Figure 12a–d shows numerical simulations from the Equation (27) for a = 0.4, b = 0.175, c = 10,
d = 5, step size h = 1× 10−2, simulation time t = 400 [s] and initial conditions x(0) = 0.349, y(0) = 0,
z(0) = −0.16, for different particular cases of α and β, arbitrarily chosen.
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Figure 12. Numerical simulation for the scheme given by Equation (27) for a = 0.4, b = 0.175, c = 10,
d = 5, step size h = 1× 10−2, simulation time t = 400 [s] and initial conditions x(0) = 0.349, y(0) = 0,
z(0) = −0.16, for different particular cases of α and β. In (a), α = 1, β = 0.98. In (b), α = 1, β = 0.95. In
(c), α = 0.97, β = 1. In (d), α = 0.91, β = 1, all values were arbitrarily chosen.

To develop the simulations shown in the Figure 12a,b, we consider α = 1 and β 6= 1, in this case,
both simulations show numerical solutions for the Newton–Leipnik attractor in the Liouville–Caputo
sense. To develop the simulations shown in the Figure 12c,d, we consider α 6= 1 and β = 1, in this case,
both simulations show numerical solutions for the conformable Newton–Leipnik attractor.

Figure 13 shows numerical simulations from the Equation (27) for a = 0.4, b = 0.175, c = 10,
d = 5, step size h = 1× 10−3, simulation time t = 400 [s] and initial conditions x(0) = 0.349, y(0) = 0,
z(0) = −0.16, for different particular cases of α and β, arbitrarily chosen.

Figure 14a,b shows numerical simulations from the Equation (28) for a = 0.4, b = 0.175, c = 10,
d = 5, step size h = 1× 10−2, simulation time t = 400 [s] and initial conditions x(0) = 0.349, y(0) = 0,
z(0) = −0.16, for different particular cases of α and β, arbitrarily chosen.

To develop the simulations shown in the Figure 14a,b, we consider α = 1 and β 6= 1, in this case,
both simulations show numerical solutions for the Newton–Leipnik attractor in the Liouville–Caputo
sense. To develop the simulations shown in the Figure 14c,d, we consider α 6= 1 and β = 1, in this case,
both simulations show numerical solutions for the β-conformable Newton–Leipnik attractor.

Figure 15 shows numerical simulations from the Equation (28) for a = 0.4, b = 0.175, c = 10,
d = 5, step size h = 5× 10−2, time simulation t = 400 [s], with initial conditions x(0) = 0.349, y(0) = 0,
z(0) = −0.16, for different particular cases of α and β, arbitrarily chosen.

The simulation results demonstrate that chaos indeed exists in the fractional-order system with
order α and β less than 3. It was found that when 0.91 < α, β < 1, Newton–Leipnik attractor shows
chaotic behavior. Furthermore, numerical simulations suggest that there exists both upper and lower
attracting sets. This system display rich dynamic behaviors, such as periodic motions, chaotic motions,
and transient chaos.

In the Figures 16a–d, 17a–d, 18a–d and 19a–d we have computed the bifurcation diagrams with
respect to parameters a, b, c and d.
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Figure 13. Numerical simulation for the Newton–Leipnik attractor (27) for a = 0.4, b = 0.175, c = 10,
d = 5, step size h = 1× 10−2, simulation time t = 400 [s] and initial conditions x(0) = 0.349, y(0) = 0,
z(0) = −0.16, for different particular cases of α and β, all values were arbitrarily chosen.

-0.3
0.5

-0.2

0.4

-0.1

z(
t)

0.2

0

y(t)

0

x(t)

0.1

0
-0.2

-0.5 -0.4

(a)

-0.3
0.4

-0.2

0.2 0.4

-0.1

z(
t)

0

y(t)

0 0.2

x(t)

0.1

-0.2 0

-0.4 -0.2

(b)

-0.2
0.4

0

0.2 1

0.2

z(
t)

0.5

0.4

y(t)

0

x(t)

0.6

0
-0.2 -0.5

-0.4 -1

$alpha=0.999, beta=1$

(c)

-0.2
0.4

0

0.2 1

0.2

z(
t)

0.5

0.4

y(t)

0

x(t)

0.6

0
-0.2 -0.5

-0.4 -1

=0.998, =1

(d)

Figure 14. Numerical simulation for the scheme given by Equation (28) for a = 0.4, b = 0.175, c = 10,
d = 5, step size h = 1× 10−2, simulation time t = 400 [s] and initial conditions x(0) = 0.349, y(0) = 0,
z(0) = −0.16, for different particular cases of α and β. In (a), α = 1, β = 0.97. In (b), α = 1, β = 0.94. In
(c), α = 0.999, β = 1. In (d), α = 0.9998, β = 1, all values were arbitrarily chosen.
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Figure 15. Numerical simulation for the Newton–Leipnik attractor (28) for a = 0.4, b = 0.175, c = 10,
d = 5, step size h = 1× 10−2, simulation time t = 400 [s] and initial conditions x(0) = 0.349, y(0) = 0,
z(0) = −0.16, for different particular cases of α and β, all values were arbitrarily chosen.
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Figure 16. Bifurcation diagram of parameter a and portraits phase for the Newton–Leipnik system.
In (a), bifurcation diagram of parameter a. In (b), portrait phase of the Newton–Leipnik system with
α = 0.95, β = 0.98 and a = 0.04. In (c), portrait phase of the Newton–Leipnik system with α = 0.95,
β = 0.98 and a = 0.775. In (d), portrait phase of the Newton–Leipnik system with α = 0.95, β = 0.98
and a = 1.715, all values were arbitrarily chosen.
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Figure 17. Bifurcation diagram of parameter b and portraits phase for the Newton–Leipnik system.
In (a), bifurcation diagram of parameter b. In (b), portrait phase of the Newton–Leipnik system with
α = 0.95, β = 0.98 and b = 0.07. In (c), portrait phase of the Newton–Leipnik system with α = 0.95,
β = 0.98 and b = 0.665. In (d), portrait phase of the Newton–Leipnik system with α = 0.95, β = 0.98
and b = 1.31, all values were arbitrarily chosen.
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Figure 18. Bifurcation diagram of parameter c and portraits phase for the Newton–Leipnik system.
In (a), bifurcation diagram of parameter c. In (b), portrait phase of the Newton–Leipnik system with
α = 0.95, β = 0.98 and c = 0.77. In (c), portrait phase of the Newton–Leipnik system with α = 0.95,
β = 0.98 and c = 0.775. In (d), portrait phase of the Newton–Leipnik system with α = 0.95, β = 0.98
and c = 4.975, all values were arbitrarily chosen.
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Figure 19. Bifurcation diagram of parameter d and portraits phase for the Newton–Leipnik system.
In (a), bifurcation diagram of parameter d. In (b), portrait phase of the Newton–Leipnik system with
α = 0.95, β = 0.98 and d = 0.18. In (c), portrait phase of the Newton–Leipnik system with α = 0.95,
β = 0.98 and b = 2.275. In (d), portrait phase of the Newton–Leipnik system with α = 0.95, β = 0.98
and d = 5.245, all values were arbitrarily chosen.
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The Euclidean distance is like an index of similarity between two points in the Euclidean space;
hence, we represent the dynamic of the state x as a vector whose relation to the Euclidean space is
natural and isomorphic. With this distance, we can perform a sensitivity analysis to the variation of
initial conditions in the Newton–Leipnik system [49,50].

Assuming that X(x1, x2, . . . , xn) is a point in an n-dimensional Euclidean space as a result of
the dynamics of the Newton–Leipnik system with initial conditions: x(0) = 0.349, y(0) = 0 and
z(0) = −0.16; parameters: a = 0.4, b = 0.175, c = 10 and d = 5; Xd (x1d, x2d, . . . , xnd) as an-other
point in the Euclidean space whose dynamics depend on the initial condition x0 ∈ [0.2, 1] with
∆x0 = 1× 10−3, we can define the distance between the two dynamics X and Xd as

d (X, Xd) :=

(
n

∑
i=1

(xi − xid)
2

)1/2

. (29)

By using Equation (29), Euclidean space becomes a metric space where the following aphorisms
can be satisfied

• If the distance between two points is larger than 0

d (X, Xd) ≥ 0,

we assume that the dynamics of the system (27) are different; therefore, said system is susceptible
to the change of initial conditions.

• The distance between two points is equal to 0, if and only if two points are overlapped

(X, Xd) = 0 i f f X = Xd,

wich means that the dynamics of the system are the same in that initial condition.

The spatial display is illustrated in the Figure 20a–c.
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Figure 20. Cont.
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Figure 20. Visual projection distance of the different initial conditions along the time for the
Newton–Leipnik system. In (a), initial condition x0. In (b), initial condition y0. In (c), initial condition z0.

5. Conclusions

Within the framework of the fractional conformable differentiation, a modification of the
Adams–Moulton method was suggested to solve fractional conformable differential equations, in
particular chaotic systems of type Rabinovich–Fabrikant, Thomas’ cyclically symmetric attractor and
Newton–Leipnik. The numerical scheme based in the Adams method permits solved numerically
fractional conformable differential equations in the Liouville–Caputo sense. The modified numerical
method is a mixture of the Adams–Moulton and the Runge–Kutta method. The method is accurate
and efficient, direct, concise and converges quickly to the exact solution. At this point, to the best of
the authors’ knowledge, there is no known or published numerical methods for solving fractional
conformable differential equations in the Liouville–Caputo sense.

The dynamics of the Rabinovich–Fabrikant, Thomas’ cyclically symmetric attractor and
Newton–Leipnik chaotic systems using fractional order conformable derivatives and β-conformable
derivatives were studied numerically. We consider a novel fractional conformable and β-conformable
derivatives of type Liouville–Caputo to investigate new types of chaotic behaviors. The novel fractional
attractors depend naturally on two fractional parameters α and β; therefore, the systems studied display
novel dynamic behaviors, periodic motions, chaotic motions, and transient chaos.

In the cases when α = 1 and β 6= 1, we obtain chaotic motions described by the Liouville–Caputo
fractional derivative. In the cases, when α 6= 1 and β = 1, we obtain chaotic motions described by the
conformable or β-conformable derivatives. Finally, in the case when α 6= 1 and β 6= 1, we obtain chaotic
motions of type fractional conformable or fractional β-conformable in the Liouville–Caputo sense. We
used some theoretical parameters to show the numerical simulations of fractional conformable and
β-conformable attractors. We showed that, for certain values of parameters, the systems are chaotic
and, for others, the systems tends to a stable periodic orbit. The systems considered produce rich
dynamics that can serve as a prototype for chaos studies. These fractional chaotic motions based on
the conformable and β-conformable derivatives in the Liouville–Caputo sense are showed for the first
time in this work.

Our graphical representations explicitly reveal the complete reliability and efficiency of the
presented method with a great potential in scientific applications. The new fractional conformable
operators have become an important mathematical tool, motivated by the potential use for physicists
and engineers working in various areas of the natural sciences. The chaos control of chaotic systems, the
theoretical analysis of the dynamics of the fractional-order system, and the synchronization between
pair of fractional order chaotic systems assume considerable significance in the study of nonlinear
dynamics. This investigation should also be considered in the near future.
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