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Abstract
The main purpose of this paper is to use a method with a free parameter, named the
optimal asymptotic homotopy method (OHAM), in order to obtain the solution of
delay differential equations, delay partial differential equations, and a system of
coupled delay equations featuring fractional derivative. This method is preferable to
others since it has faster convergence toward homotopy perturbation method, and
the convergence rate can be set as a controlled area. Various examples are given to
better understand the use of this method. The approximate solutions are compared
with exact solutions as well.
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1 Introduction
Fractional arithmetic and fractional differential equations appeared in many disciplines,
including medicine [1], economics [2], dynamical problems [3, 4], chemistry [5], mathe-
matical physics [6], traffic model [7], fluid flow [8], and so on.

Scholars and researchers are invited to study books that have been written to better un-
derstand the concept of fractional arithmetic [9–11]. The fractional differential equations
with delay in x are not very well realized. To find the approximate solution for delay dif-
ferential equations with fractional derivative that we explore in this paper is presented as
follows:

Dα
x u(x) + A

(
x, u(p0x), ux(p1x), uxx(p3x), . . . , ux · · ·x︸ ︷︷ ︸

n order

(pnx)
)

= g(x) (1.1)

with the initial conditions

ux(0) = μ0, . . . , ux · · ·x︸ ︷︷ ︸
n order

(0) = μn,

where μn is a constant, g(x) is a known analytic function, 0 ≤ x ≤ 1, pj ∈ R for j =
0, 1, 2, . . . , n, A is the differential operator, and Dα

x denotes the fractional Caputo deriva-
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tive of order α given by

Dα
x u(x) =

1
�(k + 1 – α)

∫ x

0
(x – s)k–αu(k+1)(s) ds, k < α ≤ k + 1, k ∈ Z

+. (1.2)

These equations for α = 1 appear in the mathematical and physical modeling of time-
dependent process, and their goal is to determine the rate of change of the current situa-
tion in comparison with the former models. In particular, this conversion is basic when an
ordinary differential equation is based on model failure. Among these types, there are pan-
tograph differential equations , which have been of interest to many researchers. A panto-
graph is a machine that rolls up an electric current from upper lines for trams or electric
trains. The term pantograph has been retrieved from its similarity to pantograph machines
for drawings copying and writing [12–14]. About the existence of solutions for these equa-
tions, we can mention [15, 16].

The fractional differential equations with shrinking in x and delays in t are not very
well realized. So we look for an approximate solution for delay differential equations with
fractional derivative of the following form:

Dα
t u(x, t) + A

(
x, t, u(p0x, q0t), ux(p1x, q1t), uxx(p3x, q3t), . . . , ux · · ·x︸ ︷︷ ︸

n order

(pnx, qnt)
)

= g(x, t) (1.3)

with the initial conditions

ut(x, 0) = h0(x), . . . , ut · · · t︸ ︷︷ ︸
n order

(x, 0) = hn(x),

where g(x, t) is a known analytic function, t > 0, 0 ≤ x ≤ 1, pj, qj ∈ R for j = 0, 1, 2, . . . , n,
A is the partial differential operator, and Dα

t denotes the fractional Caputo derivative of
order α given by

Dα
t u(x, t) =

1
�(k + 1 – α)

∫ t

0
(t – s)k–αu(k+1)(x, s) ds, k < α ≤ k + 1, k ∈ Z

+. (1.4)

The delay differential equations (DDEs) and fractional delay differential equations
(FDDEs) appear in modeling different problems in engineering and science such as bi-
ology models [17, 18], control theory [19, 20], oscillation theory [21, 22], delay systems
[23, 24], and so on.

A number of papers that can be found in modeling, deploying and extending delay dif-
ferential equations, delay partial differential equations, and fractional delay differential
equations [25, 26].

It is difficult to derive the exact solution of most DDEs and FDDEs. Hence, a relatively
large number of approximate solutions expressed by the scholars are not possible if they
find the accurate analytical solutions with the existing procedures. Accordingly, for such
differential equations, we have to consider some direct and iterative methods. Some of
these techniques used by scholars include the finite difference method [27], the homo-
topy perturbation method (HPM) [28, 29], the differential transform method (DTM) [30,
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31], Adomian’s decomposition method (ADM) [31], the optimal homotopy asymptotic
method (OHAM) [32], the homotopy analysis method (HAM) [33–35], the variational
iteration method (VIM) [36], and so on [37–40].

This paper is organized as follows. In Sect. 2, we give a description of OHAM. In Sect. 3,
we express the convergence of OHAM. In Sect. 4, applications of OHAM to Eqs. (1.1) and
(1.3) are illustrated, and some numerical examples are presented. Conclusions are drawn
in Sect. 5.

2 Description of OHAM
The overall dimensions of the proposed approach [41] in this section are given and repre-
sented in the following differential equation:

L
(
u(x, t)

)
+ N

(
u(x, t), u

(
η0(x),ς0(t)

)
, ux

(
η1(x),ς1(t)

)
, . . . , ux · · ·x︸ ︷︷ ︸

n order

(
ηn(x),ςn(t)

))

+ g(x, t) = 0, x ∈ � ⊆R
n, t > 0, (2.1)

with boundary condition

B
(

u,
∂u
∂t

)
= 0, t ∈ �, (2.2)

where L = Dα
t is a linear operator, N is a nonlinear operator consisting of the space deriva-

tives of integer order with respect to x along with delay functions, u(x, t) is an unknown
function, g(x, t) is a known analytic function, B is a boundary operator, and � is the bound-
ary of the domain �; also, ηj(x) and ςj(t) are delay functions. In this work, we consider
ηj(x) = pjx and ςj(t) = qjt for j = 0, 1, . . . , n.

According to OHAM, we concoct structural homotopy v(x, t; p) : � × [0, 1] → R that
fulfills the conditions in the following equation:

(1 – p)L
(
v(x, t; p) – u0(x, t)

)

= H(p)(L
(
v(x, t; p)

)
+ g(x, t)

+ N
(
u(x, t), u

(
η0(x),ς0(t)

)
, ux

(
η1(x),ς1(t)

)
, . . . , ux . . . x︸ ︷︷ ︸

n order

(
ηn(x),ςn(t)

))
, (2.3)

where p ∈ [0, 1] is an infix parameter. The supporting function H(p) is elected in the
following display as a nonzero for p �= 0 and H(0) = 0. When p = 0 and p = 1, we have
v(x, t; 0) = u0(x, t) and v(x, t; 1) = u(x, t).

Thus, when p varies from 0 to 1, the solution v(x, t; p) approaches from the initial guess
u0(x, t) to exact solution u(x, t); u0(x, t) obtained from (2.2) to (2.3) with p = 0 giving

L
(
u0(x, t; 0)

)
+ g(x, t) = 0. (2.4)

The function H(p) is assumed to be

H(p) = pc1 + p2c2 + p3c3 + · · · , (2.5)
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in which c1, c2, c3, . . . are the convergence control parameters, which are unfamiliar and
can be calculated. Another demonstration form H(p) is offered by Herisanu and Marinca
[41].

To compute the approximate solution, we expand v(x, t; p, ci) in Taylor series around p:

v(x, t; p, ci) = u0(x, t) +
∞∑

k=1

uk(x, t; ci)pk , i = 1, 2, . . . . (2.6)

Define the vectors

�cl = {c1, c2, . . . , cl}, (2.7)

�us =
{

u0(x, t), u1(x, t;�c1), . . . , us(x, t;�cs),

(u0)x
(
η1(x),ς1(t)

)
, (u1)x

(
η1(x),ς1(t);�c1

)
, . . . , (us)x

(
η1(x),ς1(t);�cs

)

...

(u0)x · · ·x︸ ︷︷ ︸
n order

(
ηn(x),ςn(t)

)
, (u1)x · · ·x︸ ︷︷ ︸

n order

(
ηn(x),ςn(t);�c1

)
, . . . , (us)x · · ·x︸ ︷︷ ︸

n order

(
ηn(x),ςn(t);�cs

)}
.

We consider the zero-order problem (2.4), the first-order equation

L
(
u1(x, t)

)
= c1N0(�u0) + g(x, t), (2.8)

and the second-order equation

L
(
u2(x, t)

)
– L

(
u1(x, t)

)
= c2N0(�u0) + c1

(
L
(
u1(x, t)

)
+ N1(�u1)

)
. (2.9)

The equations in the general case uk(x, t) are

L
(
uk(x, t)

)
– L

(
uk–1(x, t)

)

= ckN0
(
u0(x, t)

)
+

k–1∑

m=1

cm
(
L
(
uk–m(x, t)

)
+ Nk–m(�uk–1)

)
, (2.10)

in which k = 2, 3, . . . , and Nm is the coefficient at pm in the development of N(v(x, t; p))
about the infix parameter p, and we have

N
(
v(x, t; p, ci)

)
= N0

(
u0(x, t)

)
+

∞∑

m=1

Nm(�um)pm. (2.11)

We can see that the convergence of series (2.6) depends on the constants c1, c2, . . . . If it
converges at p = 1, we have

ṽ(x, t; ci) = u0(x, t) +
m∑

k=1

uk(x, t; ci), i = 1, 2, . . . , m. (2.12)
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The following residual is the result obtained as a result of embedding (2.12) in (2.1):

R(x, t; ci) = L
(
ṽ(x, t; p, ci)

)

+ g(x, t) + N
(
ṽ(x, t; p, ci)

)
, i = 1, 2, . . . , m. (2.13)

If R = 0, then ṽ is the exact solution of (2.1).
Using the method of least squares and knowing the exact solution of the problem, we

can minimize the L2-norm of the error Evm(c1, c2, c3, . . . , cm). The L2-norm of the error is

∥
∥Ẽvm(c1, . . . , cm)

∥
∥

2 =
(∫

�

∫

�

ṽ2
m(x, t) dt dx

) 1
2

,

where Ẽvm(x, t) = |̃vexact(x, t) – ṽm(x, t; c1, . . . , cm)|.

3 Convergence of OHAM
In this section, we consider the convergence of the OHAM.

Theorem 3.1 ([42]) Let the solution components u0, u1, u2, . . . , be defined as given in
Eqs. (2.8)–(2.10). The series solution

∑m–1
k=0 uk(x, t) defined in (2.12) converges if there exists

0 < ρ < 1 such that ‖uk+1‖ ≤ ρ‖uk‖ for all k ≥ k0 for some k0 ∈N.

Proof Consider the sequence {Tn}∞n=0 defined as

T0 = u0,

T1 = u0 + u1,

T2 = u0 + u1 + u2,

. . . ,

Tn = u0 + u1 + u2 + · · · + un.

Evidently, it is sufficient to show that the sequence {Tn}∞n=0 in the Hilbert space R is a
Cauchy sequence. To this end, consider

‖Tn+1 – Tn‖ = ‖un+1‖
≤ ρ‖un‖
≤ ρ2‖un–1‖

...

≤ ρn–k0+1‖uk0‖.

Assuming that n ≥ m > k0, n, m ∈N, we have

‖Tn – Tm‖ =
∥∥(Tn – Tn–1) + (Tn–1 – Tn–2) + · · · + (Tm – Tm–1)

∥∥

≤ ∥∥(Tn – Tn–1)
∥∥ +

∥∥(Tn–1 – Tn–2)
∥∥ + · · · +

∥∥(Tm – Tm–1)
∥∥
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≤ ρn–k0‖uk0‖ + ρn–k0–1‖uk0‖ + · · · + ρm–k0+1‖uk0‖

=
(

1 – ρn–m

1 – ρ

)
ρm–k0+1‖uk0‖.

Since 0 < ρ < 1, we arrive at limn→∞
m→∞ ‖Tn – Tm‖ = 0. Therefore, in the Hilbert space R,

{Tn}∞n=0 is a Cauchy sequence, and this implies that series solution converges to the series
∑∞

k=0 uk(x, t). �

4 Test examples
To understand OHAM, in this section, we describe and then calculate some examples.
These examples include delay differential equations, delay partial differential equations,
and a system of coupled fractional delay equations with fractional derivative. In all these
examples, we used the mathematical software Mathematica for calculations and graphs.

Test example 4.1 For the first example, we propose the FDDEs [43]

Dα
x u(x) + 2u

(
x
2

)
u
(

x
2

)
= 1, 0 ≤ x ≤ 1, 0 < α ≤ 1, (4.1)

with the initial condition

u(0) = 0. (4.2)

For α = 1, the exact solution of (4.1) is u(x) = sin(x).
Following the OHAM, according to what was formulated and presented in Sect. 2 for

Eqs. (4.1)–(4.2), we get:

u0(x) =
xα

�(α + 1)
,

u1(x) =
2c2

1�(α + 1
2 )x3α

√
π�(α + 1)�(3α + 1)

–
2c1xα

�(α + 1)
–

2xα

�(α + 1)
,

u2(x) = –
2xα

�(α + 1)
–

4c1xα

�(α + 1)
–

8c1�(α + 1
2 )x3α

√
π�(α + 1)�(3α + 1)

–
2c2

1�(α + 1
2 )x3α

√
πα2�(α)�(3α)

–
2c2

1xα

�(α + 1)
+

25–4αc3
1�(4α)�(α + 1

2 )x5α

15
√

πα3�(α)2�(3α)�(5α)

+
2c3

1�(α + 1
2 )x3α

√
π�(α + 1)�(3α + 1)

+
2c2�(α + 1

2 )x3α

√
π�(α + 1)�(3α + 1)

,

. . . .

Then, considering the first three terms as estimates of solution for Eq. (4.1), we have

u(x) ≈ xα

�(α + 1)
+

2c2
1�(α + 1

2 )x3α

√
π�(α + 1)�(3α + 1)

–
2c1xα

�(α + 1)
–

2xα

�(α + 1)

–
2xα

�(α + 1)
–

4c1xα

�(α + 1)
–

8c1�(α + 1
2 )x3α

√
π�(α + 1)�(3α + 1)

–
2c2

1�(α + 1
2 )x3α

√
πα2�(α)�(3α)
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Table 1 Exact and approximate result of Test example 4.1 with various values of α

x OHAM Exact Absolute error

α = 0.6 α = 0.8 α = 1

0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.380402 0.283984 0.193419 0.198669 0.00525038
0.4 0.423057 0.475332 0.383577 0.389418 0.00584113
0.6 0.17166 0.598362 0.564596 0.564642 0.00004673
0.8 –0.472504 0.616461 0.725359 0.717356 0.00800265
1.0 –1.6197 0.471231 0.846895 0.841471 0.00542437

–
2c2

1xα

�(α + 1)
+

25–4αc3
1�(4α)�(α + 1

2 )x5α

15
√

πα3�(α)2�(3α)�(5α)
+

2c3
1�(α + 1

2 )x3α

√
π�(α + 1)�(3α + 1)

+
2c2�(α + 1

2 )x3α

√
π�(α + 1)�(3α + 1)

. (4.3)

According to least square method for the calculations of the constants c1 and c2, we get
c1 = –2.01508, c2 = 7.91742, which are called convergent control parameters.

In Table 1, we can see the estimated solutions toward α = 1, which are derived for various
values of x applying OHAM. The L2-norm of the error for Test example 4.1 of α = 1 is
0.00560315.

Test example 4.2 For the second example, we consider the FDDEs

Dα
x u(x) – 2u

(
x
2

)
+ u(x) = –x2 – 1, 0 ≤ x ≤ 1, 2 < α ≤ 3, (4.4)

with initial conditions

u(0) = 1, u′(0) = –4, u′′(0) = 0. (4.5)

With the help of the OHAM, according to what was formulated and presented in Sect. 2
for Eqs. (4.4)–(4.5), we get:

u0(x) = 1 – 2x2 –
(α2 + 3α + 2x2 + 2)xα

�(α + 3)
,

u1(x) =
c1xα(–(α2 + 3α + 2x2 + 2))

�(α + 3)

–
c1xα(2–αxα(2(2α – 2)(α + 1)(2α + 1) + (2α+1 – 1)x2))

�(2α + 3)
,

u2(x) = –
(c2

1 + c1 + c2)xα(α2 + 3α + 2x2 + 2)
�(α + 3)

–
2–3α–1c2

1x3α((–2α+1 – 22α+1 + 23α+2 + 1)x2)
�(3α + 3)

–
2–α(2α + 3)(2c2

1 + c1 + c2)x2α((2α+1 – 1)x2)
�(2α + 4)

–
2–3α–1(2(–2α+1 – 22α+1 + 8α + 4)(9α2 + 9α + 2))c2

1x3α

�(3α + 3)
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Table 2 Exact and approximate result of Test example 4.2 with various values of α

x OHAM Exact Absolute error

α = 2.6 α = 2.8 α = 3

0.0 1.0 1.0 1.0 1.0 0.0
0.2 0.919879 0.91993 0.91996 0.92 0.00003957
0.4 0.679283 0.679518 0.679683 0.68 0.00031677
0.6 0.278073 0.278548 0.278943 0.28 0.00105659
0.8 –0.283555 –0.28302 –0.282416 –0.28 0.00241631
1.0 –1.00486 –1.00489 –1.00437 –1.0 0.00437343

–
2–α(2α + 3)(2(2α – 2)(2α2 + 3α + 1))(2c2

1 + c1 + c2)x2α

�(2α + 4)
,

. . . .

Then, considering the first three terms as estimates of solution for Eq. (4.4), we have

u(x) ≈ 1 – 2x2 –
(α2 + 3α + 2x2 + 2)xα

�(α + 3)

+
c1xα(–(α2 + 3α + 2x2 + 2))

�(α + 3)

–
c1xα(2–αxα(2(2α – 2)(α + 1)(2α + 1) + (2α+1 – 1)x2))

�(2α + 3)

–
(c2

1 + c1 + c2)xα(α2 + 3α + 2x2 + 2)
�(α + 3)

–
2–3α–1c2

1x3α((–2α+1 – 22α+1 + 23α+2 + 1)x2)
�(3α + 3)

–
2–α(2α + 3)(2c2

1 + c1 + c2)x2α((2α+1 – 1)x2)
�(2α + 4)

–
2–3α–1(2(–2α+1 – 22α+1 + 8α + 4)(9α2 + 9α + 2))c2

1x3α

�(3α + 3)

–
2–α(2α + 3)(2(2α – 2)(2α2 + 3α + 1))(2c2

1 + c1 + c2)x2α

�(2α + 4)
. (4.6)

For the calculations of the constants c1 and c2, using the method of least squares, we have
computed that

c1 = 0, c2 = –0.970385.

In Table 2, we can see the estimated solutions for various values of α, which are derived
for various values of x through applying OHAM. The L2-norm of the error for Test exam-
ple 4.2 with α = 3 is 0.00173416.

For α = 3, the approximate solution obtained by the proposed method corresponds to
the exact solution u(x) = 1 – 2x2.

Test example 4.3 For the third example, we offer the FDDEs [44]

Dα
t u(x, t) = u

(
x,

t
2

)
uxx

(
x,

t
2

)
– u(x, t), t > 0, 0 ≤ x ≤ 1, 0 < α ≤ 1, (4.7)
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Table 3 Exact and approximate result of Test example 4.3 with various values of α

x t OHAM Exact Absolute error

α = 0.6 α = 0.8 α = 1

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.5 0.0178562 0.0168908 0.0169655 0.0164872 0.00036012
0.2 0.4 0.0604893 0.0563649 0.0526897 0.059673 0.00132258
0.3 0.3 0.128792 0.119251 0.111414 0.121487 0.00264091
0.4 0.2 0.214072 0.197597 0.185379 0.195424 0.00374867
0.5 0.1 0.305741 0.28374 0.269828 0.276293 0.00350894

with initial condition

u(x, 0) = x2. (4.8)

With attention to the OHAM, according to Sect. 2, for Eqs. (4.7)–(4.8), we get:

u0(x, t) = –
c1x2tα

α�(α)
,

u1(x, t) = –
c1x2tα

α�(α)
–

c2
1x2tα

α�(α)
+

√
π22–3αc2

1x2t2α

α�(α)�(α + 1
2 )

–
√

π4–αc2
1x2t2α

α�(α)�(α + 1
2 )

–
c2x2tα

α�(α)
,

u2(x, t) =
√

π22–3αc2
1x2t2α

α�(α)�(α + 1
2 )

–
√

π4–αc2
1x2t2α

α�(α)�(α + 1
2 )

–
c2

1x2tα

α�(α)
–

2c1x2tα

α�(α)
–

c2x2tα

α�(α)
+ x2,

. . . .

Then, considering the first three terms as estimates of solution for Eq. (4.7), we have:

u(x, t) ≈
√

π22–3αc2
1x2t2α

α�(α)�(α + 1
2 )

–
√

π4–αc2
1x2t2α

α�(α)�(α + 1
2 )

–
c2

1x2tα

α�(α)
–

2c1x2tα

α�(α)
–

c2x2tα

α�(α)
+ x2.

Using the method of least squares, we get

c1 = –1.25313, c2 = 0.103091.

In Table 3, we can see the estimated solutions for various values of α, which are derived
for various values of x and t in Fig. 1. We can see the exact and approximate answers
featuring α = 1 through applying OHAM. The L2-norm of the error for Test example 4.3
with α = 1 is 0.020451.

Toward α = 1, the solution we have obtained is in accordance with the exact solution
u(x, t) = x2 exp(t).

Test example 4.4 For the fourth instance, consider the FDDEs

Dα
t u(x, t) = uxx(x, t) + u

(
x,

t
2

)
uxx

(
x
2

,
t
2

)

+ 2u
(

x
2

, t
)

, t > 0, 0 ≤ x ≤ 1, 1 < α ≤ 2, (4.9)
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Figure 1 Comparison of the third-order approximate solution (4.7) with exact solution for α = 1

with initial conditions

u(x, 0) = x, ut(x, 0) = 0. (4.10)

Concerning the OHAM, according to what was formulated and presented in Sect. 2, for
Eqs. (4.9)–(4.10), we get:

u0(x, t) = x,

u1(x, t) = –
c1xtα

α�(α)
,

u2(x, t) =
√

π4–αc2
1xt2α

α�(α)�(α + 1
2 )

–
c2

1xtα

(α – α2)�(α)
–

c1xtα

(α – α2)�(α)

–
c2

1xtα

(α – 1)�(α)
–

c1xtα

(α – 1)�(α)
–

c2xtα

α�(α)
,

. . . .

Then, considering the first three terms as estimates of solution for Eq. (4.9) we have:

u(x, t) ≈ x –
c1xtα

(α – 1)�(α)
–

c1xtα

α�(α)
–

c1xtα

(α – α2)�(α)

–
√

π4–αc2
1xt2α

α�(α)�(α + 1
2 )

–
c2

1xtα

(α – α2)�(α)
+

c2
1xtα

(α – 1)�(α)
–

c2xtα

α�(α)
.

Using the method of least squares, by calculations we came to the following:

c1 = –1.03557, c2 = 0.00250421.

In Table 4, we can see the estimated solutions toward various values of α, which are derived
for various values of x and t by applying OHAM.

The L2-norm of the error for Test example 4.4 with α = 2 is 0.000149502.
In Fig. 2, we can see the exact and approximate answers featuring α = 2. For α = 2, the

exact solution with u(x, t) = x cosh(t) and the obtained approximate solution are consis-
tent.
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Table 4 Exact and approximate result of Test example 4.4 with various values of α

x t OHAM Exact Absolute error

α = 1.6 α = 1.8 α = 2

0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.5 0.126831 0.119918 0.114535 0.112763 0.0000304407
0.2 0.4 0.23755 0.226659 0.218605 0.216214 0.0000460024
0.3 0.3 0.335546 0.323825 0.315698 0.313602 0.0000438572
0.4 0.2 0.424774 0.415311 0.409302 0.408027 0.0000282579
0.5 0.1 0.510215 0.505496 0.502907 0.502502 0.0000009272

Figure 2 Comparison of the third-order approximate solution (4.9) with exact solution for α = 2

Test example 4.5 For the fifth instance, we consider the system of coupled FDDEs

⎧
⎨

⎩
Dα

t u(x, t) + v(x, t) – uxx(x, t) + uvx( x
2 , t

2 ) = 1
2 (t + 3x – 2), 0 < α ≤ 1,

Dα
t v(x, t) – u( x

2 , t
2 ) + vxx( x

3 , t) + vx( x
2 , 2t) = 1

2 (t – x + 3),
(4.11)

for t > 0 and 0 ≤ x ≤ 1 with initial conditions

u(x, 0) = x, v(x, 0) = x. (4.12)

For α = 1, the exact solutions are u(x, t) = x – t and v(x, t) = x + t.
With respect to the OHAM, according to what was presented in Sect. 2, for Eqs. (4.11)–

(4.12), considering the first two terms as estimates of solution for Eq. 4.11, we have:

u(x, t) ≈ x –
11tα

α�(α)
+

3xtα

2α�(α)
+

tα+1

2(α2 + α)�(α)
–

10tα

α�(α)
–

tα+1

2(α2 + α)�(α)

+
c1tα+1

(2α2 + 2α)�(α)
–

c1tα+1

2(α2 + α)�(α)
–

10c1tα

α�(α)
+

3c1xtα

2α�(α)

+
tα+1

(2α2 + 2α)�(α)
–

√
π41–αc1t2α

α�(α)�(α + 1
2 )

–
√

π2–3α–2c1xt2α

α�(α)�(α + 1
2 )

+
√

π4–α–1c1xt2α

α�(α)�(α + 1
2 )

–
2α–3c1x�(α + 1

2 )t3α

√
πα2�(α)�(3α)

+
11 2–α–2c1�(2α + 1)t3α

α2�(α)2�(3α + 1)

+
3c1�(α + 2)t2α+1

2α�(α)�(2α + 3)
–

2–α–3c1�(2α + 2)t3α+1

α�(α)�(α + 2)�(3α + 2)
(4.13)
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Table 5 Exact and approximate result of Test example 4.5

x u(x, t) v(x, t)

Approx Exact Absolute error Approx Exact Absolute error

0.25 0.242926 0.24 0.00292615 0.257318 0.26 0.00268185
0.50 0.492925 0.49 0.00292506 0.507322 0.51 0.00267843
0.75 0.742924 0.74 0.00292397 0.757325 0.76 0.00267501
1.00 0.992923 0.99 0.00292287 1.00733 1.01 0.00267159

and

v(x, t) ≈ x +
3tα

2α�(α)
–

xtα

2α�(α)
+

tα+1

2(α2 + α)�(α)
–

tα+1

2(α2 + α)�(α)

+
tα+1

(2α2 + 2α)�(α)
+

d1tα

2α�(α)
–

d1xtα

2α�(α)
–

d1tα+1

2(α2 + α)�(α)

+
d1tα+1

(2α2 + 2α)�(α)
–

√
π2–α–2d1t2α

α�(α)�(α + 1
2 )

+
11

√
π8–αd1t2α

α�(α)�(α + 1
2 )

–
3
√

π2–3α–2d1xt2α

α�(α)�(α + 1
2 )

–
2–α–1d1�(α + 2)t2α+1

α�(α)�(2α + 3)
. (4.14)

Substituting x = 0.5 and t = 0.5, we get c1 = –0.705501 and d1 = –0.729647.
In Table 5, we can see the estimated solutions toward α = 1 and t = 0.01, which are

derived for various values of x by applying OHAM.

5 Conclusion
We have successfully applied OHAM to obtain approximate solutions of the delay differ-
ential equations, delay partial differential equations, and a system of coupled fractional
delay equations featuring fractional derivative. The result indicates that a few iterations of
OHAM result in some useful solutions.

Finally, it should be added that the suggested technique has the potential to be practi-
cal in solving other similar nonlinear and linear problems in partial differential equations
featuring fractional derivative.

Appendix: Illustration of test example (4.1) in detail
Consider test example (4.1):

Dαu(x) + 2u
(

x
2

)
u
(

x
2

)
= 1, 0 ≤ x ≤ 1, 0 < α ≤ 1, (A.1)

with initial condition

u(0) = 0. (A.2)

Considering

u(x, p) = u0 +
∞∑

i=1

uipi (A.3)
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and

H(p) = pc1 + p2c2 + · · · (A.4)

and using of OHAM, for the first equation of (A.1), we get

(
Dαu0 + pDαu1 + p2Dαu2 + · · · – 1

)

–
(
pDαu0 + p2Dαu1 + p3Dαu2 + · · · – p

)

–
(
pc1 + p2c2 + · · · )

((
Dαu0 + pDαu1 + p2Dαu2 + · · · )

+ 2
(

u0

(
x
2

)
+ pu1

(
x
2

)
+ p2u2

(
x
2

)
+ · · ·

)2

– 1
)

= 0.

Equating the coefficients at different powers in p, we have the following differential equa-
tions:

p0: Dαu0 = 1,

p1: Dαu1 = 2c1u2
0

(
x
2

)
,

p2: Dαu2 = (1 + c1)Dαu1 + 2c1u0

(
x
2

)
u1

(
x
2

)
+ c2Dαu0 + 2c2u2

0

(
x
2

)
,

p3: Dαu3 = Dαu2 + c1Dαu2 + c2Dαu1 + c3Dαu0

+ 4c2u0

(
x
2

)
u1

(
x
2

)
+ 4c1u0

(
x
2

)
u2

(
x
2

)
+ 2c1u1

(
x
2

)
+ 2c3u2

0

(
x
2

)
,

. . . .
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