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Abstract
The goal of this paper is to obtain an extension of the relaxed Saint–Venant principle
in order to cover the thermoelasticity of dipolar porous bodies.
According to this principle, for a finite time t > 0, we identify a bounded domainDt

so that outside of this domain the displacement field ui , the dipolar displacement
field ϕjk , the temperature θ , and the change in volume fraction φ do not generate
disturbances.
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1 Introduction
There has been much written in recent years on the theory of thermoelastic bodies with
pores. Our present study also deals with the thermoelasticity of body materials with vacu-
ous pores or voids. It is known that the initiators of this theory were Nunziato and Cowin
[1]. As it is well known, (see also [2, 3]) this theory allows the body to have an extra degree
of freedom for a better characterization of its behavior from a mechanical point of view.
So, the elastic body is the skeletal material and the voids of material are the interstices. The
materials with porosity are of interest in geophysics (some geo-materials, for instance, soil
or rocks) and artificially obtained granular materials.

The linear case, the basic theory of elastic porous bodies, was proposed by Cowin and
Nunziato in [2]. This study includes a result of uniqueness and some considerations on
the weak stability. After that, Iesan in [4] approached the basic results in thermoelasticity
of porous bodies. Some generalized results were obtained for the theory of Cosserat solids
with vacuous pores and the dipolar porous bodies [5, 6].

The origin of the theory of bodies which microstructure goes back to the papers of Erin-
gen (see [7, 8]). Then the studies dedicated to microstructure environments have gained
significant importance in the last decade.

The dipolar structure occupies a privileged place between the theories that are dedicated
to the microstructure. It is dedicated to eliminating the known contradictions of classical
theory. First, it is known that the energy equation is of parabolic type and also the equation
of energy does not contain any elastic term. As a consequence, under these conditions, the
heat waves will propagate at an infinite speed. The importance of the dipolar structure of
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solids also derives from the interest shown for this structure by some of the outstanding
researchers. We have to remember first of all the studies of Mindlin [9], Green and Rivlin
[10], and Fried and Gurtin [11] which are very significant from this point of view. Other
approaches to different aspects of the generalized bodies can be found in [12–20].

In the present study we first consider the basic equations and conditions of the mixed
initial-boundary value problem in the context of thermoelasticity of dipolar bodies with
voids. Next we define the concept of the domain of influence Dt regarding the data of our
problem at some time t > 0.

Inspired by the method used in the papers [21–23], we prove a domain of influence
theorem in order to generalize the previous similar theorems.

In short, our result asserts that the solutions of the mixed initial-boundary value prob-
lem, in our context, vanishes outside Dt for some time t > 0.

2 Basic equations
In the following we consider an elastic body in the general case of anisotropy. Such a ma-
terial occupies a regular region B from the Euclidian space R3 and its border is assumed
by a piecewise smooth surface denoted by ∂B. The closure of the domain B is B̄, and we
have B̄ = B ∪ ∂B.

We will use a system of Cartesian axes Oxi (i = 1, 2, 3) and adopt the Cartesian vec-
tor and tensor notation. The material time derivative will be highlighted by a superposed
dot, while for the partial derivatives with respect to the spatial coordinates, we will use a
comma followed by the respective subscript. Also, we adopt the summation rule (Einstein)
on repeated indices.

When there is no likelihood of confusion, the spatial argument or/and the time argu-
ment of a function will be omitted. In order to describe the behavior of a dipolar body, we
will use the following variables:

ui(t, X),ϕij(t, X), (t, X) ∈ [0, t0) × B. (1)

As such, the displacement vector field has components ui and the dipolar displacement
tensor field has the components ϕij.

With the help of the variables from (1), we can define the strain tensors of components
εij, γij, and χijk by means of the kinematic relations:

2εij = uj,i + ui,j, γij = uj,i – ϕij, χijk = ϕij,k . (2)

In the theory of dipolar bodies we can define three stress tensors τij, ηij, and μijk . These
tensors are intrinsically linked to the above strain tensors by means of the constitutive
equations:

τij = Aijmnεmn + Gijmnγmn + Fmnrijχmnr

+ aijφ + Dijkφ,k – αijθ ,

ηij = Gijmnεmn + Bijmnγmn

+ Dijmnrχmnr + bijφ + Eijkφ,k – βijθ ,
(3)
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μijk = Fijkmnεmn + Dmnijkγmn + Cijkmnrχmnr

+ cijkφ + Fijkmφ,m – δijkθ .

For the equilibrated stress vector hi, the intrinsic equilibrated force g , the specific entropy
η, and the heat flux vector, we will use the following constitutive equations:

hi = Dmniεmn + Emniγmn + Fmnriχmnr + diφ + gijφ,j – aiθ ,

g = –aijεij – bijγij – cijkχijk – ξφ – diφ,i + mθ ,

η = αijεij + βijγij + δijkχijk + mφ + aiφ,i + aθ ,

qi = kijθ,j.

(4)

Equations that govern the theory of thermoelasticity of dipolar bodies with voids are the
following (see, for instance, [9, 10]):

– the equations of motion:

(τij + ηij),j + �Fi = �üi,

μijk,i + ηjk + �Mjk = Ikrϕ̈jr ;
(5)

– the equation of energy:

�T0η̇ = qi,i + �r; (6)

– the equation of the equilibrated forces:

hi,i + g + �L = �κφ̈. (7)

For the variation of the temperature and for the variation of the change in volume fraction,
we will use the expressions

θ = T – T0, φ = σ – σ0.

The meaning of the notations used in the above equations is the following:
�—the constant mass density;
η—the specific entropy;
T0—the constant absolute temperature of the body in its reference state;
Iij—the coefficients of microinertia;
κ—the equilibrated inertia;
ui—the components of displacement vector;
ϕjk—the components of dipolar displacement tensor;
σ—the volume distribution function which in the reference state is σ0;
φ—the change in volume fraction measured from the reference state;
θ—the temperature variation measured from the reference temperature T0;
εij, γij, χijk—the kinematic characteristics of the strain;
τij, ηij, μijk—the components of the stress tensors;
hi—the components of the equilibrated stress vector;
qi—the components of the heat flux vector;
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Fi—the components of the body forces;
Mjk—the components of the dipolar body forces;
r—the heat supply per unit time;
g—the intrinsic equilibrated force;
L—the extrinsic equilibrated body force;
Aijmn, Bijmn, . . . , kij—the elastic coefficients are characteristic functions of the material.

Suppose the following symmetry relations take place:

Aijmn = Ajimn = Amnij, Bijmn = Bmnij, aij = aji,

dijk = djik , gij = gji, Cijkmnr = Cmnrijk , Fijkmn = Fijknm,

Gijmn = Gijnm, kij = kji.

(8)

Our mixed problem in the theory of thermoelasticity of dipolar bodies with vacuum pores
will be complete if we add the known initial data:

ui(x, 0) = u0
i (x), u̇i(x, 0) = u1

i (x),

ϕjk(x, 0) = ϕ0
jk(x), ϕ̇jk(x, 0) = ϕ1

jk(x),

φ(x, 0) = φ0(x), φ̇(x, 0) = φ1(x),

θ (x, 0) = θ0(x), x ∈ B̄,

(9)

and also the given conditions to the limit

ui = ūi on ∂B1 × [0, t0), ti = t̄i on ∂Bc
1 × [0, t0),

ϕjk = ϕ̄jk on ∂B2 × [0, t0), μjk = μ̄jk on ∂Bc
2 × [0, t0),

φ = φ̄ on ∂B3 × [0, t0), h = h̄ on ∂Bc
3 × [0, t0),

θ = θ̄ on ∂B4 × [0, t0), q = q̄ on ∂Bc
4 × [0, t0).

(10)

Here ∂B1, ∂B2, ∂B3, and ∂B4 with their respective complements ∂Bc
1, ∂Bc

2, ∂Bc
3, and ∂Bc

4

are subsets of ∂B such that

∂B1 ∪ ∂Bc
1 = ∂B2 ∪ ∂Bc

2 = ∂B3 ∪ ∂Bc
3 = ∂B4 ∪ ∂Bc

4 = B,

∂B1 ∩ ∂Bc
1 = ∂B2 ∩ ∂Bc

2 = ∂B3 ∩ ∂Bc
3 = ∂B4 ∩ ∂Bc

4 = ∅.

The fixed time t0 from (10) can be infinite. Also, u0
i , u1

i , ϕ0
jk , ϕ1

jk , θ0, φ0, φ1, ūi, t̄i, ϕ̄jk , μ̄jk ,
φ̄, θ̄ , q̄, and h̄ are known functions in their respective domains of definition.

The notations ti, μjk , h, and q are used in (10) for the surface force tractions, which
correspond to the displacement ui, the dipolar displacement ϕjk , the equilibrated stress
vector hi, and the heat flux vector qi:

ti ≡ (τij + ηij)nj, μjk ≡ μijkni, h ≡ hini, q ≡ qini, (11)

where ni are the components of the unit outward normal to ∂B.
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If we substitute the geometric equations (2) and the constitutive equations (3)–(4) into
equations (5), (6), and (7), we arrive at the following system of field equations:

�üi =
[
(Aijmn + Gijmn)εmn + (Gmnij + Bijmn)γmn

+ (Fmnrij + Dijmnr)χmnr + (aij + bij)φ

+ (Dijk + Eijk)φ,k – (αij + βij)θ )
]

,j + �Fi,

Ikrϕ̈jr = (Fijkmnεmn + Dmnijkγmn + Cijkmnrχmnr + cijkφ

+ Fijkmφ,m – δijkθ ),i + Gjkmnεmn + Bjkmnγmn (12)

+ Djkmnrχmnr + bjkφ + Djkiφ,i – βjkθ + �Mjk ,

�κφ̈ = (Dmniεmn + Emniγmn + Fmnriχmnr + diφ + gijφ,j – aiθ ),i + �L

– aijεij – bijγij – cijkχijk – ξφ – diφ,i + mθ ,

aθ̇ =
1

�T0
(kijθ,j),i +

1
T0

r – βijε̇ij – αijγ̇ij – δijkχ̇ijk – mφ̇ – aiφ̇,i.

We must specify that from the inequality of producing entropy, we can deduce

kijθ,iθ,j ≥ 0. (13)

An ordered array (ui,ϕjk ,φ, θ ) is a solution of the initial boundary value problem for the
thermoelasticity of dipolar porous bodies in the cylinder �0 = B × [0, t0) if it satisfies the
system of field differential equations (12) for all (x, t) ∈ �0, the conditions to the limit (10),
and the initial data (9).

3 Main result
At the beginning of this section we will define the notion of domain of influence.

After that we will formulate and demonstrate an inequality that relates to the domain
of influence. We have to say that this inequality is a generalization of similar inequality
proposed in the papers [21–23]. This section and, in fact, our study ends with the demon-
stration of the theorem that establishes the domain of influence or, in other words, the
relaxed Saint–Venant principle for the thermoelastic dipolar bodies with pores.

It is clear that the above mentioned results will be obtained if some conditions are met.
The next assumptions on the properties of the material will help us in this endeavor:

(i) � > 0, Iij > 0, κ > 0, T0 > 0, a > 0;
(ii)

Aijmnξijξmn + 2Gijmnξijζmn + Bijmnζijζmn

+ 2Fmnrijξijνmnr + 2Dijmnrζijνmnr + Cijkmnrνijkνmnr

+ 2aijξijω + 2bijζijω + 2cijkνijkω + 2Dijkξijωk

+ 2Eijkζijωk + 2Fijkmνijkωm + 2diωiω + ξω2 + gijωiωj

≥ α
(
ξijξij + ζijζij + νijkνijk + ωiωi + ω2),

for all ξij = ξji, ζij, νijk , ωi, ω;
(iii) kijxixj ≥ γ xixi for all xi.

In these inequalities, α and γ are conveniently chosen positive constants.
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We must note that these hypotheses are usual restrictions imposed in the mechanics
of solids. For instance, hypothesis (iii) is a considerable strengthening of inequality (13)
which, in turn, is a consequence of the inequality of entropy production.

Let us consider Vα(x), a smooth non-decreasing function, defined by

Vα(x) =

⎧
⎨

⎩
0, if x ∈ (–∞, 0],

1, if x ∈ [α,∞),

for sufficiently small α > 0.
Function Vα is inspired by known Heaviside step function.
Using the function Vα , for some fixed positive R1 and t, and for d = |x – x0|, we define

another useful function G as follows:

W (x, s) = Vα

(R – d
v

+ t – s
)

, W : B × [0, t] → R, (14)

where v is a positive constant having the dimension of velocity to be determined later and
x0 is an arbitrary fixed point in B.

It is not difficult to find that the function W (x, s) is a smooth function on the cylinder
B × [0, t], and it vanishes outside the set

� =
⋃

s∈[0,t]

S
[
x0,R + v(t – s)

]
.

Here S(x0, r) is a sphere defined by

S(x0, r) =
{

x ∈ R3 : |x – x0| < r
}

. (15)

The following inequality is a necessary step to obtain our main result.

Proposition 1 If the system of equations (12) admits a solution (ui,ϕij,φ, θ ) which satisfies
the initial data (9) and the conditions to limit (10), then we have the following inequality:

[
�u̇iu̇i + Ikrϕ̇jrϕ̇jk + �κφ̇2 + aθ2 + Aijmnεijεmn

+ 2Gijmnεijγmn + Bijmnγijγmn + 2Fmnrijεijχmnr

+ 2Dijmnrγijχmnr + Cijkmnrχijkχmnr + 2aijεijφ

+ 2bijγijφ + 2cijkχijkφ + 2dijkεijφ,k + 2eijkγijφ,k

+ 2fijkmχijkφ,k + 2diφφ,i + gijφ,iφ,j + ξφ2](x, s)

≥ [
�u̇iu̇i + Ikrϕ̇jrϕ̇jk + �κφ̇2 + aθ2

+ εijεij + γijγij + χijkχijk + φ2 + φ,iφ,i
]
(x, s). (16)

Proof The inequality is immediately obtained as a consequence of hypotheses (i) and
(ii). �

The following inequality uses inequality (16) and is the basis for obtaining the most
important result of our paper.
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Theorem 1 If the system of equations (12) admits a solution (ui,ϕij,φ, θ ) which satisfies
the initial data (9) and the data at the limit (10), then for any t > 0, R > 0, and x0 ∈ B, the
following inequality holds:

∫

�[x0,R]
P(x, t) dV +

1
T0

∫ t

0

∫

�[x0,R+v(t–s)]
kijθ,iθ,j dV

≤
∫

�[x0,R+vt]
P(x, 0) dV

+
∫ t

0

∫

�[x0,R+v(t–s)]
�

[
Fiu̇i + Mjkϕ̇jk + Lφ̇ +

1
T0

rθ
]

dV ds

+
∫ t

0

∫

∂�[x0,R+v(t–s)]

[
t̄iu̇i + μ̄jkϕ̇jk + h̄φ̇ +

1
T0

q̄θ

]
dA ds, (17)

where �(x0, r) = {x ∈ B : |x – x0| < r}, ∂�(x0, r) = {x ∈ ∂B : |x – x0| = r}.

Proof First, we must specify that the function P(x, t) used in (17) is the potential energy
and has the expression

P(x, s) =
1
2
[
�u̇iu̇i + Ikrϕ̇jrϕ̇jk + �κφ̇2 + aθ2 + Cijmnεijεmn

+ 2Gijmnεijγmn + Bijmnγijγmn + 2Fmnrijεijχmnr

+ 2Dijmnrγijχmnr + Aijkmnrχijkχmnr + 2aijεijφ

+ 2bijγijφ + 2cijkχijkφ2dijkεijφ,k + 2eijkγijφ,k

+ 2fijkmχijkφ,k + 2diφφ,i + gijφ,iφ,j + ξφ2](x, s). (18)

Also, the kinetic energy is K(x, s) which is a function defined by

K(x, s) =
1
2
[
�u̇iu̇i + Ikrϕ̇jrϕ̇jk + �κφ̇2 + aθ2

+ εijεij + γijγij + χijkχijk + φ2 + φ,iφ,i
]
(x, s). (19)

If we multiply both members of equation (12)1 by W u̇i, we are led to the relation

1
2

W
d
dt

(�u̇iu̇i) = �WFiu̇i + (Wtiju̇i),j – W,jtiju̇i

– W (Aijmnεmn + Bijmnγmn + Bijφ + Dijkφ,k – βijθ )u̇i,j. (20)

By analogy, we multiply both members of equation (12)2 by W ϕ̇jk , so that we obtain

1
2

W
d
dt

(Ikrϕ̇jrϕ̇jk) = �GMjk ϕ̇jk + (Wμjkϕ̇jk),j – W,jμjkϕ̇jk

– W (Bmnijεmn + Cijmnγmn + Cijφ + Eijkφ,k – αijθ )ϕ̇jk,j

+ εijk(Ajkmnεmn + Bjkmnγmn + Bjkφ + Djkmφ,m – βjkθ )ϕ̇jk . (21)
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Now, we multiply both members of equation (12)3 by W φ̇, so we deduce that

1
2

W
d
dt

(
�κφ̇2) = �WLφ̇ + (Whiφ̇),i – W,ihiφ̇

– W (Aijφ,jφ̇,i + Dmniεmnφ̇,i + Emniγmnφ̇,i + diφφ̇,i – aiθφ̇,i)

– W (Bijεijφ̇ + Cijγijφ̇ + ξφφ̇ + diφ,iφ̇ – mθφ̇). (22)

Finally, if we multiply both members of equation (12)4 by Wθ , we are led to

1
2

W
d
dt

(
aθ2) =

1
T0

Wrθ +
1

�T0

[
(Wθqi),i – W,iθqi

]

–
1

�T0
Wkijθ,iθ,j – W (βijθ ε̇ij + αijθγ̇ij + mθφ̇ + aiθφ̇,i). (23)

Summing up equations (20), (21), (22), and (23) term by term results in

1
2

W
d
dt

(
�u̇iu̇i + Ikrϕ̇jrϕ̇jk + �κφ̇2 + aθ2)

= �WFiu̇i + �WMjkϕ̇jk

+ �WLφ̇ +
1

T0
Wrθ + W

(
tiju̇i + μjkϕ̇jk + hjφ̇ +

1
�T0

θqj

)

,j

– W
[
Aijmnεmnε̇ij + Bijmn(εmnγ̇ij + ε̇mnγij) + Cijmnγmnγ̇ij

+ Bij(ε̇ijφ + εijφ̇) + Cij(γ̇ijφ + γijφ̇) + Dijk(εijφ̇,k + ε̇ijφ,k)

+ Eijk(γijφ̇,k + γ̇ijφ,k) + di(φφ̇,i + φ̇φ,i) + Aijφ,iφ̇,j + ξφφ̇
]

– W,jtiju̇i – W,jμjkϕ̇jk – W,ihiφ̇ –
1

�T0
W,iqiθ –

1
�T0

Wkijθ,iθ,j. (24)

Clearly, relation (24) can be rewritten in the following form:

1
2

W
d
dt

(
�u̇iu̇i + Ikrϕ̇jrϕ̇jk + �κφ̇2 + aθ2 + Aijmnεmnεij + 2Bijmnγmnεij

+ Cijmnγmnγij + 2Bijεijφ + 2Cijγijφ + 2Dijkεijφ,k

+ 2Eijkγijφ,k + 2diφφ,i + Aijφ,iφ,j + ξφ2)

= �W
(

Fiu̇i + Mjkϕ̇jk + �Lφ̇ +
1

T0
rθ

)

+ W
(

tiju̇i + μjkϕ̇jk + hjφ̇ +
1

�T0
θqj

)

,j

– W,jtiju̇i – W,jμjkϕ̇jk – W,ihiφ̇ – W,i
1

�T0
θqi –

1
�T0

kijθ,iθ,j, (25)

or, equivalently,

1
2

W U̇ +
1

�T0
kijθ,iθ,j = W

(
�Fiu̇i + �Mjkϕ̇jk + �Lφ̇ +

1
T0

�rθ
)
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+ W
(

tiju̇i + μjkϕ̇jk + hjφ̇ +
1

�T0
θqj

)

,j

– W,j

(
tiju̇i + μjkϕ̇jk + hjφ̇ +

1
�T0

θqj

)
. (26)

We now integrate on cylinder B × [0, t] both members of equality (26), and afterwards we
use the divergence theorem and the boundary conditions (10), so we get

∫

B
WU(x, t) dV +

1
�T0

∫ t

0

∫

B
Wkijθ,iθ,j dV ds

=
∫

B
WU(x, 0) dV

+
∫ t

0

∫

∂B
W

(
t̄iu̇i + μ̄jkϕ̇jk + h̄φ̇ +

1
�T0

q̄θ

)
dV ds

+
∫ t

0

∫

B
�W

(
Fiu̇i + Mjkϕ̇jk + Lφ̇ +

1
T0

rθ
)

dV ds

+
∫ t

0

∫

B
Ẇ U(x, s) dV ds –

∫ t

0

∫

B
W,j

(
tiju̇i + μjkϕ̇jk + hjφ̇ +

1
�T0

qjθ

)
dV ds. (27)

Considering definition (14) of the function W , it is not difficult to find that

∣∣
∣∣–W,jtiju̇i – W,jμjkϕ̇jk – W,ihiφ̇ –

1
�T0

W,iqiθ

∣∣
∣∣

=
∣∣
∣∣
1
v

V ′
α

xj

r
tiju̇i +

1
c

V ′
α

xj

r
μjkϕ̇jk +

1
c

V ′
α

xi

r
hiφ̇ +

1
c�T0

V ′
α

xi

r
qiθ

∣∣
∣∣

=
∣
∣∣∣
1
v

V ′
α

1
r

[
(Aijmnεmnxj + Bijmnγmnxj + Bijφxj + Dijkφ,kxj – βijθxj)u̇i

+ (Bmnijεmnxj + Cijmnγmnxj + Cijφxj + Eijkφ,kxj – βijθxj)ϕ̇jk

+ (Dmniεmnxi + Emniγmnxi + Aijφ,jxi + diφxi – aiθxi)φ̇ +
1

�T0
kijθ,jθxi

]∣∣
∣∣, (28)

where

V ′
α =

dVα

dr
.

The elementary arithmetic–geometric mean inequality

ab ≤ 1
2

(
a2

p2 + b2p2
)

(29)

is now used to the last terms of relation (28). Thus, we can choose some suitable parame-
ters p and can find v such that

∣∣
∣∣–W,jtiju̇i – W,jμjkϕ̇jk – W,ihiφ̇ –

1
T0

W,iqiθ

∣∣
∣∣ ≤ V ′

αK(x, s), (30)
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and also

∫ t

0

∫

B
Ẇ U(x, s) dV ds –

∫ t

0

∫

B

(
W,jtiju̇i + W,jμjkϕ̇jk + W,ihiφ̇ +

1
T0

W,iqiθ

)
dV ds

≤
∫ t

0

∫

B
V ′

α(x, s)
[
K(x, s) – U(x, s)

]
dV ds ≤ 0. (31)

Considering inequality (31), from equation (27) we are led to

∫

B
WU(x, t) dV +

1
T0

∫ t

0

∫

B
Wkijθ,iθ,j dV ds

≤
∫

B
WU(x, 0) dV

+
∫ t

0

∫

B
�W

(
Fiu̇i + Mjkϕ̇jk + Lφ̇ +

1
�2T0

rθ
)

dV ds

+
∫ t

0

∫

∂B
W

(
t̄iu̇i + μ̄jkϕ̇jk + h̄φ̇ +

1
�T0

q̄θ

)
dV ds. (32)

We will pass to the limit as α → 0 into relation (32), so that we deduce that W tends
boundedly to the characteristic function of the set � (before (15)) and, as a consequence,
we obtain inequality (17) and the proof of Theorem 1 is complete. �

We will use previous estimates from Proposition 1 and Theorem 1 to demonstrate the
basic result of the present study, namely an extension of the relaxed Saint–Venant principle
or, in other words, a generalized theorem of the domain of influence.

We will denote by B(t) the set of all points ∈ B̄ having the following properties:
(1) if x ∈ B then u0

i �= 0 or u1
i �= 0 or ϕ0

jk �= 0 or ϕ1
jk �= 0 or φ0 �= 0 or φ1 �= 0 or θ0 �= 0 or

∃τ ∈ [0, t] such that Fi(x, τ ) �= 0 or Mi(x, τ ) �= 0 or L(x, τ ) �= 0 or r(x, τ ) �= 0;
(2) if x ∈ ∂B1 then ∃τ ∈ [0, t] such that ūi(x, τ ) �= 0;
(3) if x ∈ ∂Bc

1 then ∃τ ∈ [0, t] such that t̄i(x, τ ) �= 0;
(4) if x ∈ ∂B2 then ∃τ ∈ [0, t] such that ϕ̄jk(x, τ ) �= 0;
(5) if x ∈ ∂Bc

2 then ∃τ ∈ [0, t] such that μ̄jk(x, τ ) �= 0;
(6) if x ∈ ∂B3 then ∃τ ∈ [0, t] such that φ̄(x, τ ) �= 0;
(7) if x ∈ ∂Bc

3 then ∃τ ∈ [0, t] such that h̄(x, τ ) �= 0;
(8) if x ∈ ∂B4 then ∃τ ∈ [0, t] such that θ̄ (x, τ ) �= 0;
(9) if x ∈ ∂Bc

4 then ∃τ ∈ [0, t] such that q̄(x, τ ) �= 0.
For the data of our mixed problem, we define the domain of influence at instant t as follows:

Dt =
{

x0 ∈ B̄ : B(t) ∩ �̄(x0, vt) �= �
}

. (33)

Here we denote by � the empty set.

Theorem 2 If the system of equations (12) admits a solution (ui,ϕij,φ, θ ) which satisfies
the initial data (9) and the data at the limit (10), then for any t > 0 we obtain

ui = 0, ϕij = 0, φ = 0, θ = 0 on {B̄ \Dt} × [0, t].
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Proof We will arbitrarily fix x0 ∈ B̄ \Dt and τ ∈ [0, t], and use inequality (17) taking t = τ

and R = v(τ – s). In this way, we are led to

∫

�[x0,v(τ–s)]
U(x, τ ) dV +

1
T0

∫ τ

0

∫

�[x0,v(τ–s)]
kijθ,iθ,j dV dα

≤
∫

�[x0,vτ ]
U(x, 0) dV +

∫ τ

0

∫

�[x0,v(τ–s)]
�

(
Fiu̇i + Mjkϕ̇jk + Lφ̇ +

1
T0

rθ
)

dV dα

+
∫ τ

0

∫

∂�[x0,v(τ–s)]
�

(
t̄iu̇i + μ̄jkϕ̇jk + h̄φ̇ +

1
T0

q̄θ

)
dA dα. (34)

Taking into account that x0 ∈ B̄ \ Dt , we deduce that x ∈ �[x0, vτ ] which involves that
x /∈ B(t). So, we deduce

∫

�[x0,vτ ]
U(x, 0) dV = 0. (35)

Now, we take into account that �[x0, v(τ – s)] ⊆ �[x0, vτ ] in order to obtain the following
two equalities:

∫ τ

0

∫

�[x0,v(τ–s)]
�

(
Fiu̇i + Mjkϕ̇jk + Lφ̇ +

1
T0

rθ
)

dV dα = 0, (36)

∫ τ

0

∫

�[x0,v(τ–s)]

(
t̄iu̇i + μ̄jkϕ̇jk + h̄φ̇ +

1
T0

q̄θ

)
dV dα = 0. (37)

Considering assumption (iii) and relations (32)–(34), we deduce that

∫

�[x0,v(τ–s)]
U(x, τ ) dV ≤ 0. (38)

From (38), by using inequality (16), we deduce

∫

�[x0,v(τ–s)]
K(x, τ ) dV ≤ 0. (39)

By using this inequality and considering the definition of function K , we are led to the
following null values:

u̇i(x0, τ ) = 0, ϕ̇jk(x0, τ ) = 0, φ(x0, τ ) = 0, θ (x0, τ ) = 0

for any (x0, τ ) ∈ {B̄ \Dt} × [0, t].
But ui(x0, 0) = 0, ϕjk(x0, 0) = 0 for any x0 ∈ B̄ \Dt , so we deduce that

ui(x0, τ ) = 0, ϕjk(x0, τ ) = 0, φ(x0, τ ) = 0, θ (x0, τ ) = 0

for any (x0, τ ) ∈ {B̄ \Dt} × [0, t], which ends the proof of Theorem 2. �
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4 Conclusions
We can conclude that the main result of the present paper is an extension of known Saint–
Venant’s principle from classical elasticity in order to cover the theory of thermoelasticity
of dipolar porous bodies. We have shown that the domain of influence theorem remains
valid even if we exceeded the framework of classical mechanics.

Namely, the essence of the principle remains the same even if we have taken into con-
sideration the effect of thermal treatment, the effect of dipolar structure, and the effect of
voids.
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