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Abstract
In this work, we study the diabetes model and its complications with the
Caputo–Fabrizio fractional derivative. A deterministic mathematical model pertaining
to the fractional derivative of the diabetes mellitus is discussed. The analytical solution
of the diabetes model is derived by exerting the homotopy analysis method, the
Laplace transform and the Padé approximation. Moreover, existence and uniqueness
of the solution are examined by making use of fixed point theory and the
Picard–Lindelof approach. Ultimately, for illustrating the obtained results some
numerical simulations are performed.
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1 Introduction
Nowadays, diabetes is world-wide a quiet epidemic heavily enlarging the charge of non-
communicable diseases and generally stimulated by reducing the levels of activity and
enhancing pervasiveness of obesity. Mainly, two types of diabetes are studied: Type 1 dia-
betes, too familiar as insulin dependent diabetes mellitus, attacking people below the age
of 40 and representing 10 to 15 percent of the diabetic population. Then, Type II diabetes,
previously recognized as non-insulin dependent diabetes mellitus, describing the major-
ity (85 to 90 percent). Although in all age groups with the spreading epidemic of obesity, it
is anticipated that in 10 year’s time, there will be additional children having Type II rather
than having Type I; see [1–8]. In recent years many authors have studied different mathe-
matical models to describe diabetes and related issues such as Boutayeb et al. [9], Mahataa
et al. [10], Pandit et al. [11], Makroglou et al. [12] and others.

It has been demonstrated by many scientists and mathematicians that fractional exten-
sions of mathematical models of integer order represent the natural fact in a very sys-
tematic way such as in the approaches of Caputo [13], Podlubny [14], Miller and Ross
[15], Baleanu et al. [16], Singh et al. [17, 18], Kumar et al. [19] and others. Lately, Caputo
and Fabrizio [20] suggested an innovative idea of non-integer order derivative possessing
non-singular kernel, and the authors in [21] described the additional characteristics. In the
present article, we employ a newly found arbitrary order derivative to the diabetes model.
The principal aim of the present article is to use a novel non-integer order derivative to
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study the diabetes model and present the details of uniqueness and existence of the solu-
tion of the diabetes model with the help of a fixed point theorem and the Picard–Lindelof
approach.

In this work, we study the fractional diabetes model by applying the homotopy analysis
transform method (HATM). The HATM is a new and well organized mixture of the HAM
[22–24] and standard Laplace transform technique [25–29].

The development of the present article is given in the following sequential manner: In
Sect. 2, the CF derivative of arbitrary order is explored. In Sect. 3, the diabetes model and
exact solution associated to the newly CF arbitrary order derivative is described. We also
discuss special solutions of the model in this portion. By exerting the fixed point theorem
and the Picard–Lindelof approach, uniqueness and existence of the solutions of the system
are analyzed in Sect. 4. Section 5 contains a stability analysis of an iterative scheme. In
Sect. 6, the numerical simulations are graphically shown. Lately in Sect. 7, the conclusions
are discussed.

2 Preliminaries
Definition 2.1 Let l(η) ∈ H1(x, y), y > x,σ ∈ [0, 1] then the CF arbitrary order derivative
[20] is given as

Dσ
η

(
l(η)

)
=

M(σ )
1 – σ

∫ η

x
l′(w) exp

[
–σ

η – w
1 – σ

]
dw. (1)

In Eq. (1) M(σ ) denotes a normalization of the function fulfilling the property M(0) =
1 = M(1) and its details can be found in a paper authored by Caputo and Fabrizio [20].
This derivative can be presented as follows, if l /∈ H1(a, b):

Dσ
η

(
g(η)

)
=

σM(σ )
1 – σ

∫ η

x

(
l(η) – l(w)

)
exp

[
–σ

η – w
1 – σ

]
dw. (2)

Note 1 If β = 1–σ
σ

∈ [0,∞),σ = 1
1+β

∈ [0, 1], then Eq. (2) converts to the following form:

Dσ
η

(
l(η)

)
=

N(β)
β

∫ η

x
l′(w) exp

[
–

η – w
β

]
dw, N(0) = 1 = N(∞). (3)

Furthermore,

lim
β→0

1
σ

exp

[
–

η – w
β

]
= δ(w – η). (4)

The corresponding integral was described by [21].

Definition 2.2 Let 0 < σ < 1, then the non-integer order integral of l(η) is presented as

Iσ
η

(
l(η)

)
=

2(1 – σ )
(2 – σ )M(σ )

l(η) +
2σ

(2 – σ )M(σ )

∫ η

0
l(s) ds, η ≥ 0. (5)

By making use of Eq. (5), we have

2(1 – σ )
(2 – σ )M(σ )

+
2σ

(2 – σ )M(σ )
= 1. (6)
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In view of the result (6), the authors of [21] introduced the modified CF derivative of
order 0 < σ < 1 expressed as

Dσ
η

(
l(t)

)
=

1
1 – σ

∫ η

x
l′(w) exp

[
–σ

η – w
1 – σ

]
dw. (7)

3 HATM for fractional diabetes model and its complication
The classical diabetes model and its complications [1] are given by

dD
dη

= I – (λ + μ)D + γ C,

dC
dη

= I + λD – (γ + μ + ν + δ)C,
(8)

where D indicates the no. of diabetics with no complications at time η. C denotes the no.
of diabetics having complications. I represents the occurrence of diabetes mellitus.

μ denotes the rate of natural mortality, λ indicates the probability of a diabetic person
spreading a complication, γ shows the rate of healing complications, ν stands for the rate
at which diabetic patients having complication converts critically disabled and δ denotes
the mortality rate because of complications. N(η) = C(η) + D(η) indicates the size of dia-
betics at the time η. Taking N(η) = C(η) + D(η), we get

dC
dη

= –(λ + θ )C + λN , η > 0,

dN
dη

= I – (ν + δ)C – μN .
(9)

In Eq. (9), θ = γ + μ + ν + δ with initial conditions

C(0) = C0, N(0) = N0. (10)

The model (9) is not able to contain the entire memory effect of the biological system
and the spreading of diabetes. To involve these discussed effects into the mathematical
representation of the diabetes model, we modify the equation by changing the first order
time derivative to the novel propounded CF arbitrary order derivative [20] as represented
by

CF
0 Dσ

η C = –(λ + θ )C + λN , η > 0,
CF
0 Dσ

η N = I – (ν + δ)C – μN ,
(11)

with initial conditions given in Eq. (10).
Solution. By performing the Laplace transform to Eq. (11),

sL[C] – C(0)
s + σ (1 – s)

= L
[
–(λ + θ )C + λN

]
,

sL[N] – N(0)
s + σ (1 – s)

= L
[
I – (ν + δ)C – μN

]
.

(12)
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On simplifying, we get

L[C] –
C0

s
–

s + σ (1 – s)
s

L
[
–(λ + θ )C + λN

]
= 0,

L[N] –
N0

s
–

s + σ (1 – s)
s

L
[
I – (ν + δ)C – μN

]
= 0.

(13)

The non-linear operator is defined as

P1
[
ψ(η; q)

]
= L

[
ψ(η; q)

]
–

C0

s
–

s + σ (1 – s)
s

L
[
–(λ + θ )ψ(η; q) + λϕ(η; q)

]
= 0,

P2
[
ϕ(η; q)

]
= L

[
ϕ(η; q)

]
–

N0

s
–

s + σ (1 – s)
s

L
[
I – (ν + δ)ψ(η; q) – μϕ(η; q)

]
= 0,

(14)

and thus we have

R1,k(�Ck–1) = L
[
Ck–1(η)

]
–

C0

s
(1 – χk) –

s + σ (1 – s)
s

L
[
–(λ + θ )Ck–1(η; q) + λNk–1(η; q)

]

and

R2,k[ �Nk–1] = L
[
Nk–1(η)

]
–

N0

s
(1 – χk)

–
s + σ (1 – s)

s
L
[
I – (ν + δ)Ck–1(η; q) – μNk–1(η; q)

]
. (15)

The mth order deformation equation is presented as

L
[
Ck(η) – χkCk–1(η)

]
= �R1,k(�Ck–1),

and

L
[
Nk(η) – χkNk–1(η)

]
= �R2,k( �Nk–1). (16)

On employing the inversion of the Laplace transform, we get

Ck(η) = χkCk–1(η) + �L–1[R1,k(�Ck–1)
]

and

Nk(η) = χkNk–1(η) + �L–1[R2,k(
←
Nk–1)

]
. (17)

On solving the above equations, for k = 1, 2, 3, . . . , we get

C1(η) = –�
[
–(λ + θ )C0 + λN0

][
1 + σ (η – 1)

]
,

i.e. C1(η) = –�α[1 + σ (η – 1)], where α = –qC0 + λN0.

N1(η) = –�
[
I – (ν + δ)C0 – μN0

][
1 + σ (η – 1)

]
,

i.e. N1(η) = –�β[1 + σ (η – 1)], where β = I – mC0 – μN0, and so on.
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Consequently, the solution of Eq. (11) is given as

C(η) = C0 + C1 + C2 + · · ·

or

C(η) = C0 – �α
[
1 + σ (η – 1)

]
+ · · · (18)

and

N(η) = N0 + N1 + N2 + · · ·

or

N(η) = N0 – �β
[
1 + σ (η – 1)

]
+ · · · , (19)

where q = λ + θ , m = ν + δ and θ = γ + μ + ν + δ.

4 Existence and uniqueness analysis
The fractional diabetic model (11) can be reduced to an integral equation of Volterra type
when the integral related to the CF derivative is employed. We recall that the Caputo–
Fabrizio non-integer order integral of l(η) is the average of l(η) and its Riemann–Liouville
integral of fractional order.

Now using the integral operator of fractional order introduced by Losada and Nieto [21]
on the system (11), we get

C(η) – g1(η) =
2(1 – σ )

(2 – σ )M(σ )
{

–(λ + θ )C(η) + λN(η)
}

+
2σ

(2 – σ )M(σ )

∫ η

0

{
–(λ + θ )C(s) + λN(s)

}
ds,

N(η) – g2(η) =
2(1 – σ )

(2 – σ )M(σ )
{

I – (ν + δ)C(η) – μN(η)
}

+
2σ

(2 – σ )M(σ )

∫ η

0

{
I – (ν + δ)C(s) – μN(s)

}
ds.

(20)

A possibility of reducing Eq. (20) to the iterative approach is presented as follows:

C0(η) = g1(η), D0(η) = g2(η). (21)

Now, we get the subsequent iterative algorithm

C(n+1)(η) =
2(1 – σ )

(2 – σ )M(σ )
{

–(λ + θ )Cn(η) + λNn(η)
}

+
2σ

(2 – σ )M(σ )

∫ η

0

{
–(λ + θ )Cn(s) + λNn(s)

}
ds,

N (n+1)(η) =
2(1 – σ )

(2 – σ )M(σ )
{

I – (ν + δ)Cn(η) – μNn(η)
}

+
2σ

(2 – σ )M(σ )

∫ η

0

{
I – (ν + δ)Cn(s) – μNn(s)

}
ds.

(22)
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Here we assume that we can get the exact solution by taking the limit as n tends to
infinity.

4.1 Existence of the solution by Picard–Lindelof approach
Theorem 1 We discuss the existence of the solution by applying the Picard–Lindelof ap-
proach.

Proof We express the operators as

k1(η, C) = –(λ + θ )C + λN ,

k2(η, N) = I – (ν + δ)C – μN ,
(23)

where k1(η, C) and k2(η, N) are contractions with respect to C and N for the first and
second functions, respectively.

Let

A1 = sup
Ca,b1

∥
∥K1(η, C)

∥
∥, A2 = sup

Ca,b2

∥
∥K2(η, N)

∥
∥, (24)

where

Ca,b1 = |η – a,η + a| × [C – b1,C + b1] = A1 × B1,

Ca,b2 = |η – a,η + a| × [N – b2,N + b2] = A1 × B2.
(25)

On consideration of the Picard operator, we have

φ : C(A1, B1, B2) → C(A1, B1, B2), (26)

given as follows:

φξ (η) = ξ0(η) + �
(
η, ξ (η)

) 2(1 – σ )
(2 – σ )M(σ )

+
2σ

(2 – σ )M(σ )

∫ η

0
�

(
s, ξ (s)

)
ds, (27)

where ξ (η) = {C(η), N(η)}, ξ0(η) = {g1, g2} and �(η, ξ (η)) = {k1(η, C(η), k2(η, N(η)}.
Next we suppose the solution of the fractional diabetic model are bounded within a time

period,

∥∥ξ (η)
∥∥∞ ≤ max{B1, B2}, (28)

∥
∥ξ (η) – ξ0(η)

∥
∥ =

∥∥
∥∥�

(
η, ξ (η)

) 2(1 – σ )
(2 – σ )M(σ )

+
2σ

(2 – σ )M(σ )

∫ η

0
�

(
s, ξ (s)

)
ds

∥∥
∥∥

≤ 2(1 – σ )
(2 – σ )M(σ )

∥∥�
(
η, ξ (η)

)∥∥ +
2σ

(2 – σ )M(σ )

∫ η

0

∥∥�
(
s, ξ (s)

)∥∥ds

≤
(

2(1 – σ )
(2 – σ )M(σ )

+
2ση0

(2 – σ )M(σ )

)
max{B1, B2} ≤ ρB ≤ α, (29)

where we demand that

ρ <
α

B
. (30)
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By employing the fixed point theorem pertaining to Banach space along with the metric,
we obtain

‖φξ1 – φξ2‖∞ = sup
η→A

|ξ1 – ξ2|. (31)

Now we have

‖φξ1 – φξ2‖ =
∥∥
∥∥
{
�

(
η, ξ1(η)

)
– �

(
η, ξ2(η)

)} 2(1 – σ )
(2 – σ )M(σ )

+
2σ

(2 – σ )M(σ )

∫ η

0

{
�

(
s, ξ1(s)

)
– �

(
s, ξ2(s)

)}
ds

∥∥
∥∥

≤ 2(1 – σ )
(2 – σ )M(σ )

∥∥�
(
η, ξ1(η)

)
– �

(
η, ξ2(η)

)∥∥

+
2σ

(2 – σ )M(σ )

∫ η

0

∥
∥�

(
s, ξ1(s)

)
– �

(
s, ξ2(s)

)∥∥ds

≤ 2(1 – σ )
(2 – σ )M(σ )

β
∥∥ξ1(η) – ξ2(η)

∥∥ +
2σβ

(2 – σ )M(σ )

∫ η

0

∥∥ξ1(s) – ξ2(s)
∥∥ds

≤
{

2(1 – σ )β
(2 – σ )M(σ )

+
2σβη0

(2 – σ )M(σ )

}∥∥ξ1(η) – ξ2(η)
∥∥

≤ ρβ
∥∥ξ1(η) – ξ2(η)

∥∥, (32)

with β < 1. Since ξ is a contraction, we have ρβ < 1, hence the defined operator φ is also a
contraction. Therefore, the diabetic model involving CF derivative given in Eq. (11) has a
unique set of solutions. �

5 Stability analysis of iterative scheme
Let (℘,‖ · ‖) indicate a Banach space and W represent a self-map of ℘ . Let hn+1 = ϕ(W , hn)
be a specific iterative scheme. Let us consider ℵ(W ) to be the fixed point set of W possess-
ing at least one element and let hn be convergent and converge to z ∈ ℵ(W ). If {hn} ⊆ ℘ and
we define an = ‖hn+1 – ϕ(W , hn)‖, and if Limn→∞ an = 0 yields the result Limn→∞ hn = z,
then the iteration algorithm hn+1 = ϕ(W , hn) is termed W -stable.

Theorem 2 ([30]) Let (℘,‖ · ‖) be a Banach space and W be a self-map of the Banach
space ℘ that leads to the result

‖Wx – Wy‖ ≤ H‖x – Wx‖ + h‖x – y‖,

∀x, y ∈ ℘ , where H and h s.t. 0 ≤ H , 0 ≤ h ≤ 1. Furthermore, it is supposed that W is Picard
W -stable.

We assume that the fractional diabetes model (11) is connected with the subsequent iter-
ative formula

Cn+1(η) = Cn(η) + L–1
[

s + σ (1 – s)
s

L
[
–(λ + θ )Cn(η) + λNn(η)

]
]

,

Nn+1(η) = Nn(η) + L–1
[

s + σ (1 – s)
s

L
[
I – (ν + δ)Cn(η) – μNn(η)

]]
.

(33)
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In the above equation s+σ (1–s)
s stands for the Lagrange multiplier.

Further, we develop the following result given as a theorem.

Theorem 3 Consider G to be a self-map expressed in the subsequent manner:

G
(
Cn(η)

)
= Cn+1(η) = Cn(η) + L–1

[
s + σ (1 – s)

s
L
[
–(λ + θ )Cn(η) + λNn(η)

]]
,

G
(
Nn(η)

)
= Nn+1(η) = Nn(η) + L–1

[
s + σ (1 – s)

s
L
[
I – (ν + δ)Cn(η) – μNn(η)

]]
,

(34)

then the iterations are G-stable in L2(a, b) if (1 – (λ + θ )�1(η) + λ�2(η)) < 1 and (1 – (ν +
δ)�3(η) – μ�4(η)) < 1.

Proof First of all it will be shown that G has a fixed point. To prove the above theorem, we
derive the result given below for (n, m) ∈ N × N .

∥
∥G

(
Cn(η)

)
– G

(
Cm(η)

)∥∥

≤ ∥∥Cn(η) – Cm(η)
∥∥

+
∥
∥∥
∥L–1

[
s + σ (1 – s)

s
L
[
–(λ + θ )

(
Cn(η) – Cm(η)

)
+ λ

(
Nn(η) – Nm(η)

)]
]∥
∥∥
∥ (35)

and

∥
∥G

(
Nn(η)

)
– G

(
Nm(η)

)∥∥

≤ ∥∥Nn(η) – Nm(η)
∥∥

+
∥∥
∥∥L–1

[
s + σ (1 – s)

s
L
[
–(ν + δ)

(
Cn(η) – Cm(η)

)
– μ

(
Nn(η) – Nm(η)

)]]
∥∥
∥∥. (36)

We consider that the solutions play some role, i.e.,

∥
∥Cn(η) – Cm(η)

∥
∥ ∼= ∥

∥Nn(η) – Nm(η)
∥
∥. (37)

Further, on using the result (37) in (35) and (36),

∥∥G
(
Cn(η)

)
– G

(
Cm(η)

)∥∥ ≤ (
1 – (λ + θ )�1(η) + λ�2(η)

)∥∥Cn(η) – Cm(η)
∥∥ (38)

and

∥∥G
(
Nn(η)

)
– G

(
Nm(η)

)∥∥ ≤ (
1 – (ν + δ)�3(η) – μ�4(η)

)∥∥Nn(η) – Nm(η)
∥∥, (39)

where �1,�2,�3 and �4 are functions occurring from L–1[ s+σ (1–s)
s L(•)] with (1 – (λ +

θ )�1(η) + λ�2(η)) < 1 and (1 – (ν + δ)�3(η) – μ�4(η)) < 1.
Consequently, the self-map G possesses a fixed point. Further, we will show that the

conditions associated with Theorem 2 are satisfied by G. Let Eqs. (38) and (39) hold, thus
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on putting

h = 0, H =

⎧
⎨

⎩
(1 – (λ + θ )�1(η) + λ�2(η)),

(1 – (ν + δ)�3(η) – μ�4(η)).
(40)

Then from Eq. (40), we can notice that for the mapping G along with the condition
associated with Theorem 2 holds. Consequently for the considered mapping G and the
conditions pertaining to Theorem 2 are satisfied, hence G is Picard G-stable. Thus, the
proof of Theorem 3 is finished. �

6 Numerical results and discussion
In the present portion, we compute the numerical results for C(η) and N(η) at σ = 0.70,σ =
0.85 and σ = 1. The special solution of the non-integer diabetes model is derived by ap-
plying HATM and the Padé approximation [31] with as distinct parameters the number
of ν = 0.05, δ = 0.05,μ = 0.02,γ = 0.08,λ = 0.02 and I = 60,000. Fig. 1 depicts the nature
of the number of diabetics having complications corresponding to the time for distinct
order of fractional derivative. Figure 2 represents the impact of order of CF derivative on
the size of the diabetics corresponding to time. Figure 3 indicates the effect of the rate
at which diabetic patients having complications converted into the number of critically
disabled diabetics having complications with respect to time. Figure 4 depicts the effect
of the rate at which diabetic patients having complications converted into the size of crit-
ically disabled diabetics with respect to time. Figure 5 shows the effect of the mortality
rate because of complications on the number of diabetics having complications with re-
spect to time. Figure 6 indicates the effect of the mortality rate because of complications
on the size of diabetics with respect to time. Figure 7 presents the effect of the natural
mortality rate on the number of diabetics having complications with respect to time. Fig-
ure 8 presents the effect of the natural mortality rate on the size of diabetics with respect to
time. Graphical behavior reveals that the model is significantly dependent on the arbitrary
order. Figures 1–8 demonstrate the clear difference at σ = 1, σ = 0.85 and σ = 0.70. The
model represents a new feature of σ = 0.85 and σ = 0.70, that was invisible when modeling
with σ = 1.

7 Conclusions
In this study, we have applied the novel introduced Caputo–Fabrizio arbitrary order
derivative to the diabetes model and sloved the fractional problem via HATM and Padé ap-
proximation. The HATM is a pioneering and strong computational scheme to solve non-
integer order differential equations. The HATM carries an auxiliary parameter �, which is
very useful to modify and manage the convergence of the series solutions. Hence, it can be
determined that HATM is manageable, straightforward to employ, and a stronger compu-
tational procedure for examining linear and non-linear problems. The uniqueness and ex-
istence of the solutions are explored by exerting fixed point theory and the Picard–Lindelof
approach. Some numerical results are analyzed to describe the effect of the arbitrary order.
The effects of various parameters on the number of diabetics having complications and
the size of diabetics with respect to time are shown graphically. By numerical simulation
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Figure 1 Response of C(η) w.r.t. time η for different values of σ

Figure 2 Nature of N(η) w.r.t. time η for various values of σ
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Figure 3 Nature of C(η) w.r.t. time η for different values of ν

Figure 4 Behavior of N(η) w.r.t. time η for different values of ν
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Figure 5 Response of the solution C(η) with respect to time η for various values of δ

Figure 6 Characteristic of N(η) w.r.t. time η for separate values of δ
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Figure 7 Response of C(η) w.r.t. time η for different values of μ

Figure 8 Response of N(η) w.r.t. time η for distinct values of μ
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we can observe that when σ → 1 the Caputo–Fabrizio non-integer order derivative re-
veals more absorbing characteristics. The results of this study are very helpful for medical
practitioners dealing with diabetes and related issues. Thus, we have concluded that the
CF derivative is useful in the description of physical, chemical, biological, medical, social,
and engineering processes.
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