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Abstract: In this work, we examine a fractal vehicular traffic flow problem. The partial differential
equations describing a fractal vehicular traffic flow are solved with the aid of the local fractional
homotopy perturbation Sumudu transform scheme and the local fractional reduced differential
transform method. Some illustrative examples are taken to describe the success of the suggested
techniques. The results derived with the aid of the suggested schemes reveal that the present schemes
are very efficient for obtaining the non-differentiable solution to fractal vehicular traffic flow problem.

Keywords: fractal vehicular traffic flow; local fractional Sumudu transform; homotopy perturbation
technique; reduced differential transform method; local fractional derivative

1. Introduction

Firstly, the continuum model was used to elucidate a traffic flow with continuous functions,
which was similar to one of fluid dynamics and material models established based on conservation
laws. Connected to this, pioneering work was conducted by Lighthill and Whitham [1] and Richards [2]
who formulated a model named the Lighthill-Whitham-Richards’s (LWR) model. This mathematical
model was examined by many research workers [3–6].

Similar to integer order models, fractional order models are very useful, with extra advantages
because they consider full memory effect. Consequently, many researchers have applied this innovative
approach of fractional calculus in the mathematical modeling of natural phenomena. Among these are
Machado and Mata [7], Carvalho and Pinto [8], Zhou et al. [9], Kumar et al. [10,11], Singh et al. [12],
Hristov [13], Yang et al. [14], Area et al. [15], Zaky and Machado [16], Drapaca and Sivaloganathan [17],
Sumelka et al. [18], Lazopoulos and Lazopoulos [19], Rahimi et al. [20], and others. In recent years
an innovative and very interesting theory of fractional calculus, namely local fractional calculus,
has earned importance and popularity among scientists working in this special branch [21,22].
Today, local fractional derivatives and integrals has been utilized to describe various scientific and
technological problems, such as local fractional 2-D Burgers-type equations [23], nonlinear Riccati
differential equations containing local fractional derivatives [24], diffusion and heat equations
pertaining to local fractional operators [25], local fractional Burgers equations [26] and many other
problems. In view of the great usefulness of local fractional calculus, we examine the local fractional
LWR model on a finite-length highway arising in vehicular traffic flow written as

∂βw(r, s)
∂sβ

+ λ
∂βw(r, s)

∂rβ
= 0, 0 < β ≤ 1, (1)
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surrounding the initial and boundary conditions

w(r, 0) = g1(r), (2)

w(0, s) = g2(s). (3)

The local fractional LWR model with finite-length highway has been examined by the local
fractional Laplace variational iteration scheme [27], the local fractional Laplace decomposition
approach and the local fractional series expansion scheme [28]. In the present work, we examine
the local fractional LWR model by the local fractional homotopy perturbation Sumudu transform
method (LFHPSTM) [29–31]. Furthermore, we analyze the local fractional LWR model with the aid of
local fractional reduced differential transform method (LFRDTM) [32,33]. The LFHPSTM is a hybrid
scheme and is developed by the mixing of LFHPM [34–36] and a local fractional Sumudu transform
technique [37].

The rest of this article is presented as follows: Section 2 involves the primary properties of
local fractional calculus. Section 3 is devoted to the solution procedure of LFHPSTM. In Section 4,
the solution procedure of LFRDTM is discussed. Section 5 is dedicated to the solution of the
local fractional LWR model with a finite-length highway. At the end, Section 6 is devoted to
concluding remarks.

2. Local Fractional Calculus and Its Properties

Here, we highlight the main concept of local fractional calculus, which is employed in the present
research work.

Definition 1. [21–29]. Let us assume a function w(s) ∈ Cβ(τ, υ), while∣∣∣w(s)− w(s0)
∣∣∣< εβ, 0 < β ≤ 1, (4)

is valid, when |s− s0| < δ, for ε, δ > 0 and ε ∈ <.

Definition 2. [21–29]. Let us assume the interval [τ, υ] and (sj, sj+1), j = 0, . . . , N − 1, s0 = τ, and sN = υ

with ∆sj = sj+1 − sj, ∆s = max{∆s0, ∆s1,, ∆s2,, . . .} be partition of [τ, υ]. Then local fractional integral
operator of w(s) ∈ Cβ(τ, υ) is expressed in the subsequent manner

τ Iυ
(β)w(s) = 1

Γ(1+β)

υ∫
τ

w(s)(ds)β

= 1
Γ(1+β)

Lim
∆s→0

w(∆sj)
β.

(5)

Definition 3. [21–29]. Let w(s) hold the condition presented in Equation (4), then the inverse formula for
Equation (5) is presented in the subsequent manner:

dβw(s0)

dsβ
= D(β)

s w(s0) =
∆β(w(s)− w(s0))

(s− s0)
β

, (6)

where
∆β(w(s)− w(s0)) ∼= Γ(1 + β)[w(s)− w(s0)]. (7)
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Definition 4. The local fractional Sumudu transform (LFST) [37] is an extension of Sumudu transform [38]
and LFST of a function w(s) is expressed as

LFSβ{w(s)} = Wβ(z)

= 1
Γ(1+β)

∞∫
0

Eβ(−z−βsβ)w(s)
zβ (ds)β, β ∈ (0, 1].

(8)

The inverse formula for LFST is defined as

LFS−1
β {W(z)} = w(s), 0 < β ≤ 1. (9)

Further important results and useful properties of this transform can be seen in the work of
Belgacem et al. [39].

Definition 5. The Mittag-Leffler function [40] is presented as

Eβ(s) =
∞

∑
m=0

sm

Γ(βm + 1)
, (β ∈ C, Re(β) > 0). (10)

3. Basic Idea LFHPSTM

Here we discuss the main outline of the LFHPSTM. Let us take a linear differential equation
associated with the local fractional derivative of the form

Lβw(r, s) + Rβw(r, s) = q(r, s). (11)

In Equation (11) Lβ represents the linear local fractional differential operator, Rβ indicates the rest
part of the linear operator and q(r, s) represents a function known as source function.

By using the LFST on Equation (11), it yields

W(r, z) = w(r, 0) + zβw(β)(r, 0) + z2βw(2β)(r, 0) + . . .

+z(k−1)βw((k−1)β)(r, 0)− zkβLFSβ

[
Rβw(r, s)

]
+ zkβLFSβ[q(r, s)].

(12)

Applying the inverse of LFST on Equation (12), we get

w(r, s) = S(r, s)− LFS−1
β

[
zkβLFSβ

[
Rβw(r, s)

]]
. (13)

In Equation (13) the term S(r, s) occurs due to initial conditions and source function.
Now the LFHPM [36] is employed as

w(r, s) =
∞

∑
m=0

pmβwm(r, s). (14)

By making use of Equation (14) in Equation (13), we get

∞

∑
m=0

pmβwβ,m(r, s) = S(r, s)− pβLFS−1
β

[
zkβLFSβ

[
Rβ

∞

∑
m=0

pmβwm(r, s)

]]
. (15)

The result (15) is derived by a combination the LFST and LFHPM.
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The comparison of the coefficients of the equal powers of p in both sides gives

p0β : w0(r, s) = S(r, s)

p1β : w1(r, s) = −LFS−1
β

[
zkβLFSβ

[
Rβw0(r, s)

]]
,

p2β : w2(r, s) = −LFS−1
β

[
zkβLFSβ

[
Rβw1(r, s)

]]
,

Thus, the LFHPSTM solution is expressed as follows

w(r, s) = lim
M→∞

M

∑
m=0

wm(r, s). (16)

4. Basic Idea of LFRDTM

Here, we present the basic definitions and properties of LFRDTM [32,33].

Lemma 1 (Local fractional Taylors theorem). [32,33]. Let us consider that d(k+1)β

dr(k+1)β w(r) ∈ Cβ(τ, υ),
for τ, υ ∈ <, k = 0, 1, 2, . . . , n and 0 < β ≤ 1, we have

w(r) =
∞

∑
k=0

dkβ

drkβ
w(r0)

(r− r0)
kβ

Γ(1 + kβ)
. (17)

In Equation (17) τ < r0 < r < υ, ∀r ∈ (τ, υ).

Definition 6. The LFRDT Wk(r) of a function w(r, s) is expressed in the following manner [32,33]

Wk(r) =
1

Γ(1 + kβ)

[
∂kβ

∂skβ
w(r, s)

]
s=s0

. (18)

In Equation (28) k = 0, 1, 2, . . . , n and 0 < β ≤ 1.

Definition 7. The LFRDT of Wk(r) is expressed in the following manner [32,33]

w(r, s) =
∞

∑
k=0

Wk(r)(s− s0)
kβ, 0 < β ≤ 1. (19)

The fundamental mathematical operations of the LFRDTM [32,33] are presented in Table 1.

Table 1. Reduced differential transformations.

Original Function LFRDT Function

w(r, s) Wk(r) = 1
Γ(kβ+1)

[
∂kβ

∂skβ w(r, s)
]

s=0
w(r, s) = c1ψ(r, s)± c2φ(r, s) Wk(r) = c1Ψk(r)± c2Φk(r)

w(r, s) = ψ(r, s)φ(r, s) Wk(r) =
k
∑

i=0
Ψi(r)Φk−i(r)

w(r, s) = (∂nβ/∂snβ)ψ(r, s) Wk(r) = [(Γ(kβ + nβ + 1))/Γ(kβ + 1))]Ψk+n(r)

w(r, s) = (r−r0)
mβ

Γ(1+mβ)
(s−s0)

nβ

Γ(1+nβ)
Wk(r) = rmβ

Γ(1+mβ)
δβ(k− n)

w(r, s) = Eβ((a(r− r0))
β)Eα((b(s− s0))

α) Wk(r) = Eβ((a(r− r0))
β) akβ

Γ(1+kβ)
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5. Non-Differential Solutions for Local Fractional LWR Model on a Finite Length Highway

Here, we derive the non-differential solutions of the local fractional LWR model by using
LFHPSTM and LFRDTM.

Example 1. Firstly, we examine the following local fractional LWR model having finite-length highway

∂βw(r, s)
∂sβ

+ λ
∂βw(r, s)

∂rβ
= 0, 0 < β ≤ 1, (20)

surrounding the initial and boundary conditions

w(r, 0) = Eβ(rβ) (21)

w(0, s) = coshβ(λsβ)− sinhβ(λsβ) (22)

On applying the LFST on Equation (20) and simplifying, we have

W(r, z) = Eβ(rβ)− λzβLFSβ

[
∂βw(r, s)

∂rβ

]
. (23)

On employing the inverse of LFST on Equation (23), we get

w(r, s) = Eβ(rβ)− λLFS−1
β

[
zβLFSβ

[
∂βw(r, s)

∂rβ

]]
. (24)

Now by employing LFHPM [36], we have

∞

∑
m=0

pmβwm(r, s) = Eβ(rβ)− λpβLFS−1
β

zβLFSβ

∂β

(
∞
∑

m=0
pmβwm(r, s)

)
∂rβ


. (25)

On comparing the like powers of p, it yields

p0β : w0(r, s) = Eβ(rβ),

p1β : w1(r, s) = − λsβ

Γ(1+β)
Eβ(rβ),

p2β : w2(r, s) = λ2s2β

Γ(1+2β)
Eβ(rβ).

(26)

By making use of the same operations, we evaluate the rest of terms of the LFHPSTM solution. On that
account, the solution of local fractional LWR model (20) is expressed in the subsequent manner

w(r, s) =
∞
∑

m=0
wm(r, s)

= Eβ(rβ)
[
1 + λ2s2β

Γ(1+2β)
+ λ4s4β

Γ(1+4β)
+ · · ·

]
− Eβ(rβ)

[
λsβ

Γ(1+β)
+ λ3s3β

Γ(1+3β)
+ · · ·

]
.

(27)

It can be indicated in closed form in the subsequent manner

w(r, s) = Eβ(rβ) coshβ(λsβ)− Eβ(rβ)sinhβ(λsβ). (28)

Now, we apply the LFRDTM on local fractional LWR model.
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On applying the LFRDT on Equation (20), it gives

Γ(kβ + β + 1)
Γ(kβ + 1)

Wk+1(r) = −λ
∂βWk(r)

∂rβ
. (29)

In Equation (29) Wk(r) represents the transformed function. From the initial condition (21), we can
express as

W0(r) = Eβ(rβ). (30)

On using Equation (30) in Equation (29) and iterative steps, we get

W1(r) = −Eβ(rβ) λ
Γ(1+β)

, W2(r) = Eβ(rβ) λ2

Γ(1+2β)
, . . .

Wn(r) = (−1)nEβ(rβ) λn

Γ(1+nβ)
, . . .

(31)

Therefore, LFRDTM solution is given by

w(r, s) =
∞

∑
k=0

Wk(r)skβ

= Eβ(rβ)

[
1 +

λ2s2β

Γ(1 + 2β)
+

λ4s4β

Γ(1 + 4β)
+ · · ·

]
− Eβ(rβ)

[
λsβ

Γ(1 + β)
+

λ3s3β

Γ(1 + 3β)
+ · · ·

]
. (32)

It can be expressed in closed form in the subsequent manner

w(r, s) = Eβ(rβ) coshβ(λsβ)− Eβ(rβ)sinhβ(λsβ). (33)

From the results (28) and (33), we can see the results obtained by using LFHPSTM and LFRDTM
are in good agreement and give the exact solution in term of Mittag-Leffler function, which is suitable
for numerical computation.

Example 2. Next, we examine the following local fractional LWR model having finite length highway

∂βw(r, s)
∂sβ

+
∂βw(r, s)

∂rβ
= 0, 0 < β ≤ 1, (34)

surrounding the initial and boundary conditions

w(r, 0) = sinhβ(rβ), (35)

w(0, s) = −sinhβ(sβ). (36)

On employing the LFST on Equation (34) and simplifying, we arrive at the subsequent result

W(r, z) = sinhβ(rβ)− zβLFSβ

[
∂βw(r, s)

∂rβ

]
. (37)

On employing the inverse of LFST on Equation (37), we get

w(r, s) = sinhβ(rβ)− LFS−1
β

[
zβLFSβ

[
∂βw(r, s)

∂rβ

]]
. (38)
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Next, we employ the LFHPM [36], it gives

∞

∑
m=0

pmβwm(r, s) = sinhβ(rβ)− pβLFS−1
β

zβLFSβ

∂β

(
∞
∑

m=0
pmβwm(r, s)

)
∂rβ


. (39)

Comparing the same powers of p, we have

p0β : w0(r, s) = sinhβ(rβ),

p1β : w1(r, s) = − sβ

Γ(1+β)
coshβ(rβ),

p2β : w2(r, s) = s2β

Γ(1+2β)
sinhβ(rβ).

(40)

By making use of the same operations, we compute the rest of terms of the LFHPSTM solution.
Consequently, the solution of local fractional LWR model (34) is expressed as

w(r, s) =
∞
∑

m=0
wm(r, s)

= sinhβ(rβ)
[
1 + s2β

Γ(1+2β)
+ s4β

Γ(1+4β)
+ · · ·

]
− coshβ(rβ)

[
sβ

Γ(1+β)
+ s3β

Γ(1+3β)
+ · · ·

]
.

(41)

It can be represented in closed form in the subsequent manner

w(r, s) = sinhβ(rβ) coshβ(sβ)− coshβ(rβ)sinhβ(sβ). (42)

Next, we use the LFRDTM to study the local fractional LWR model (34).
On applying the LFRDT on Equation (34), it yields

Γ(kβ + β + 1)
Γ(kβ + 1)

Wk+1(r) = −
∂βWk(r)

∂rβ
. (43)

In Equation (43) Wk(r) represents the transformed function. From the initial condition (35), we can
express as

W0(r) = sinhβ(rβ). (44)

On using Equation (44) in Equation (43) and iterative steps, we have

W1(r) = − coshβ(rβ) 1
Γ(1+β)

, W2(r) = sinhβ(rβ) 1
Γ(1+2β)

,

W3(r) = − coshβ(rβ) 1
Γ(1+3β)

. . .
(45)

Therefore, LFRDTM solution is presented as

w(r, s) =
∞
∑

k=0
Wk(r)skβ

= sinhβ(rβ)
[
1 + s2β

Γ(1+2β)
+ s4β

Γ(1+4β)
+ · · ·

]
− coshβ(rβ)

[
sβ

Γ(1+β)
+ s3β

Γ(1+3β)
+ · · ·

]
.

(46)

It can be represented in closed form in the subsequent manner

w(r, s) = sinhβ(rβ) coshβ(sβ)− coshβ(rβ)sinhβ(sβ). (47)
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From the results (42) and (47), we can see the results obtained by using LFHPSTM and
LFRDTM are in good agreement and give the exact solution in closed form which is suitable for
numerical computation.

6. Concluding Remarks

In this research article, we have analyzed the local fractional LWR model on a finite-length
highway. The LFHMSTM and LFRDTM are used to obtain the non-differentiable solution of local
fractional LWR model and the corresponding solutions are presented in closed form, which are very
suitable for numerical computation. The result indicates that the suggested computational schemes are
very simple and computationally sound for handling similar kinds of differential equations occurring
in natural sciences.
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