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This paper studies optical solitons with M-truncated and beta derivatives (BD) for the

Complex Ginzburg-Landau equation (CGLE) with Kerr Law nonlinearity. Two well-known

integration schemes which are generalized tanh method (GTM) and generalized Bernoulli

sub-ODE method (GBM) are utilized to extract such optical soliton solutions. For the

successful existence of the solutions, the constraints conditions have been presented.

The discussion for the physical features of the obtained solutions is reported.

Keywords: complex Ginzburg-Landau equation, generalized tanhmethod, generalized Bernoulli sub-ODEmethod,

beta derivative, optical solitons

1. INTRODUCTION

Nonlinearity has been potent field of research and its vitality is thought of through a
sweer-amplitude wave oscillation analyzed in numerous fields from plasmas and fluids to biological
and chemical phenomenon, solid state, to mention a few. Therefore, the most captivating viewpoint
in nonlinear physical phenomenon are solitons. The availability of solitonic concepts are due to
the philosophical balance of dispersion and nonlinearity [1]. A lot of researches on solitons and
associated aspects of solitary wave (SW) solutions for example monopulse water wave which depict
the first soliton can be found in Miller and Ross [2], Podlubny [3], Oldham [4], Kiryakova [5], and
El-Sayed and Gaber [6]. Moreover, various mathematical insight and modeling can be interpreted
through optical solitons for their numerical and analytical structures of the numerous mechanism.
These stimulated many engineers and scientists to focus on the establishments of solitons with
optical structures with the help of various integration schemes [7–38].

For quite a long time, the effect of memory is an idea that has been of great concern in the locality
of modeling. Genuinely, the integer systems are not conveniently addressing this memory effect
[39–41]. Many researchers have presented that, one can get to know more on the memory effect
through non-integer operators [42–45]. An extension to integer order systems such as conformable
[46], beta [47], and M-derivatives [48] have also been introduced and they play a vital role in
modeling physical systems. These extension to integer order systems satisfy a lot of characteristics
that were not satisfied before and it can be employed to model several physical phenomenon. In
this study, we establish new optical solitons for the governing equation with M-truncated and
beta derivatives with the aid of two well-known method. The M-truncated and beta derivatives
are defined in the following subsections, respectively.
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1.1. Truncated M-Fractional Derivative
We define the truncated Mittag-Leffler function of one
parameter by

iEβ (z) =
i
∑

k= 0

zk

Ŵ(βk+ 1)
. (1)

Truncated M-fractional derivative (TMD) is a fractional
derivative that has been introduced in Sousa and de Oliveira
[48]. This derivative has expunged the obstacles with the existing
derivatives. It is defined in the following definition.

Definition 1.1. Assume that f : (0,∞) → R, the TMD of f with

order γ exhibited iT
γ ,β
M is given by

iT
γ ,β
M f (τ ) = lim

ǫ→0

f (τ + iEβ (ǫτ
−γ ))− f (τ )

ǫ
, (2)

for τ > 0, and iEβγ ∈ (0, 1), β > 0 is a truncated Mittag-
Leffler function of one parameter, as defined in (1). Note that,
if f is γ -differentiable in some open interval (0, a), a > 0, and

limτ→0+

(

iT
γ ,β
M f (τ )

)

. Then we attain

iT
γ ,β
M f (0) = lim

τ→0+

(

iT
γ ,β
M f (τ )

)

(3)

Theorem 1.1. Surmise that f : (0,∞) → R is γ−differentiable for
τ0 > 0, with γ ∈ (0, 1],β > 0, then f is continuous at τ0.

Theorem 1.2. Let 0 < γ ≤ 1,β > 0, a, b ∈ R, f , g, γ -
differentiable, at a point τ > 0. Then

• iT
γ ,β
M (af + bg) = aiT

γ ,β
M (f )+ biT

γ ,β
M (f ), a, b ∈ R

• iT
γ ,β
M (tµ) = µτµ−γ , µ ∈ R

• iT
γ ,β
M (fg) = fiT

γ ,β
M (g)+ giT

γ ,β
M (f ),

• iT
γ ,β
M (

f
g ) =

giT
γ ,β
M (f )−fiT

γ ,β
M (g)

g2
,

• If f is differentiable, then iT
γ ,β
M (f )(τ ) = τ 1−γ

Ŵ(β+1)
df
dτ
,

• iT
γ ,β
M (fog)(τ ) = f ′(g(τ ))iT

γ ,β
M g(τ ), for f differentiable at g.

1.2. Beta Derivative
The beta derivative can be stated by [49]

A
0 T

γ
η (F(η)) = lim

ǫ→0

F
(

η + ǫ(η + 1
Ŵ(γ )

)
)

− F(η)

ǫ
. (4)

along with the properties as comes next

1.

A
0 T

γ
η (aF(η)+ bG(η)) = aA0 T

γ
η F(η)+ bA0 F

γ
η G(η)

A
0 (5)

2.

Tγ
η (c) = 0, (6)

for any c depicting a constant,

3.

A
0 T

γ
η (F(η).G(η)) = G(η)A0 T

γ
η F(η)+ F(η)A0 T

γ
η G(η) (7)

4.

A
0 T

γ
η

(

F(η)

G(η)

)

=
G(η)A0 T

γ
η F(η)− F(η)A0 T

γ
η G(η)

G2(η)
. (8)

Considering ǫ =
(

η + 1
Ŵ(γ )

)γ−1
h, h → 0 when ǫ → 0,

therefore we have

A
0 T

γ
η F(η) =

(

η +
1

Ŵ(γ )

)1−γ dF(η)

dη
, (9)

with

ξ =
l

γ

(

η +
1

Ŵ(γ )

)γ

(10)

where l is a constant.

5.

A
0 T

γ
η

(

F(τ )

G(η)

)

= l
dF(τ )

dτ
. (11)

The arrangements of the paper is as follows: In section 2 the
governing equation has been presented. In section 3, applications
have been reported, whereas section 4 provides the discussion of
the obtained results along with their physical features. Finally,
concluding remark is given in section 5.

2. GOVERNING EQUATION

The CGLE equation [50, 51] in the sense of M-truncated
derivative is given by:

iE0D
γ ,β
M,τu+ aE0D

2γ ,β
M,η u+ bF(|u|2)u

=
1

|u|2u∗

{

δE0D
2γ ,β
M,η (|u|2)|u|2 − B(E0D

γ ,β
M,ηu)

2

}

+ Au,
(12)

whereas in the sense of beta derivative is given by

iE0D
γ
t u+ aE0D

2γ
η u+ bF(|u|2)u

=
1

|u|2u∗

{

δE0D
2γ
η (|u|2)|u|2 − B(E0D

γ
η u)

2

}

+ Au,
(13)

where E
oD

γ ,β
M,τ ,

E
oD

γ ,β
M,η , and

E
oD

γ
τ ,

E
oD

γ
τ depicts M-truncated and

beta derivatives, respectively. 0 < γ ≤ 1, describing the order of
the fractional derivatives and a, b, δ,B, and A are real constants.

In Equations (12) and (13), F ∈ R, and the complex function
and its smoothness is necessary to be possessed F(|u|2)u :C →
C. Consider C to be a two-dimensional linear space R2, and that
F(|u|2)u is k times continuously differentiable, so that

F(|u|2)u ∈
∞
⋃

m,n= 1

ck

(

(−n, n)× (−m,m);R2

)

.
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2.1. Mathematical Analysis
To solve Equations (12) and (13), the beginning step is as come
next

u(η, τ ) = u(ξ )eiφ(η,τ ), (14)

the shape of the pulse is represented by u(η, τ ) so that in the sense
of M-truncated derivatives we have

ξ =
Ŵ(β + 1)

γ

(

ηγ − υτ γ
)

(15)

and

φ(η, τ ) = −
Ŵ(β + 1)

γ

(

kηγ − wυτ γ
)

+ θ0(ξ ), (16)

and in the sense of beta derivative we have

ξ =
1

γ

(

η +
1

Ŵ(γ )

)γ

−
υ

γ

(

τ +
1

Ŵ(γ )

)γ

(17)

and

φ(η, τ ) = −
k

γ

(

η +
1

Ŵ(γ )

)γ

+
w

γ

(

τ +
1

Ŵ(γ )

)γ

+θ0(ξ ), (18)

where w is the wave number of the soliton, k denotes the soliton
frequency, υ indicates the speed of the soliton, φ(η, τ ) is the

phase component, θ0(ξ ) depicts an additional phase function
depending on ξ . Plugging (15) and (17) into (12) and (13),
respectively, and decomposing the real and imaginary parts,
one attains

wu + a(u′′−k2u) + bF(u2)u = 2(δ−2B)
u′2

u
+2δu′′+Au, (19)

and

υ = −2ak. (20)

Equation (20) denotes the soliton velocity. Setting δ = 2B in
Equation (19) yields.

(a− 4B)u′′ − (w+ ak2 + A)u+ bF(u2)u = 0. (21)

2.2. Kerr Law
This law has got its origin through the reality that a light
wave in an optical fiber heads to responses by a nonlinear
patterns from non-harmonic motion of electrons bound in
molecules, brought externally by an electric field. Although
the responses by nonlinear terms are seriously low, over a
long distance of propagation, the effects standstill in numerous
patterns measuring in terms of light wavelength. This law is given
by F(u) = u, therefore Equation (21) becomes.

(a− 4B)u′′ − (w+ ak2 + A)u+ bu3 = 0. (22)

FIGURE 1 | Physical features with suitable values of the parameters. (A) M-truncated with γ = 0.5, β = 0.9 for (27). (B) Beta with γ = 0.5 for (27). (C) M-truncated

with γ = 0.5, β = 0.9 for (28). (D) Beta with γ = 0.5, β = 0.9 for (27).
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3. APPLICATIONS

This section will utilize the GT and GB sub-ODE methods
to provide optical solitons for the governing equation
with beta-derivative.

3.1. Application for GTM
According to GTM [52], Equation (22) has possessed the solution
as comes next

u(η, τ ) = a0 + a18(ξ ), (23)

with a0 and a1 depicting an unknown constants and 8(ξ ) holds
for the Ricatti equation

8(ξ )′ = C + 8(ξ )2, (24)

withµ a non-zero constant. Plugging Equation (23) together with
Equation (24) in Equation (22), one reaches

a1A8(ξ )+ a0A+ a30b− 8a1BC8(ξ )+ 2aa1C8(ξ )

+ aa1k
28(ξ )+ aa0k

2 + a0wa
3
1b8(ξ )3 + 3a0a

2
1b8(ξ )2

+ 3a20a1b8(ξ )− 8a1B8(ξ )3 + a1 + w8(ξ )+ 2aa18(ξ )3 = 0

(25)

FIGURE 2 | Physical features with suitable values of the parameters. (A) M-truncated with γ = 0.5, β = 0.9 for (29). (B) Beta with γ = 0.5 for (29). (C)

M-truncated with γ = 0.5, β = 0.9 for (30). (D) Beta with γ = 0.5, β = 0.9 for (30). (E) M-truncated with γ = 0.85, β = 0.76 for (39). (F) Beta with γ = 0.85 for (39).
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Collecting the terms in 8i(i = 0, 1, 2, 3), one attains

a0
(

a20b+ ak2 + A+ w
)

= 0,

a1
(

3a20b+ 2aC + ak2 + A− 8BC + w
)

= 0,

3a0a
2
1b = 0,

a1
(

a21b+ 2a− 8B
)

= 0.

(26)

Solving Equation (26), we obtain

Result 1. C = − k2

2 , A = −4Bk2 − w, a0 = 0, b 6= 0,

a1 = ±
√

2(4B−a)
b

. If C < 0, we attain

u(η, τ ) = −
√

2(4B− a)

b

√
−Ctanh(

√
−Cξ )× eiφ(η,τ ), (27)

FIGURE 3 | Physical features with suitable values of the parameters. (A) M-truncated with γ = 0.85, β = 0.76 for (40). (B) Beta with γ = 0.85, β = 0.9 for (40). (C)

M-truncated with γ = 0.85, β = 0.76 for (41). (D) Beta with γ = 0.85 for (41). (E) M-truncated with γ = 0.85, β = 0.76 for (42). (F) Beta with γ = 0.85, β = 0.9

for (42).
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u(η, τ ) = −
√

2(4B− a)

b

√
−Ccoth(

√
−Cξ )× eiφ(η,τ ). (28)

If C > 0, we acquire

u(η, τ ) = ±
√

2(4B− a)

b

√
Ctan(

√
Cξ )× eiφ(η,τ ), (29)

u(η, τ ) = −
√

2(4B− a)

b

√
Ccot(

√
Cξ )× eiφ(η,τ ). (30)

Result 2. 2C + k2 6= 0, a = −A+8BC−w
2C+k2

, a0 = 0, b 6= 0,

a1 = ±
√

2(A+4Bk2+w)
2bC+bk2

. If C < 0, we have

u(η, τ ) = −

√

2
(

A+ 4Bk2 + w
)

2bC + bk2

√
−Ctanh(

√
−Cξ )× eiφ(η,τ ),

(31)

u(η, τ ) = −

√

2
(

A+ 4Bk2 + w
)

2bC + bk2

√
−Ccoth(

√
−Cξ )× eiφ(η,τ ).

(32)
If C > 0, we attain

u(η, τ ) =

√

2
(

A+ 4Bk2 + w
)

2bC + bk2

√
Ctan(

√
Cξ )× eiφ(η,τ ), (33)

u(η, τ ) = −

√

2
(

A+ 4Bk2 + w
)

2bC + bk2

√
Ccot(

√
Cξ )× eiφ(η,τ ), (34)

where ξ and φ(η, τ ) are defined by (15) and (16) for M-
truncated derivative solutions and by (17) and (18) for beta
derivative solutions.

3.2. Application for GBM
This section will apply GBM for Equations (12) and (13).
According to GB sub-ODE method [53], Equation (22) has
possessed the solution as comes next

u(η, τ ) = a0 + a18(ξ ), (35)

with a0 and a1 representing an unknown constants and 8(ξ )
holds for the Ricatti equation

8(ξ )′ + λ8(ξ ) = µ8(ξ )2, (36)

withµ a non-zero constant. Plugging Equation (36) together with
Equation (35) in Equation (22), one attains

a1A8(ξ )+ a0A+ a30b+ aa1k
28(ξ )+ aa1λ

28(ξ )+

a1w8(ξ )+ aa0k
2 + a0w− 4a1Bλ28(ξ )+ 12a1Bλµ8(ξ )2

− 8a1Bµ28(ξ )3 − 3aa1λµ8(ξ )2 + 2aa1µ
28(ξ )3

a31b8(ξ )3 + 3a0a
2
1b8(ξ )2 + 3a20a1b8(ξ ) = 0.

(37)

Collecting the terms in 8i(i = 0, 1, 2, 3), one obtains

a0
(

a20b+ ak2 + A+ w
)

= 0,

a1
(

3a20b+ ak2 + aλ2 + A− 4Bλ2 + w
)

= 0,

3a1
(

a0a1b− λµ(a− 4B)
)

= 0,

a1
(

a21b+ 2µ2(a− 4B)
)

= 0.

(38)

Solving Equation (38), we reaches
Result 1. k = ± λ√

2
, A = −2Bλ2 − w, b 6= 0, a0 =

±
√
4Bλ2−aλ2√

2
√
b

, λ(a− 4B) 6= 0, a1 = µ

√

2(4B−a)
b

. We obtain

u(η, τ ) =

(√
4Bλ2 − aλ2
√
2
√
b

−
λ

2

√

2(4B− a)

b

(

tanh(
λ

2
ξ )− 1

)

)

×eiφ(η,τ ),

(39)

or

u(η, τ ) =

(√
4Bλ2 − aλ2
√
2
√
b

−
λ

2

√

2(4B− a)

b

(

coth(
λ

2
ξ )− 1

)

)

×eiφ(η,τ ),

(40)

Result 2. 2k2 − λ2 6= 0, a = − 2(A+2Bλ2+w)
2k2−λ2

, b 6= 0, a0 =

±
√

λ2(A+4Bk2+w)
b(2k2−λ2)

, a1 = −2µ

√

λ(A+4Bk2+w)
b(2k2−λ2)

. We acquire

u(η, τ ) =

(
√

λ2
(

A+ 4Bk2 + w
)

b
(

2k2 − λ2
) + λ

√

λ
(

A+ 4Bk2 + w
)

b
(

2k2 − λ2
)

×
(

tanh(
λ

2
ξ )− 1

)

)

eiφ(η,τ ),

(41)

or

u(η, τ ) =

(
√

λ2
(

A+ 4Bk2 + w
)

b
(

2k2 − λ2
) + λ

√

λ
(

A+ 4Bk2 + w
)

b
(

2k2 − λ2
)

×
(

coth(
λ

2
ξ )− 1

)

)

eiφ(η,τ ),

(42)

where ξ and φ(x, t) are defined by (15) and (16) for M-
truncated derivative solutions and by (17) and (18) for beta
derivative solutions.

4. DISCUSSION

The M-truncated and beta-derivatives have been successfully
utilized to reach optical solitons for the underlying equation. This
has been achieved by utilizing two potent integration schemes
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which are GTM and GBM. Singular-dark, dark and singular-
periodic solutions have been reported. The GTM has provided
dark optical soliton (DOS) (27) and (31), singular optical soliton
(28) and (32), optical singular periodic (29), (30), (33), and (34).
The GBM has provided optical dark solitons reported in (39) and
(41), optical singular solitons reported in (40) and (42).

Solitary waves (SW) with mitigating intensity than the
background can be interpreted by DOS [49]. SW with
discontinuous derivative can be depicted by singular solitons
[54, 55]. These sorts of SW are potent as a results of efficiency
and applicability they possessed optical communications of a
long distance. Optical fibers can be considered as a thin lengthy
strands of pure-ultra glass so that an electromagnetic radiations
can be communicated without any mitigation from one point to
the next [56].

5. CONCLUSION

In this research, we have applied the well-known M-truncated
and beta derivatives to reach the optical solitons for the governing
equation with Kerr Law nonlinearity. Two techniques which

GTM and GBM have been used to attain such solutions.
For the successful existence of the solutions, the constraints
conditions have been presented. The discussion for the physical
features of the obtained solutions are have been reported.
The explicit behavior for the obtained results by suitable
choice of the parameter values have been presented in the
presented Figures 1–3. The effects of the γ ,β-M-truncated
derivative and γ -beta derivative have influenced the behavior
of the solutions. The obtained solutions are new and novel
and can be of great potent in explaining physical systems in
nonlinear optics.
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