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1Abstract—In this work, it is demonstrated that covariance
estimator methods can be used for trajectory classification. It is
shown that, features obtained via shrunk covariance estimation
are suitable for describing trajectories. Compared to Dynamic
Time Warping, application of explained technique is faster and
yields more accurate results. An improvement of Dynamic Time
Warping based on counting statistical comparison of base
distance measures is also achieved. Results on Australian Sign
Language and Character Trajectories datasets are reported.
Experiment realizations imply feasibility through covariance
attributes on time series.

Index Terms—Covariance matrices; Data mining; Sign
language; Time series analysis.

I. INTRODUCTION

In this work, focus is directed on the usage of covariance
matrices for trajectory categorization. It is possible to
establish an efficient analysis on high dimensional spaces via
shrunk covariance matrices [1]. To our knowledge, no
shrunk covariance technique is applied to time series,
especially in the categorization task. So, it is decided to test
the efficiency of these optimization-based covariance
derivations on two datasets and compare the results with
Dynamic Time Warping [DTW], a classical algorithm.

Since DTW is an elegant matching routine, application of
almost all relatively new distance measures such as Least
Common Subsequence [2] and Edit Distance on Real
Sequence [3] yield very close results [4]. So, despite the lack
of a guaranteed experimenting conclusion, relying on an
extensive analysis [4], a comparison between developed
algorithm and the classical DTW is considered sufficient.
From Hidden Markov Models [5] and ‘elbow’ reductions [6]
to kernel-based representations [7], there are various ways of
handling trajectory analysis tasks but none of these are
covariance-based except [8], where covariance matrices are
instrumented to develop DTW rather than extracting explicit
vector set descriptions. So, in terms of feature formation,
that is, deduction of fixed-dimensional vectors from ordered
vector sets, literature is still lacking in covariance-based
analysis; especially when it comes to shrunk models.

Nowadays, trajectory analysis is more important. For we
have tasks of manoeuvre [9] and driver intention [10]
forecasting. Such kind of security applications need fast
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spatial time-series categorization. Our work was started for
the sake of medical operation improvement. A module of
gesture categorization is built after the engineering of the
method.

This report is organized as follows: in the second section,
we give the steps of Dynamic Time Warping, Improved
Dynamic Time Warping, newly developed feature extraction
algorithm and the comparison tool Spectral Clustering. In
the second section, accuracy and speed results are
summarized. Finally, in the third section, an analysis with
potential future work route suggestion is demonstrated.

II. ALGORITHM

Let { , ,..., }U  1 2 Mu u u and { , ,..., }V  1 2 Nv v v be two

ordered vector sets where each ., Di iu v 

A. Dynamic Time Warping
By Dynamic Time Warping, one can have an optimal

match between vector sets, minimizing the sum of Euclidean
distances under some special constraints such as boundary,
continuity and monotonicity. Suppose that

| |{ , ,..., }W  1 2 Ww w w is a matching. Then the following

conditions must be satisfied:
1. Boundary: | | ( , )M NWw and (1,1)1w .

2. Continuity: if 1 2( , )i iw wiw and

( 1)1 ( 1)2( , ),i iw w  i 1w then ( ) 1.  i 1 j ijw w

3. Monotonicity: if 1 2( , )i iw wiw and

( 1)1 ( 1)2( , ),i iw w  i 1w then ( ) 0  i 1 j ijw w .

The solution is usually obtained by dynamic
programming, with a complexity of ( )O MN .

B. Improved Dynamic Time Warping

Let d be the mean of all Euclidean distances of input
dataset. Let | |{ , ,..., }W  1 2 Ww w w be the matching

obtained between U and V . Assume that
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Multiplying this scalar with the usual DTW distance
yields a slightly improved result. Key idea here is to induce a
scaling factor via the exploration of inter-vector distances
and inter-set warping matches. Any such factor may
contribute to overall accuracy.

Now, let locald be the mean of Euclidean distances of all
tuples  andU V u v . Suppose that
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Now one can use ,1UVs and ,2UVs to fine-tune DTW

distance ( , )D U V as , ( , )UV ks D U V for 1,2k  or in form

,1 ,2 ( , )UV UVs s D U V  to fuse these two measures.

,1 ,2( ) ( , )UV UVs s D U V  is also observed to be efficient.

C. Covariance Features for Trajectory Analysis
Covariance Features for Trajectories (CFT) is constructed

by adapting Ledoit-Wolf (LW) [1] and Oracle
Approximating Shrinkage (OAS) [11] to time-series.
Common computation method shared in the application of
these two techniques is that one have a destination estimate
F̂ and an initial matrix Ŝ , which are usually scaled identity
matrix and empirical covariance, respectively. Optimization
task
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is solved in order to find  .
Let
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be the mean vector of U , I be the identity matrix and
empirical covariance of U be
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Additionally, if ˆˆ ( ) / ,v tr D US then F̂ and Ŝ are set as
ˆ v̂F I and ˆ , US S respectively.  can be found with

different algorithms.
1) LW Estimation
 is chosen as [1]
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2) OAS Estimation
Relying on the iteration steps [5]:
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OAS limit is calculated as
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Now, given LW (8) and OAS (10) shrinkage models, it is
appropriate to formulate an Ordered Representation
Mapping [ORM], where, given its index i in the
corresponding set ,U a vector 1 2( , ,..., )i i iDu u uiu is
mapped as

/ 2 / /
, , 1 2,..( ) ( , , ,..., , ., ),i m i m ni m

b m n i i iDb b b u u u   iu (11)

where ,b m and n are parameters of the function.
Suppose that

,
'( )b n UΣ is the LW covariance estimation

of the image of set U . Similarly, let
,

''
, ( )b m n UΣ be the

OAS estimation. Although these outputs are matrices, one
can easily vectorise each by a row concatenation function
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In this case, CFT formulation is
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That is, vectorised and normalized covariance matrix
inverses are concatenated to build the final feature.

D. Spectral Clustering
To follow a similar route noted in [2], Spectral Clustering

[12] is selected, where an affinity matrix can be specified
according to which the analysis can be done. Assume that we
cluster N inputs into k clusters and have a similarity

matrix N NA . Spectral Clustering is done as follows:
4. Let N ND be a diagonal matrix with elements

1
.

N
ii ij

j
 D A Build the matrix 1/2 1/2 . L D AD

5. Take the k largest eigenvectors of L to form the
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matrix N kX where each column corresponds to an
eigenvector.
6. Row-normalize X and assign the result to Y .
7. Apply k-means to the row vectors of Y .
8. Assign the i -th input to cluster c if and only if the
corresponding row of Y is assigned to c .

III. EXPERIMENTS

Experiments are conducted on two datasets retrieved from
UCI Repository [13]. First, basic covariance features (which
were induced from the initial form of (11), where we had no
parameter at all) tested on Australian Sign Language (ASL)
collection [14]. Second, Character Trajectories [15], which
is a set of recorded handwriting character tips. Coding is
done with Noweb [16] and scikit-learn [17].

Testing scheme summarized in [2] is repeated except that
for clustering rather than hierarchical, spectral form is
utilized since these are functionally similar with respect to
the metric quality measurement.

A. ASL
10 words selected: Norway (Fig. 1), cold (Fig. 2), crazy

(Fig. 3), eat, forget, happy, innocent, later, lose, spend. For
each word, 5 trajectories are extracted. Each tuple of word
vector sets, that is, a total of 10 vectors are clustered with
respect to DTW, Improved DTW (2), (4) and CFT (13). If
after clustering, each element of this set is labelled correctly,
then the operation is counted as accurate. Number of such
tests for a 10-word collection is 45. Accuracy and speed
comparison is given in Table I and Table II, respectively.

CFT parameters (11) are chosen as b e , 1m  and
1n  . DTW-A is improved DTW with scaling factor (2).

TABLE I. ACCURACY ON ASL.

Algorithm Number of Correct Clusterings
(out of 45) Accuracy

DTW 19 42.2 %
DTW-A 22 48.0 %

CFT 24 53.3 %

TABLE II. EXPERIMENT DURATION FOR ASL.
Algorithm Duration

DTW 301.76 s.
DTW-A 368.07 s.

CFT 2.22 s.

Fig. 1. ‘Norway’ trajectory. Values on horizontal axes stands for x and y
coordinates. Vertical axis is the vertex index.

Fig. 2. 'Cold' trajectory. Notice the horizontal variation difference between
this and Fig. 1, which is very explanatory on the benefit from CFT
selection.

Fig. 3. ‘Crazy’ trajectory. Again, horizontal amplitude is separate from
that of ‘cold’. On the other hand, here, change of vertical component with
respect to time is more uniform which is not this case in ‘Norway’ and
‘cold’. Situation is handled via Ordered Representation Mapping (II-C):
that is, index-to-feature mapping to measure correlation with time.

B. Character Trajectories
10 characters selected to test accuracy of DTW, modified

DTW and CFT: a, b, c, d, e, g, h, l, m and n. First 5
trajectories of each are collected to complete the route given
in [18]. Results are given in Table III and Table IV.

DTW-B is obtained by adding (4) to (2) and hence scaling
DTW as ,1 ,2( ) ( ,  )UV UVs s D U V  .

TABLE III. EXPERIMENT DURATION FOR CHARACTER
TRAJECTORIES.

Algorithm Duration
DTW 1301.7 s.

DTW-B 1538.2 s.
CFT 2.86 s.

CFT (11) is selected as 0.4 ,b e  20m  and 3.n 

IV. ANALYSIS

One advantage of choosing DTW over CFT is related to
parameter issue since one needs to consolidate the
background of CFT by exploring the nature of the
exponential decay multitude noted in (11). Thus DTW can
be applied to many cases more easily without any further
grid search.

On the other hand, CFT is much more suitable for real-
time classification than DTW since it is approximately 100

80



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 3, 2018

times faster. This speed advantage is more important in case
where average length of trajectories is high.

Regarding the results noted in former section, one can
remember the ‘peeking at the test data’ warning noted in [4]
and question CFT. This is reasonable for we need to confirm
superiority after cross-validation-based parameter selection
and accuracy measurement but such incompleteness does not
show that achieved accuracy rates are valueless.

From the experiments, one can deduce that, despite the
large-scale or high-dimensional targeting intention behind
Minimum Mean-Squared Error covariance estimates [1],
[11], such a modelling scheme may also be adopted to 2-
dimensional or 3-dimensional time-series tasks. Moreover,
on noisy datasets such as ASL, benefit from CFT is more
visible compared to those supplied on Character
Trajectories, where, though not negligible, an increased
clustering accuracy of 5 % is observed.

V. CONCLUSIONS

Trajectory analysis is beneficial for many applications
ranging from driver intention forecasting [9] to aircraft
engineering [19]. In this work, a feature – built on shrunk
covariance matrices – for trajectories is developed.
Moreover, test results indicate that the proposed method is
more accurate and at the same time more efficient than its
competitors. Normally, covariance matrices are meant to be
calculated on unordered sets; to overcome this handicap,
exponential decay based Ordered Representation Mappings
are introduced. That is, vectors are mapped to a higher
dimensional space with respect to their order in the
corresponding set. Tests on sign language and handwriting
characters indicate that, linear with the length of the
trajectory, constructed features can be utilized in real-time
applications in order to get fast and accurate results.
Additionally, in spite of the simplistic counting ratio
methodology noted here, future study is open to new
techniques of improving DTW through more elegant
matching sequence analysis.
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