
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 19 (2018), No. 1, pp. 3–18 DOI: 10.18514/MMN.2018.2291

A NEW NUMERICAL TECHNIQUE FOR SOLVING FRACTIONAL
PARTIAL DIFFERENTIAL EQUATIONS

OMER ACAN AND DUMITRU BALEANU

Received 03 April, 2017

Abstract. We propose conformable Adomian decomposition method (CADM) for fractional par-
tial differential equations (FPDEs). This method is a new Adomian decomposition method
(ADM) based on conformable derivative operator (CDO) to solve FPDEs. At the same time,
conformable reduced differential transform method (CRDTM) for FPDEs is briefly given and a
numerical comparison is made between this method and the newly introduced CADM. In applied
science, CADM can be used as an alternative method to obtain approximate and analytical solu-
tions for FPDEs as CRDTM. In this study, linear and non-linear three problems are solved by
these two methods. In these methods, the obtained solutions take the form of a convergent series
with easily computable algorithms. For the applications, the obtained results by these methods
are compared to each other and with the exact solutions. When applied to FPDEs, it is seem that
CADM approach produces easy, fast and reliable solutions as CRDTM.
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1. INTRODUCTION

Fractional differential equations have a substantial contributions in fields,e.g. op-
tics, biology, physics, chemistry, mathematics, fluids mechanics, applied mathemat-
ics, and engineering [18, 26, 40–42]. We recall that finding an analytical solutions
to these problems is not always possible [9–11, 20, 24, 27–29, 37–39]. As a result,
it becomes crucial to manage these problems appropriately and solve them or de-
velop the required solutions. ADM, which is introduced [4–6] in the 1980’s, is one
of the important mathematical methods used to solve many problems in real world.
Since then, a number of studies have been conducted on ADM such as linear and
non-linear, homogeneous and non-homogeneous operator equations which includ-
ing fractional or non-fractional ODEs, PDEs, integral equations, integro-differential
equations, etc. (see [12, 13, 15, 16, 25, 30, 32–36] and references therein). A new
derivative called CDO was suggested [1, 7, 22]. By the help of it, the behaviors
of many problems were investigated and some solutions techniques were applied
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[1–3, 7, 8, 14, 17, 19, 21, 23, 31]. This new subject gives academicians an opportun-
ity to study further in many engineering, physical and applied mathematics problems.

The aim of this study is to introduce CADM by using CDO and ADM for the
first time in the literature. This method can be used to solve many linear and non-
linear FPDEs. We will briefly mentioned CRDTM to compare our CADM with it.
The problems will be solved both by the CRDTM and the first proposed CADM.
The obtained solutions by these methods will be compared. Thus, in section 2, we
present some basic definitions and important properties of CDO. Next, in section
3, we propose CADM. In sections 4, we introduce CRDTM to compare with our
method. In section 5, we give applications of CADM and CRDTM. We give the
conclusion in the final section.

2. BASIC DEFINITIONS

Definition 1. Given a function f1 W Œ0;1/! R. Then the CDO of f1 order ˛ is
defined by [1, 7, 22]:

.T˛f1/.t/D lim
"!0

f1.tC "t
1�˛/�f1.t/

"

for all t > 0, ˛ 2 .0;1�.

Lemma 1 ([1, 7, 22]). Let f1;g1 be ˛ and ˇ-differentiable at a point t > 0 for ˛.
Then
.i/ T˛.af1Cbg1/D a.T˛f1/Cb.T˛g1/ for all a;b 2 R and ˛ 2 .0;1�,
.i i/ T˛.f1.t//D 0, for constant function f1.t/D �, ˛ 2 .0;1�,
.i i i/ T˛.f1g1/D f1.T˛g1/Cg1.T˛f1/, ˛ 2 .0;1�,

.iv/ T˛.f1=g1/D
g1.T˛f1/�f1.T˛g1/

g12
,˛ 2 .0;1�,

.v/ If f1 is n times differentiable at t , then T˛.f1.t//D td˛e�˛f1.d˛e/.t/, ˛ 2 .n;nC
1�. Where d˛e is the smallest integer greater than or equal to ˛.

Lemma 2. [1] Suppose that f1 is infinitely ˛-differentiable function for ˛ 2 .0;1�
at a neighborhood of a point t0. Then f1 has the conformable power series expan-
sion:

f1 .t/D

1X
kD0

�
tT
.k/
˛ f1

�
.t0/.t � t0/

˛k

˛kkŠ
; t0 < t < t0CR

1=˛ ;R > 0:

Here
�
T
.k/
˛ f1

�
.t0/ denotes the application of the conformable derivative for k times.
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3. CONFORMABLE ADOMIAN DECOMPOSITION METHOD

We will briefly introduce CADM for FPDEs in this section. We write the non-
linear FPDEs in the standard operator form

L˛ .u.x; t//CR.u.x; t//CN .u.x; t//D g .x; t/ (3.1)

where L˛ D ˛T is a linear operator with conformable derivative of order ˛ (n <
˛ � nC1), N is a non-linear operator, R is the other part of the linear operator and
g .x; t/ is a non-homogeneous term. If the linear operator in eq. (3.1) is applied to
Lemma 1, the following equation is obtained:

td˛e�˛
@d˛e

@td˛e
u.x; t/CR.u.x; t//N .u.x; t//D g .x; t/ : (3.2)

Applying L�1˛ D
tR
0

�1R
0

� � �

�n�1R
n

1

�n
d˛e�˛ .:/d�nd�n�1 � � �d�1; .n < ˛ � nC 1/ the in-

verse of operator, to both sides of (3.2) , it is obtained as

L�1˛ L˛ .u.x; t//D L
�1
˛ g.x; t/�L�1˛ R.u.x; t//�L�1˛ N .u.x; t// : (3.3)

The general solution of the given equation is decomposed into the sum

u.x; t/D

1X
nD0

un.x; t/: (3.4)

The non-linear part N.u/ can be decomposed into the infinite polynomial series ob-
tained by

N.u/D

1X
nD0

An; .u0;u1; : : : ;un/; (3.5)

where An is the so-called Adomian polynomials (APs). These APs can be calculated
for all types of non-linearity by the help of algorithms built by Adomian [5,6,12,15,
25, 32]. u and N .u/, respectively, is obtained as

uD

1X
iD0

�iui ;N .u/DN

 
1X
iD0

�iui

!
D

1X
iD0

�iAi (3.6)

where � is the convenience parameter. From (3.6), APs An are obtained as

nŠAn D
dn

d�n

"
N

 
1X
nD0

�nun

!#
�D0

:

These APs can be calculated easily with the following Maple code:
Substituting (3.4) and (3.5) into (3.3), it is obtained

1X
nD0

un D �CL
�1
˛ g�L�1˛ R

 
1X
nD0

un

!
�L�1˛

 
1X
nD0

An

!
: (3.7)
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where � D u.x;0/ is initial condition (IC). From (3.7), the iterates are defined by the
following recursive formulas:

u0 D �CL
�1
˛ g ;

u1 D�L
�1
˛ R u0�L

�1
˛ A0 ;

:::

unC1 D�L
�1
˛ R un�L

�1
˛ An ; n� 0 :

(3.8)

Therefore, from (3.8), the approximate solution of (3.1) is obtained by

Qum.x; t/D

mX
nD0

un.x; t/: (3.9)

Hence, from (3.9), the exact solution of (3.1) can be obtained as

u.x; t/D lim
m!1

Qum.x; t/:

4. CONFORMABLE REDUCED DIFFERENTIAL TRANSFORM METHOD

In this section, it is given basic definitions and properties of CRDTM for FPDEs
[3].

Definition 2. Assume u.x; t/ is analytic function and differentiated continuously
with respect to time t and space x in the its domain. the conformable reduced differ-
ential transformed (CRDT) of u.x; t/ is defined as [3]

U ˛k .x/D
1

˛kkŠ

h�
tT
.k/
˛ u

�i
tDt0

where some 0 < ˛ � 1, ˛ is describing the order of CDO,

tT
.k/
˛ uD .tT˛ tT˛ � � � tT˛/„ ƒ‚ …

k times

u.x; t/ and U ˛
k
.x/ is the CRDT function.
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Definition 3. Let U ˛
k
.x/ be the CRDT of u.x; t/. Inverse CRDT of U ˛

k
.x/ is

defined as [3]

u.x; t/D

1X
kD0

U ˛k .x/.t � t0/
˛k
D

1X
kD0

1

˛kkŠ

h
tT
.k/
˛ u

i
tDt0

.t � t0/
˛k

CRDT of ICs for integer order derivatives are defined as [3]

U ˛k .x/D

(
1

.˛k/Š

h
@˛k

@t˛k
u.x; t/

i
tDt0

if ˛k 2ZC

0 if ˛k …ZC
for k D 0;1;2; :::;

�n
˛
�1
�

where n is the order of CDO of PDE.

By consideration of
U ˛0 .x/D f .x/

as transformation of IC
u.x;0/D f .x/:

A straightforward iterative calculations gives the U ˛
k
.x/ values for

k D 1;2;3; :::;n. Then the set of
˚
U ˛
k
.x/
	n
kD0

gives the approximate result as:

Qun .x; t/D

nX
kD0

U ˛k .x/ t
k˛;

where n is approximate result order. The exact solution can be obtained as:

u.x; t/D lim
n!1

Qun.x; t/

The fundamental operations of CRDTM that can be deduced from Definition 2 and
Definition 3 are listed in Table 1 [3].

5. NUMERICAL CONSIDERATION

To illustrate the effectiveness of the given CADM and CRDTM, three examples
are considered in this section. All the results are calculated by software MAPLE.

Example 1. Firstly, consider the linear time and space fractional diffusion equa-
tion:

@˛

@t˛
u.x; t/D

@2ˇ

@x2ˇ
u.x; t/ t > 0; x 2R; 0 < ˛;ˇ � 1 (5.1)

with the IC

u.x;0/D sin

 
xˇ

ˇ

!
: (5.2)

Exact result of the problem (5.1) in conformable sense is

u.x; t/D sin

 
xˇ

ˇ

!
e�

t˛

˛ :
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TABLE 1. Basic operations of the CRDTM [3].

Original function Transformed function

u.x; t/ U ˛
k
.x/D 1

˛kkŠ

h�
tT
.k/
˛ u

�i
tDt0

u.x; t/D av .x; t/˙bw .x; t/ U ˛
k
.x/D aV ˛

k
.x/˙bW ˛

k
.x/

u.x; t/D v .x; t/w .x; t/ U ˛
k
.x/D

kP
sD0

V ˛s .x/W
˛
k�s

.x/

u.x; t/D tT˛v .x; t/ U ˛
k
.x/D ˛ .kC1/V ˛

kC1
.x/

u.x; t/D xm.t � t0/
n U ˛

k
.x/D xmı

�
k� n

˛

�

Solution by CADM: Solve this problem by using CADM. Let L˛ D T˛ D @˛

@t˛
be

a linear operator, then the operator form of (5.1) is as follows

T˛u.x; t/D
@2ˇu.x; t/

@x2ˇ
t > 0; x 2R; 0 < ˛;ˇ � 1 (5.3)

By the help of Lemma 1, eq. (5.3) can be written as

t1�ˇ
@u.x; t/

@t
D
@2ˇu.x; t/

@x2ˇ
t > 0; x 2R; 0 < ˛;ˇ � 1: (5.4)

If L�1˛ D
tR
0

1
�1�˛

.:/d� ,which is the inverse of L˛, is applied to both sides of eq.

(5.4), we get

u.x; t/D u.x;0/�L�1˛

 
@2ˇ

@x2ˇ
u.x; t/

!
:

According to (3.8) and the IC (5.2), we can write

u0 D sin
�
xˇ

ˇ

�
;

u1 D�L
�1
˛

�
@2

@x2
u0

�
;

:::

unC1 D�L
�1
˛

�
@2

@x2
un

�
;n� 0 :

(5.5)
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From (5.5), we conclude the terms of decomposition series as:

u0 D sin

 
xˇ

ˇ

!
; u1 D�sin

 
xˇ

ˇ

!
t˛

˛
;

u2 D sin

 
xˇ

ˇ

!
t2˛

2˛2
; � � � ;un D .�1/

n sin

 
xˇ

ˇ

!
tn˛

nŠ˛n
; � � � (5.6)

Thus, by using (5.6), the approximate solution of (5.1) obtained by CADM is

Qum.x; t/D

mX
nD0

un.x; t/D

mX
nD0

.�1/n sin

 
xˇ

ˇ

!
tn˛

nŠ˛n
: (5.7)

From (5.7) we obtain

u.x; t/D lim
m!1

Qum.x; t/D sin

 
xˇ

ˇ

!
e�

t˛

˛ : (5.8)

This analytical approximate solution (5.8) is the exact solution.

Solution by CRDTM: Now solve this problem by using CRDTM. By taking the
CRDT of (5.1), it can be obtained that

˛ .kC1/U ˛kC1 .x/D
@2ˇ

@x2ˇ
U ˛k .x/ (5.9)

where U ˛
k
.x/ is the CRDT function. From the IC (5.2) we write

U ˛0 .x/D sin

 
xˇ

ˇ

!
(5.10)

Substituting (5.10) into (5.9), it can be obtained the following U ˛
k
.x/ values

U ˛1 .x/D�sin

 
xˇ

ˇ

!
1

˛
; U ˛2 .x/D sin

 
xˇ

ˇ

!
1

2Š˛2
;

U ˛3 .x/D�sin

 
xˇ

ˇ

!
1

3Š˛3
; � � � ;U ˛n .x/D sin

 
xˇ

ˇ

!
.�1/n

nŠ˛n
; � � �

Then, the set of values
˚
U ˛
k
.x/
	n
kD0

gives the following approximate result

Qun.x; t/D

nX
kD0

U ˛k .x/ t
k˛
D

nX
kD0

sin

 
xˇ

ˇ

!
.�1/k

kŠ˛k
tk˛: (5.11)

From (5.11) we obtain

u.x; t/D lim
n!1

Qun.x; t/D sin

 
xˇ

ˇ

!
e�

t˛

˛ : (5.12)
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This approximate solution (5.12) is the exact solution.

Remark 1. If take ˛ D ˇ D 1 in the problem (5.1), then Example 1 is reduced to
standard diffusion equation

@

@t
u.x; t/D

@2

@x2
u.x; t/ t > 0; x 2R

with IC
u.x;0/D sin.x/

and our analytical approximate solutions (5.8) and (5.12) imply

u.x; t/D sin.x/e�t

and this solutions is the exact result of the standard problem in the literature.

The Aproximate solutions obtained by both CADM and CRDTM give us the exact
solution.

Example 2. Secondly, let us consider the non-linear time and space fractional gas
dynamics equation:

@˛

@t˛
u.x; t/C

1

2

@ˇ

@xˇ
u2.x; t/�u.x; t/ .1�u.x; t//=0 , 0 ˛;ˇ � 1 (5.13)

subject to IC

u.x;0/D e�
xˇ

ˇ : (5.14)
The exact solutions of (5.13) in conformable sense is

u.x; t/D e
t˛

˛
�x

ˇ

ˇ :

Solution by CADM: Solve the problem by using CADM. Let L˛ D T˛ D @˛

@t˛
be a

linear operator, then the operator form of (5.13) is as follows

T˛u.x; t/D�
1

2

@ˇ

@xˇ
u2.x; t/Cu.x; t/ .1�u.x; t// , 0 ˛;ˇ � 1: (5.15)

By the help of Lemma 1, eq. (5.15) can be written as

t1�˛
@u.x; t/

@t
D u.x; t/�u.x; t/

@ˇ

@xˇ
u.x; t/�u2.x; t/, 0 ˛;ˇ � 1: (5.16)

If L�1˛ D
tR
0

1
�1�˛

.:/d� ,which is the inverse of L˛, is applied to both sides of eq.

(5.16), we get

u.x; t/D u.x;0/CL�1˛ .u.x; t//�L�1˛

 
u.x; t/

@ˇ

@xˇ
u.x; t/Cu2.x; t/

!
:
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According to (3.8) and IC (5.14), we can write the following recursive relations:

u0 D e
�x

ˇ

ˇ

u1 D L
�1
˛ .u0/�L

�1
˛ .A0/

:::

unC1 D L
�1
˛ .un/�L

�1
˛ .An/ ;n� 0:

(5.17)

where An’s are APs. By using the Maple code above, for the non-linear term

N .u.x//D u.x; t/
@

@x
u.x; t/Cu2.x; t/;

the APs can be obtain as:

A0 D u
2
0Cu0

@ˇ

@xˇ
u0

A1 D 2u0u1Cu0
@ˇ

@xˇ
u1Cu1

@ˇ

@xˇ
u0

A2 D u
2
1C2u0u2Cu0

@ˇ

@xˇ
u2Cu1

@ˇ

@xˇ
u1Cu2

@ˇ

@xˇ
u0

A3 D 2u1u2C2u0u3Cu0
@ˇ

@xˇ
u3Cu1

@ˇ

@xˇ
u2Cu2

@ˇ

@xˇ
u1Cu3

@ˇ

@xˇ
u0

:::

(5.18)

From (5.17) and (5.18), we conclude the terms of decomposition series as:

u0 D e
�x

ˇ

ˇ ; u1 D e
�x

ˇ

ˇ
t˛

˛
;u2 D e

�x
ˇ

ˇ
t2˛

2˛2
; � � � ;un D e

�x
ˇ

ˇ
tn˛

nŠ˛n
; � � � (5.19)

Thus, From (5.19), the approximate solution of (5.13) obtained by CADM is

Qum.x; t/D

mX
nD0

un.x; t/D

mX
nD0

e�
xˇ

ˇ
tn˛

nŠ˛n
: (5.20)

From (5.20) we obtain

u.x; t/D lim
m!1

Qum.x; t/D e
t˛

˛
�x

ˇ

ˇ : (5.21)

This analytical approximate solution (5.21) is the exact solution.

Solution by CRDTM: Now solve this problem by using CRDTM. By taking the
CRDT of (5.13), it can be obtained that

˛ .kC1/U ˛kC1.x/D�

kX
rD0

U ˛k�r.x/
@ˇ

@xˇ
U ˛r .x/CU

˛
k .x/�

kX
rD0

U ˛k�r.x/U
˛
r .x/

(5.22)
where U ˛

k
.x/ is the CRDT function. From the IC (5.14) we write

U ˛0 .x/D e
�x

ˇ

ˇ (5.23)
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Substituting (5.23) into (5.22), it can be obtained the following U ˛
k
.x/ values

U ˛1 .x/D e
�x

ˇ

ˇ
1

˛
; U ˛2 .x/D e

�x
ˇ

ˇ
1

2Š˛2
; � � � ;U ˛n .x/D e

�x
ˇ

ˇ
1

nŠ˛n
; � � �

Then, the set of values
˚
U ˛
k
.x/
	n
kD0

gives the following approximate result

Qun.x; t/D

nX
kD0

U ˛k .x/ t
k˛
D

nX
kD0

e�
xˇ

ˇ
1

kŠ˛k
tk˛: (5.24)

From (5.24) we obtain

u.x; t/D lim
n!1

Qun.x; t/D e
t˛

˛
�x

ˇ

ˇ : (5.25)

This approximate solution (5.25) is the exact solution.

Remark 2. If take ˛ D ˇ D 1 in the problem (5.13), then Example 2 is reduced to
standard gas dynamics equation

@

@t
u.x; t/C

1

2

@

@x
u2.x; t/�u.x; t/ .1�u.x; t//=0

with IC
u.x;0/D e�x

our analytical approximate solutions (5.25) and (5.21) imply

u.x; t/D et�x

and this solution is the exact result of the standard problem in the literature.

The approximate solutions obtained by both CADM and CRDTM give us the ex-
isted exact solution.

Example 3. Finally, let us consider the non-linear time and space FPDE:
@˛

@t˛
u.x; t/C .1Cu.x; t//

@˛

@x˛
u.x; t/=0 , 0 ˛ � 1 (5.26)

subject to IC

u.x;0/D
x˛�˛

2˛
: (5.27)

The exact solutions of (5.26) in conformable sense is

u.x; t/D
x˛� t˛�˛

t˛�2˛
:

Solution by CADM: Solve the problem by using CADM. Let L˛ D T˛ D @˛

@t˛
be a

linear operator, then the operator form of (5.26) is as follows

T˛u.x; t/D�.1Cu.x; t//
@˛

@x˛
u.x; t/ , 0 ˛ � 1: (5.28)
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By the help of Lemma 1, eq. (5.28) can be written as

t1�˛
@u.x; t/

@t
D�

@˛

@x˛
u.x; t/�u.x; t/

@˛

@x˛
u.x; t/, 0 ˛ � 1: (5.29)

If L�1˛ D
tR
0

1
�1�˛

.:/d� , which is the inverse of L˛, is applied to both sides of eq.

(5.29), we get

u.x; t/D u.x;0/�L�1˛

�
@˛

@x˛
u.x; t/

�
�L�1˛

�
u.x; t/

@˛

@x˛
u.x; t/

�
:

According to 3.8 and IC (5.27), we can write the following recursive relations:

u0 D
x˛�˛
2˛

u1 D L
�1
˛ .u0/�L

�1
˛ .A0/

:::

unC1 D L
�1
˛ .un/�L

�1
˛ .An/ ;n� 0:

(5.30)

where An’s are APs. By using the Maple code above, for the non-linear term

N .u.x//D u.x; t/
@

@x
u.x; t/Cu2.x; t/;

the APs can be obtain as:

A0 D u0
@˛

@x˛
u0

A1 D u0
@˛

@x˛
u1Cu1

@˛

@x˛
u0

A2 D u0
@˛

@x˛
u2Cu1

@˛

@x˛
u1Cu2

@˛

@x˛
u0

A3 D u0
@˛

@x˛
u3Cu1

@˛

@x˛
u2Cu2

@˛

@x˛
u1Cu3

@˛

@x˛
u0

:::

(5.31)

From (5.30) and (5.31), we conclude the terms of decomposition series as:

u0 D
x˛�˛

2˛
; u1 D�

x˛C˛

.2˛/2
t˛; u2 D

x˛C˛

.2˛/3
t2˛;

u3 D�
x˛C˛

.2˛/4
t3˛; � � � ;un D .�1/

n x
˛C˛

.2˛/nC1
tn˛; � � � (5.32)

Thus, from (5.32), the approximate solution of (5.26) obtained by CADM is

Qum.x; t/D

mX
nD0

un.x; t/D
x˛�˛

2˛
C

mX
nD1

.�1/m
x˛C˛

.2˛/mC1
tm˛: (5.33)
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Solution by CRDTM: Now solve this problem by using CRDTM. By taking the
CRDT of (5.26), it can be obtained that

˛ .kC1/UkC1.x/D�Uk.x/�

kX
rD0

Uk�r.x/
@

@x
Ur.x/ (5.34)

where U ˛
k
.x/ is the CRDT function. From the IC (5.27) we write

U ˛0 .x/D
x˛�˛

2˛
(5.35)

Substituting (5.35) into (5.34), it can be obtained the following U ˛
k
.x/ values

U ˛1 .x/D�
x˛C˛

.2˛/2
; U ˛2 .x/D

x˛C˛

.2˛/3
; � � � ;U ˛n .x/D .�1/

n x
˛C˛

.2˛/nC1
; � � �

Then, the set of values
˚
U ˛
k
.x/
	n
kD0

gives the following approximate result

Qum.x; t/D

mX
kD0

U ˛k .x/ t
k˛
D
x˛�˛

2˛
C

mX
nD1

.�1/m
x˛C˛

.2˛/mC1
tm˛: (5.36)

Now, we compare the seventh iteration CADM and CRDTM solutions with the exact
solution on the graphs for some ˛ values. These comparisons can be seen in fig. 1
and fig. 2.

FIGURE 1. Comparison of seventh iteration approximate results of
CADM (CRDTM) with the exact solutions for eq. (5.26).
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FIGURE 2. Comparison of seventh iteration approximate results of
CADM (CRDTM) with the exact solutions for eq. (5.26).

6. CONCLUSION

The fundamental goal of this article is to construct the approximate solutions of
FPDEs. The goal has been achieved by using CADM for the first time and it is
compared with CRDTM. CADM and CRDTM are applied to different linear and
non-linear conformable time and space FPDEs. And also the approximate analytical
solutions obtained by CADM and CRDTM are compared to each other and with the
exact solutions. CADM and CRDTM offer solutions with easily computable com-
ponents as convergent series. Approximate solutions obtained by CADM are exactly
same as the solutions obtained by CRDTM for time and space FPDEs. The CADM
gives quantitatively reliable results as CRDTM, and also it requires less computa-
tional work than existing other methods. As a result, in recent years, FDEs emerging
as models in fields such as mathematics, physics, chemistry, biology and engineering
makes it necessary to investigate the methods of solutions and we hope that this study
is an improvement in this direction.
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