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Abstract: In this article, the generalized shallow water
wave (GSWW) equation is studied from the perspective of
one dimensional optimal systems and their conservation
laws (Cls). Some reduction and a new exact solution are
obtained from known solutions to one dimensional opti-
mal systems. Some of the solutions obtained involve ex-
pressions with Bessel function and Airy function [1-3]. The
GSWW is a nonlinear self-adjoint (NSA) with the suitable
di�erential substitution, Cls are constructed using the new
conservation theorem.
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PACS: 02.20.Qs; 02.20.Sv; 02.30.Hq; 02.30.Jr

1 Introduction
Lie symmetry methods play a vital role in the study and
�nding solutions for nonlinear partial di�erential equa-
tions (NLPDE) [4-16]. Di�erent techniques are used in the
literature for the construction of Cls for di�erent system of
equation and these Cls are important for the investigation
of a physical system [4-21]. Moreover, Authors made rigor-
ous attempts for construction of the construction of one-
dimensional and higher-dimensional optimal systems op-
timal system of Lie algebra [22-26]. Cls and symmetries
have many application in science, physics and engineer-
ing [32-37].
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In this work, we obtain one-dimensional optimal sys-
tem, exact solutions and Cls for the GSWW equation given
by

∆ = uxxxt + auxuxt + butuxx − uxt − uxx = 0, (1)

where a ≠ 0, b ≠ 0 are arbitrary constants. Eq. (1) have
been studied by di�erent authors using a variety of tech-
niques. For example [27] introduced exact solutions for Eq.
(1) by the general projective Ricatti equations method. Pe-
riodic wave solution for Eq. (1) by the improved Jacobi el-
liptic function method was investigated by [28] . Homo-
geneous balance method [29] was applied to investigate
some solutions for Eq. (1) and some new solution of Eq.
(1) with extended elliptic function method was proposed
in [30] and many more.

2 One-dimensional optimal system
of subalgebras of GSWW

In this section, we establish the optimal system of one-
dimensional subalgebras of L4 and their corresponding
exact solutions. Consider one parameter Lie group of the
in�nitesimal transformation below

x̄ = x + ϵξ1(x, t, u) + O(ϵ2), (2)
t̄ = t + ϵξ2(x, t, u) + O(ϵ2), (3)
ū = u + ϵη(x, t, u) + O(ϵ2), (4)

where ϵ is the group parameter. The corresponding Lie al-
gebra of the in�nitesimal symmetries is the set of vector
�eld of the form

X = ξ1(x, t, u) ∂∂t + ξ2(x, t, u) ∂∂x + η(x, t, u) ∂∂u . (5)

Considering the fourth order prolongation Pr(4) of the vec-
tor �eld X such that

Pr(4)X(∆) = 0,
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where ∆ = (1), whenever ∆ = 0. Using SYM package in-
troduced in [31], the determining equations for Eq. (1) are
obtained. Solving for η(x, t, u), ξ2(x, t, u), and ξ1(x, t, u)
from the obtained determining equations, we get

ξ1 = c1 + 1
2axc3, (6)

ξ2 = −1
2atc3 + c4 + bF(t), (7)

η = c2 −
1
2auc3 + xc3 + F(t). (8)

where c1, c2, c3 and c4 are arbitrary constants and F(t) is
an arbitrary function of t. The Lie symmetry algebra admit-
ted by Eq. (1) is spanned by four in�nitesimals generators
below

X1 = ∂x , (9)
X2 = ∂u , (10)
X3 = ∂t , (11)
X4 = −at∂t − (au − 2x)∂u + ax∂x . (12)

The corresponding commutator table of the in�nitesi-
mal generators is given by

Table 1: Commutator table of the Lie algebra for GSWWE

[Xi , Xj] X1 X2 X3 X4
X1 0 0 0 aX1 + 2X2
X2 0 0 0 −aX2
X3 0 0 0 −aX3
X4 −aX1 − 2X2 aX2 aX3 0

2.1 Construction of one-dimensional
optimal system of subalgebras

The Lie algebra L4 spanned by the given generators X1,
X2, X3, and X4 can guarantee a possibility to obtain in-
variant solutions of Eq. (1). This will be based mainly on
one-dimensional subalgebra of L4. There may be an in�-
nite number of one-dimensional subalgebras of L4. There-
fore, one can write an arbitrary generators from L4 as

X = l1X1 + l2X2 + l3X3 + l4X4, (13)

which depend on the four arbitrary constants l1, l2, l3, and
l4. We construct the one-dimensional optimal system of

subalgebras using the method introduced in [22-26]. After
the transformation of L4, we can get a 4-parameter group
of linear transformations of the generators as

l = (l1, l2, l3, l4). (14)

where l1, l2, l3, and l4 are the coe�cients in Eq. (13).

2.2 Linear transformation

Here, we investigate the linear transformations by using
their generators which is given as

Eµ = cλµv lv
∂
∂lλ

, µ = 1, ..., 4. (15)

and the structure constants of the Lie algebra L4 de�ned
by cλµv is given as

[Xµ , Xv] = cλµvXλ . (16)

Consider the following cases:
– Case 1: For µ = 1, v = 4, and λ = 1, 2 in Table 1.

[X1, X4] = c1
14X1 + c2

14X2 and the non vanishing struc-
ture constants are (cλµv) are c1

14 = a, c2
14 = 2.

– Case 2: For µ = 2, v = 4, and λ = 2 in Table 1. [X2, X4] =
c2

24X2 and the non vanishing structure constants (cλµv)
are c2

24 = −a.

– Case 3: For µ = 3, v = 4, and λ = 3 in Table 1. [X3, X4] =
c3

34X3 and the non vanishing structure constants (cλµv)
are c3

34 = −a.

– Case 4: For µ = 4, v = 1, and λ = 1, 2 in Table 1.
[X4, X1] = c1

41X1 + c2
41X2 and the non vanishing struc-

ture constants (cλµv) are c1
41 = −a, c2

41 = −2. Setting v =
2, λ = 2 row four column two, we get [X4, X2] = c2

52X2
and c2

42 = a, Setting v = 3, λ = 3 row four column
three, we get [X4, X3] = c3

43X3 and c3
43 = a.

Now, Substituting the values of the non-vanishing struc-
ture constants in Eq. (15) for µ = 1, 2, ..., 4, we obtain

E1 = al4 ∂
∂l1 + 2l4 ∂

∂l2 ,

E2 = −al4 ∂
∂l2 ,

E3 = −al4 ∂
∂l3 ,

E4 = −al1 ∂
∂l1 − 2l1 ∂

∂l2 + al2 ∂
∂l2 + al3 ∂

∂l3 .

(17)
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2.3 Lie equation

To obtain the Lie equation, we integrate the generators E1,
E2, E3, E4 in Eq. (17) using the initial condition l|ϵ=0 = l.
– For the generator E1, the Lie equationwith the param-

eter ϵ are given by
∂l1
∂ϵ = al4, ∂l2∂ϵ = 2l4, ∂l3∂ϵ = 0, ∂l4∂ϵ = 0. Integrating and
using the initial condition we obtain l1 = aϵ1l4 + l1,
l2 = 2ϵ1l4 + l2, l3 = l3, l4 = l4.

similarly for the other generators by following the same
approach we get
– For E2, we obtain l1 = l1, l2 = −aϵ2l4 + l2, l3 = l3,

l4 = l4.

– For E3, we have l1 = l1, l2 = l2, l3 = −aϵ3l4 + l3 andl4 =
l4.

– For E4, we have l1 = l1
1+aϵ4

, l2 = −2ϵ1+l2
1−aϵ4

, l3 = l3
1−aϵ4

and
l4 = l4.

using SYMpackage [31], we can get the optimal system raw
data in matrix form as:

aϵ1l4 + l1 2ϵ1l4 + l2 l3 l4

l1 −aϵ2l4 + l2 l3 l4

l1 l2 −aϵ3l4 + l3 l4
l1

1+aϵ4
−2ϵ1+l2
1−aϵ4

l3
1−aϵ4

l4


and the number of the functionally invariants, which is
found to be l4. The corresponding one-dimensional opti-
mal system of subalgebras are found to be the following:
1. X3,
2. αX2 + X3,
3. X4,
4. X1 + X4,
5. αX3 + X4,
6. αX1 + βX2 + X3,

where α, β ∈ R. In the following, we list the correspond-
ing similarity variables, similarity solutions as well as the
reduced PDEs obtained from the generators of optimal sys-
tem and their exact solutions.
1. Similarity variable related to X3 is u(x, t) = F(x) and

F(x) satis�es Fxx = 0 two times integration implies
that F(x) = c1 + xc2 and we have the exact solution

u(x, t) = c1 + xc2. (18)

2. Similarity variable related to αX2 + X3 is u(x, t) = αt +
F(x) and F(x) satis�es Fxx = 0 which after integrating
twice gives F(x) = c1 + xc2 and we have the exact so-

lution

u(x, t) = αt + c1 + xc2. (19)

3. Similarity variable related to X4 is u(x, t) = x2+aF(ζ )
ax ,

ζ = tx and F(ζ ) satis�es

F(ζ )(2 + 2bFζ − aζFζζ + ζ [−2bF2
ζ

+Fζ (−2 + (a + b)ζFζζ ) + ζ (Fζζ
+ζFζζζζ )] = 0,

(20)

thrice integration of Eq. (20) and letting c1 = 0 yields

4ζFζ + 1
4 ζ

2((a + b)F2(ζ ) − 36F(ζ )) + (c3ζ + c2)ζ = 0,

(21)

solving for F(ζ ) in Eq. (21) we obtain

F(ζ ) =
2
{

9BesselJ(9,
√
−a−b
√
−c1ζ−c2√
ζ

)c4 + Q0Q1−Q2+Q3
2
√
ζ

}
L1 − L2

,

(22)

where

L1 = −(a + b)BesselJ(9,
√
−a − b

√
−c1ζ − c2√
ζ

),

L2 = (a + b)BesselJ(9,
√
−a − b

√
−c1ζ − c2√
ζ

)c4),

Q0 =
√
−a − b

√
−c1ζ − c2,

Q1 = −2Bessel(10,
√
−a − b

√
−c1ζ − c2√
x

),

Q2 = BesselJ(8,
√
−a − b

√
−c1ζ − c2√
ζ

)c1,

Q3 = BesselJ(10,
√
−a − b

√
−c1ζ − c2√
ζ

)c4.

Hence by back substituting the similarity variables we
get the exact solution as

u(x, t) = x
a + E0, (23)

where

E0 =
2
{

9BesselJ(9,
√
−a−b
√
−c1ζ−c2√
ζ

)c4 + Q0Q1−Q2+Q3
2
√
ζ

}
x(L1 − L2) ,

L1, L2 are as stated above and ζ = tx.
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4. Similarity variable related to X1+X4 is u(x, t) = x2+F(ζ )
1+ax ,

ζ = t(1 + ax) and F(ζ ) satis�es the following

2 − 2a2bζF2
ζ − aζFζζ + a2ζ 2Fζζ

+a2F(ζ )(2 + 2bFζ − aζFζζ ) + Fx(2b − 2a2ζ
+a2(a + b)ζ 2Fζζ ) + a3ζ 3Fζζζζ = 0,

(24)

three times integration and letting c1=c2=c3=0 in the
above equation, gives

(4aζFζ + (a + b)F2(ζ ) − 36aF(ζ )) 1
4a

2ζ 2 + ζ 3

3 = 0,

(25)

solving for F(ζ ) we have the following equation in
Bessel function form

F(ζ ) = −4aζ (P0 + G0 + G2 + G3)
G6

, (26)

where

P0 =
−(aα2 − bα2) 9

2 ζ 7
2 BesselK[9,

√
−aα2−bα2

√
ζ

a2
√

3 ]

4608a18
√

3a18 ,

G0 =
−(aα2 − bα2)5ζ 4(BesselK[8,

√
−aα2−bα2

√
ζ

a2
√

3 ] − G1)
248832a20 ,

G1 = BesselK[10,
√
−aα2 − bα2

√
ζ

a2
√

3
],

G2 = −c4

√
3(−aα2 − bα2) 9

2 BesselK[9,
√
−aα2−bα2

√
ζ

a2
√

3 ]

8a18(a + b) 9
2 α9

,

G3 = c4
35(−aα2 − bα2)5ζ 4G4

48a18(a + b) 9
2 α9a20

,

G4 = (BesselK[8,
√
−aα2 − bα2

√
ζ

a2
√

3
] + G5,

G5 = BesselK[10,
√
−aα2 − bα2

√
ζ

a2
√

3
]),

G6 =
(−aα2 − bα2) 9

2 BesselK[9,
√
−aα2−bα2

√
ζ

a2
√

3 ]

20736a18
√

3
− G7,

G7 =
35(−aα2 − bα2) 9

2 BesselK[9,
√
−aα2−bα2

√
ζ

a2
√

3 ]c4

4
√

3a18(a + b) 9
2 α9

.

and the exact solution is

u(x, t) = x2

1 + ax −
4aζ (P0 + G0 + G2 + G3)

G6
, (27)

where ζ = t(1 + ax).

5. Similarity variable related to βX3 + X4 is u(x, t) =
x2+aF(ζ )

ax , ζ = (at−α)x
a and F(ζ ) satis�es the following

F(ζ )(2 + 2bFζ − aζFζζ + ζ [−2bF2
ζ

+Fζ (−2 + (a + b)ζFζζ ) + ζ (Fζζ
+ζFζζζζ ) = 0,

(28)

here the reduced PDE is the same as that in reduction
3, the only di�erent is the variable ζ . Therefore, we get

u(x, t) = x
a + E (29)

where

E =
2
{

9BesselJ(9,
√
−a−b
√
−c1ζ−c2√
ζ

)c4 + Q0Q1−Q2+Q3
2
√
ζ

}
x(L1 − L2)

and L1, L2, Q0, Q1, Q2, and Q3 are as stated in Eq. (23)
and ζ = (at−α)x

a .
6. Similarity variable related to αX1 +βX2 +X3 is u(x, t) =

βx+αF(ζ )
α , ζ = αt−x

α and F(ζ ) satis�es the following

α(1 + α − aβ + (a + b)Fζ )Fζζ − Fζζζζ ) = 0, (30)

three times integration of Eq. (30) with c1 = 0 leads

Fζ −
1
4 (a + b)αF2(ζ ) + (c3 + ζc2)ζ = 0 (31)

solving for Fζ , we obtain

F(ζ ) = 4(aα + bα)
2 2

3 (c2(aα + bα)) 2
3

[ A1 + A2
(aα + bα)(A3 + A4) ], (32)

where

A1 = AiryBiPrime[ 2 4
3 ( 1

4 c3(aα+bα)+ 1
4 c2(aα+bα)ζ )

(c2(aα + bα) 2
3 )

],

A2 = AiryAiPrime[ 2 4
3 ( 1

4 c3(aα+bα)+ 1
4 c2(aα+bα)ζ )c4

(c2(aα + bα) 2
3 )

],

A3 = AiryBiPrime[ 2 4
3 ( 1

4 c3(aα+bα)+ 1
4 c2(aα+bα)ζ )

(c2(aα + bα) 2
3 )

],

A4 = AiryAiPrime[ 2 4
3 ( 1

4 c3(aα+bα)+ 1
4 c2(aα+bα)ζ )c4

(c2(aα + bα) 2
3 )

],

Thus, by back substituting the similarity variables we
get

u(x, t) = βx
α + 4(aα + bα)

2 2
3 (c2(aα + bα)) 2

3
[ A1 + A2
(aα + bα)(A3 + A4) ]

(33)

where ζ = αt−x
α .
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3 Physical interpretation of the
solutions (23) and (33)

In order to have clear and proper understanding of the
physical properties of the power series solution, the 3-D,
2-D and contour plots for the solution Eqs. (23) and (33) are
plotted in Figures 1-4 by using suitable parameter values.

4 Nonlinear self-adjointness
The system of m [20, 21] di�erential equations

Fα(x, u, u(1), ..., u(s)) = 0, (34)

α=1,...,m, with m dependent variables u=(u1, ..., um) is
said to be NSA if the adjoint equations

F*α(x, u, u(1), v(1)..., u(s), v(s)) ≡
δ(vβFβ)
δuα = 0, (35)

α=1,...,m, are satis�ed for all solutions u of the original
system Eq. (34) upon a substitution

vα = φα(x, u), (36)

α=1,...,m, such that

φ(x, u) ≠ 0. (37)

On the other hand, the equation below holds:

F*α(x, u, φ(x, u), ..., u(s), φ(s)) = λβαFβ(x, u, ..., u(s)), (38)

α=1,...,m, where λβα are undetermined coe�cients, and
φ(σ) are derivatives of Eq. (36),

φ(σ) = {Di1 ...Diσ (φα(x, u))}

, σ = 1, ..., s. Here v and φ are the m-dimensional vectors
v = (v1, ..., v(m)), φ = (φ1, ..., φm), and also, it is worth
noting that not all components φα(x, u) of φ vanish simul-
taneously from Eq. (37).

4.1 Test for self-adjointness for GSWW

Here, we want to test the self-adjointness of Eq. (1). The
adjoint equation for Eq. (1) is given by

F* = 2bυxuxt + (−1 + aux) υxt + aυtuxx
−bυtuxx + (−1 + but) υxx + υxxxt = 0.

(39)

Let v = ϕ(x, t, u), after some calculations and equat-
ing the coe�cients of the derivatives ut, ux, uxt, uxx, uxxt
and uxxx to zero, we have

ϕuu = 0

3ϕ,uu = 0

3ϕ,uuu = 0,

ϕuuuu = 0,

ϕtu = 0,

3ϕtuu = 0,

ϕtuuu = 0,

3ϕxu = 0,

(a − b)ϕu + 3ϕxuu = 0,

2 (bϕu + 3ϕxuu) = 0,

(a + b)ϕuu + 3ϕxuuu = 0,

aϕt − bϕt + 3ϕxtu = 0,

−ϕuu + aϕtu + 3ϕxtuu = 0,

2bϕx + 3ϕxxu = 0,

−ϕuu + aϕxu + 2bϕxu + 3ϕxxuu = 0,

−ϕtu − 2ϕxu + aϕxt + 3ϕxxtu = 0,

−ϕxu + bϕxx + ϕxxxu = 0,

−ϕxt − ϕxx + ϕxxxt = 0.

The solution for ϕ(t, x, u) from the above equation is sim-
ply found to be the following

ϕ(t, x, u) = C1 for (a − b)b ≠ 0, (40)

where C1 is an arbitrary constant. Therefore, Eq. (1) is NSA
with the substitution in Eq. (40).

5 Conservation laws for GSWW
In this section, we establish Cls for Eq. (1) [19-21].

The reality that Eq. (1) is NSA with the obtained dif-
ferential substitution in Eq. (40), we can use the Noether
operator N to obtain its conserved vectors (C1, C2) [17-20].
The obtained conserved vectors will satisfy the conserva-
tion equation DxC1 + DtC2 = 0. Moreover, the non local
variables appearing in that formula must be substituted
according to equation (40).
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Figure 1: 3D plot of (33) α = 4, a = 1, b = 2.5, c4 = 13 Figure 2: contour plot of (33) α = 80, c1 = 5, c2 = 0.5

Figure 3: 3D plot of (23) α = 80, β = 10, a = 3, b = 2.5,
c3 = 0.5, c2 = c4 = 10

Figure 4: contour plot of (23) α = 80, β = 10, a = 3, b = 2.5,
c3 = 0.5, c2 = c4 = 10

The following are the conserved vectors obtained from
the four in�nitesimals say X1, X2, X3, and X4 when C1 = 1
respectively.

C1 = 1
4 ((−2 + 4bux) uxt + uxxxt) ,

C2 = −1
4 ((−2 + 4bux) uxx + uxxxx) .

(41)

C1 = 1
2 (a − 2b)uxt ,

C2 = −1
2 (a − 2b)uxx .

(42)

Similarly, one can verify and see that DxC1 + DtC2 = 0
which is a trivial conservation laws.

C1 = 1
4 (utt (2 − 2aux) + (4 − 2aut) uxt − 3uxxtt) ,

C2 = 1
4 (2 (−1 + aux) uxt + 2 (−2 + aut) uxx + 3uxxxt) .

(43)

C1 = 1
4 {−8 + 8aux + 2atutt (−1 + aux)

− 4atuxt + 2axuxt − 8bxuxt (44)
− 2a2u(x, t)uxt + 4abu(x, t)uxt (45)

+ 4abxuxuxt + ut
(

8b − 8abux + 2a2tuxt
)

(46)

− auxxt + 3atuxxtt + axuxxxt} , (47)

C2 = −1
4

{
4 + 4a2u2

x − 2atuxt

− 4atuxx + 2axuxx − 8bxuxx − 2a2u(x, t)uxx

+ 4abu(x, t)uxx + 2a2tutuxx + 2aux (−4 + atuxt

+ 2bxuxx) + 4auxxx + 3atuxxxt + axuxxxx }.

6 Conclusion
In this study, Lie symmetry analysis, one dimensional op-
timal system and Cls for GSWW equation were studied.
Some reductions and their solutions were reported from
the obtained one dimensional optimal system. We pre-
sented some �gures for some of the obtained exact solu-
tions. The exact solutions include an expression with a
Bessel function and an Airy function. We veri�ed the au-
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thenticity of the solution by substitution into the original
equation. The GSWW equation is a NSA with the obtained
di�erential substitution, we obtained Cls using the new
conservation theorem presented by Ibragmov.
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