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Abstract: In this article, the generalized shallow water
wave (GSWW) equation is studied from the perspective of
one dimensional optimal systems and their conservation
laws (Cls). Some reduction and a new exact solution are
obtained from known solutions to one dimensional opti-
mal systems. Some of the solutions obtained involve ex-
pressions with Bessel function and Airy function [1-3]. The
GSWW is a nonlinear self-adjoint (NSA) with the suitable
differential substitution, Cls are constructed using the new
conservation theorem.

Keywords: GSWW,optimal system, Cls, infinitesimal gen-
erators, NSA
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1 Introduction

Lie symmetry methods play a vital role in the study and
finding solutions for nonlinear partial differential equa-
tions (NLPDE) [4-16]. Different techniques are used in the
literature for the construction of Cls for different system of
equation and these Cls are important for the investigation
of a physical system [4-21]. Moreover, Authors made rigor-
ous attempts for construction of the construction of one-
dimensional and higher-dimensional optimal systems op-
timal system of Lie algebra [22-26]. Cls and symmetries
have many application in science, physics and engineer-
ing [3237].
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In this work, we obtain one-dimensional optimal sys-
tem, exact solutions and Cls for the GSWW equation given
by

A = Uyyxt + AQUxUxt + DUlxx — Uyt — Uxx = O, 6y}

where a # 0, b # 0 are arbitrary constants. Eq. (1) have
been studied by different authors using a variety of tech-
niques. For example [27] introduced exact solutions for Eq.
(1) by the general projective Ricatti equations method. Pe-
riodic wave solution for Eq. (1) by the improved Jacobi el-
liptic function method was investigated by [28] . Homo-
geneous balance method [29] was applied to investigate
some solutions for Eq. (1) and some new solution of Eq.
(1) with extended elliptic function method was proposed
in [30] and many more.

2 One-dimensional optimal system
of subalgebras of GSWW

In this section, we establish the optimal system of one-
dimensional subalgebras of L, and their corresponding
exact solutions. Consider one parameter Lie group of the
infinitesimal transformation below

x=x+ef(x, t,u)+ 0(e?), @
t=t+ efz(x, t, u) + 0(e?), 3)
it =u+en(x,t,u) + 0(e?), (4)

where € is the group parameter. The corresponding Lie al-
gebra of the infinitesimal symmetries is the set of vector
field of the form

_ gl 0 2 0 0
X=¢&(xt, u)ﬁhf (x, t, u)&m(x, t, “)R' )

Considering the fourth order prolongation Pr™ of the vec-
tor field X such that

PrYx(4) =0,
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where A = (1), whenever A = 0. Using SYM package in-
troduced in [31], the determining equations for Eq. (1) are
obtained. Solving for n(x, t, u), £2(x, t, u), and &*(x, t, u)
from the obtained determining equations, we get

{1 =c1+ %ax@, 6)
.{2 = —%atc3 + ¢4 + bF(t), @)
n=cy- %auc—j +xc3 + F(t). (8)

where c1, ¢;, ¢c3 and c4 are arbitrary constants and F(t) is
an arbitrary function of t. The Lie symmetry algebra admit-
ted by Eq. (1) is spanned by four infinitesimals generators
below

Xl = aXs (9)
XZ = au, (10)
X3 = at5 (11)

(12)

X4 = -atoy — (au — 2x)0y + axox.

The corresponding commutator table of the infinitesi-
mal generators is given by

Table 1: Commutator table of the Lie algebra for GSWWE

[X:, X1 | X1 X X3 X4

X1 0 0 0 aX, +2X,
X5 0 0 0 -aX,

X3 0 0 0 -aXs

X4 —aX1 - 2X2 aXz aX3 0

2.1 Construction of one-dimensional
optimal system of subalgebras

The Lie algebra L, spanned by the given generators X,
X,, X3, and X, can guarantee a possibility to obtain in-
variant solutions of Eq. (1). This will be based mainly on
one-dimensional subalgebra of L,. There may be an infi-
nite number of one-dimensional subalgebras of L,. There-

fore, one can write an arbitrary generators from L, as
X=01X,+PXo + PX; + I*X,, (13)

which depend on the four arbitrary constants I, 12, I?, and
1. We construct the one-dimensional optimal system of
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subalgebras using the method introduced in [22-26]. After
the transformation of L,, we can get a 4-parameter group
of linear transformations of the generators as

1= 12,8, 1%. (14)

where 1, I?, 2, and [* are the coefficients in Eq. (13).

2.2 Linear transformation

Here, we investigate the linear transformations by using
their generators which is given as
0

Ey = C;‘lvlvi

S u=1,..,4.

(15)

and the structure constants of the Lie algebra L, defined
by cﬁv is given as

(X, Xol = chv Xy (16)

Consider the following cases:

- Casel: Foruy = 1,v = 4,and A = 1,2 in Table 1.
[X1, X4] = c1,X1 +¢},X; and the non vanishing struc-
ture constants are (c},) are ¢}, = a, c3, = 2.

- Case2:Foru=2,v=4,andA =2inTablel.[X;, X;] =
¢3,X, and the non vanishing structure constants (cﬁv)
are ¢3, = -a.

- Case3:Foru =3,v=4,andA = 3inTablel.[X3, X,] =
c% ,4X3 and the non vanishing structure constants (cﬁv)
are c3, = -a.

— Case4:Fory = 4,v = 1,and A = 1,2 in Table 1.
[X4, X1] = c}1 X1 + c2, X, and the non vanishing struc-
ture constants (cj,) are ¢}, = -a, cj; = -2. Setting v =
2, A = 2 row four column two, we get [X4, X] = c2, X,
and cﬁz = a, Setting v = 3, A = 3 row four column
three, we get [X4, X3] = ¢2;X3 and ¢35 = a.

Now, Substituting the values of the non-vanishing struc-
ture constants in Eq. (15) for u = 1, 2, ..., 4, we obtain

_ 40 40
E{=al a11+21 32
0
E2=—alq—2,
4"5 (17)
E3=—al 5
oB’
S S U - S < I
E, = -al S 21 alz+al alz+al R
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2.3 Lie equation

To obtain the Lie equation, we integrate the generators E,

E,, E3, E, in Eq. (17) using the initial condition I|c— = L.
For the generator E;, the Lie equation with the param-
eter € are given by

%11 = al%, 9L = 214, %—lj =0, "’4 = 0. Integrating and

using the 1n1t1a1 condition we obtain I =ael* + 1%,

2=2e"+12,B=DP,1"=1"

similarly for the other generators by following the same

approach we get

- TFor E;,weobtain il = I, 2 = —ae,l* + 12, B = B,
=1

— ForEs,wehavell =[',12 =12, B = —ae3l*+ 1% andl* =
I“.

5 p
B= 1-ae,

I 2= —2e,+1
’

T and

- For E4, we have [1 =
=14

using SYM package [31], we can get the optimal system raw
data in matrix form as:

ac l*+ 11 2e 1+ 12 B I
N —ael*+ 12 B *
I 2 —aesl*+ B 1*
It —2¢1+12 P 1
1+ae, 1-aey 1-aey

and the number of the functionally invariants, which is
found to be I*. The corresponding one-dimensional opti-
mal system of subalgebras are found to be the following:
X3,

aX, + X3,

Xy,

X1+ Xy,

aX3 + Xy,

aXi + BX, + X3,

o AW

where a, 8 € R. In the following, we list the correspond-

ing similarity variables, similarity solutions as well as the

reduced PDEs obtained from the generators of optimal sys-

tem and their exact solutions.

1. Similarity variable related to X3 is u(x, t) = F(x) and
F(x) satisfies Fxx = O two times integration implies
that F(x) = ¢ + xc, and we have the exact solution

u(lx, t) = c1 + xcy. (18)

2. Similarity variable related to aX, + X3 is u(x, t) = at +
F(x) and F(x) satisfies Fxx = O which after integrating
twice gives F(x) = ¢1 + xc, and we have the exact so-

DE GRUYTER
lution
u(x, t) = at + cq + xcy. (19)
e . . _ xX*+aFQQ)
Similarity variable related to X, is u(x, t) = T

¢ = tx and F({) satisfies

F()(2 + 2bF, - alFy + {[-2bF?
+F¢ (=2 + (a + b){F) + {(F
+{F o)l = 0

thrice integration of Eq. (20) and letting ¢; = 0 yields

(20)

4F+ 0@+ IFA(Q) - 36F() + (¢3¢ +e2){ =0,

(1)

solving for F({) in Eq. (21) we obtain

2 {9Bessel](9, 77

F({) =

mmm + 20:-0,+05
2\/7

Li-L,
(22)

where

V—a-b\/-c1{-c>
Ve
V—a-b\/-c1{-c>
Ve
Qo = V-a-b\/-c1{ - c,,

Q1 = -2Bessel(10, v-a- b\\;;cl(_ CZ),
V—a-b\/-c1{-c>
VS
\/—a—b\/—cl(—cz)c4

VS

Hence by back substituting the similarity variables we
get the exact solution as

Ly = —(a + b)BesselJ(9, ),

L, = (a + b)BesselJ(9, JAR

Q> = BesselJ(8, )c1,

Qs = BesselJ(10,

u(x, t) = g +Ep, (23)

where

2 {9Bessel](9, \/ﬂm)64 T Qle—Qz+Q3}

Ve 2%

Eo= x(Ly - Ly)

L1, L, are as stated above and ¢ = tx.
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4, Similarity variable related to X1+ X, is u(x, t) = "2111; (XO, 5. Similarity variable related to X3 + X4 is u(x,t) =

{ = t(1 + ax) and F({) satisfies the following X2+§f © (= (“t;"‘)" and F({) satisfies the following
2-2a°b{F; - alFy + a’{*Fy F({)(2 + 2bF; - a{Fy + {[-2bF}
+a®F({)(2 + 2bF, - alF ) + Fx2b - 2a%¢  (24) +F(=2 +(a+ b){Fe) + {(Fy (28)
+a2(a + b)(zF({) +a’ (BF(((( =0, +(F(((() =0

here the reduced PDE is the same as that in reduction

three times integration and letting c1=c,=c3=0 in the . ] .
3, the only different is the variable {. Therefore, we get

above equation, gives

1 I u(x, t) = g +E (29)
(4alF¢ +(a+ b)F*({) - 36aF(())Za2(2 ty= 0,
(25) where
V=a-by/=ci{~c 200:-0,+Q
solving for F({) we have the following equation in 2 {9395591} , NG =—2)cy + 20 5 \/f 3}

Bessel function form E-= x(L1 - Ly)

4af(Py + Go + G2 + G3) and L1, L,, Qo, Q1, Q», and Q3 are as stated in Eq. (23)

F(O == G6 ’ (26) nd( (at-a)x a)x
h 6. Similarity vanable related to aX; + X, + X3 isu(x, t) =
where Bx+aF({) at -X
0= and F({) satisfies the following
_ 2 272 1 \/—aa btx \f
p, _ @& ~ba’)z ¢z BesselKIS, ] a(1+a-aB+(a+b)F)Fy-Fgy)=0,  (30)
0 4608al8/3q18
three times integration of Eq. (30) with ¢; = 0 leads
2 25 4 \/faa ba V-aa?-ba? /[
—(aa® - ba BesselK[8 G 1
. yeu 8, -6 Fo- Ya+ mar Q)+ (s + ) =0 (1)
0 248832a20 4
ae? — bl solving for F¢, we obtain
G, = BesselK[10, M],
az\/3 FO) - 4(aa + ba) A+ A, 1 (32)
V3(=aa?® - ba?)? BesselK[9, Y=9%~ MZ‘[] 23 (ca(aa+bag)s (aa+ba(ds +A2)"
G, = —-c4 8a15(a s b)iad where
- 435(_51“2 - ba2)5(4G4 23 (G cs(aarba)+ ca(aa+ba)()
48a'8(a + b)ia%a20 Ay = AiryBiPrime| = ph)
c>(aa + ba)s
V-aaZ -ba?\/{ ’
= (BesselK[8, —————Y 1+ Gs,
Z\f [2g(%c;(aa+ba)+%cz(aa+ba)()c4 ]
A, = AiryAiPrime 3 ,
/ b <
Gs = BesselK[10, fa \/]) (c2(aa + ba)>)
(-aa® - ba?)? BesselK]9, Y- Ve Ay — AiryBiPrime[ 2o e een 0
3=
Ge = 50736a1% 3 -G, (c2(aa + ba)3)
35(—aa? - ba?)? BesselK[9, Y-% ba \[] o 23Gosaarba)+ea(aatba)d)e
G; = Ay = AiryAiPrime| > 1,
4v/3a'8(a + b)3 a9 (ca(aa + ba)s)
and the exact solution is Thus, by back substituting the similarity variables we
get
l.l(X t) _ X2 _ 4(1((P0 + GO + GZ + G3) (27)
YT T ax Ge ’ ulx t)=ﬁ—x+ 4(aa + ba) A+ A,
h _ t(l . ) ’ 14 2%(C2(aa + ba))% (aa + ba)(A3 + A4)
where { = ax). (33)

where { = 2&X,
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3 Physical interpretation of the
solutions (23) and (33)

In order to have clear and proper understanding of the
physical properties of the power series solution, the 3-D,
2-D and contour plots for the solution Egs. (23) and (33) are
plotted in Figures 1-4 by using suitable parameter values.

4 Nonlinear self-adjointness

The system of m [20, 21] differential equations

Fa(x, u, ugy), .. U(g) = 0, (34)

a=1,...,m, with m dependent variables u=(u?, ..., u™) is
said to be NSA if the adjoint equations
5(VEFB) i

—5E -0 09

F;(X, u, ll(l), V(l)"" U(S), V(S)) =

a=1,...,m, are satisfied for all solutions u of the original
system Eq. (34) upon a substitution

vE = 0%(x, u), (36)

a=1,...,m, such that
o(x,u) # 0. (37)

On the other hand, the equation below holds:
Fa(x,u, (x, u), ..., Us)> P(s) = AﬁFE(x, U, ..., Ug), (38)

a=1,...,m, where AE are undetermined coefficients, and
¢(0) are derivatives of Eq. (36),

9(0) = {D;,...D;, (9" (x, W)}

,0=1,..,s.Herevand ¢ are the m-dimensional vectors
v =04 ...,v), 0 = (p', ..., o™), and also, it is worth
noting that not all components ¢*(x, u) of ¢ vanish simul-
taneously from Eq. (37).

4.1 Test for self-adjointness for GSWW

Here, we want to test the self-adjointness of Eq. (1). The
adjoint equation for Eq. (1) is given by

F" = 2buxuiys + (-1 + Qx) Uyt + QUlxx (39)
_bvtuxx + (_1 + but) Uxx + Uxxxt = O.

DE GRUYTER

Let v = ¢(x, t, u), after some calculations and equat-
ing the coefficients of the derivatives u¢, ux, Uyt, Uxx, Uxxt
and uxxx to zero, we have

Puu =0
3¢.uu=0
3¢,uuu = 0,
Puuuu = 0,
¢bun =0,
3¢t =0,
dtuuu =0,
3¢xu =0,

(@a-b)pu +3¢xuu =0,
2 (bou +3¢xuu) =0,
(a+b)puu + 3Pxuuu = 0,
apt - bt +3¢xu =0,
~uu + APty + 3Pxtuu = 0,
2bpx +3¢xxu =0,

—uu + APxu + 2bPxu + 3P = 0,
—Ptu — 2¢xu + aPxt + 3Pxxtu = 0,
~¢xu + bpxx + o = 0,
~Pxt — Pxx + Pxxxt = 0.

The solution for ¢(t, x, u) from the above equation is sim-

ply found to be the following

¢(t,x,u) = Cq for (a-b)b # 0, (40)

where C; is an arbitrary constant. Therefore, Eq. (1) is NSA
with the substitution in Eq. (40).

5 Conservation laws for GSWW

In this section, we establish Cls for Eq. (1) [19-21].

The reality that Eq. (1) is NSA with the obtained dif-
ferential substitution in Eq. (40), we can use the Noether
operator N to obtain its conserved vectors (C?, C2) [1720].
The obtained conserved vectors will satisfy the conserva-
tion equation DyxC 1+ DC? = 0. Moreover, the non local
variables appearing in that formula must be substituted
according to equation (40).
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Figure 3: 3D plot of (23) a = 80,8 = 10,a = 3,b = 2.5,
C3 = 0.5,62 =C4 = 10

The following are the conserved vectors obtained from
the four infinitesimals say X1, X>, X3, and X, when C; = 1
respectively.

1
ct @ ((=2 + 4bux) uyxt + Uxxxt)

1
c? = o ((=2 + 4bux) uxx + Uxxxx) -

(41)
§=%M—MMm
C2 = —%(a - zb)uXx.
(42)
Similarly, one can verify and see that DxC! + D;C*> = 0

which is a trivial conservation laws.
1
ct= 4 (uee (2 = 2aux) + (4 — 2aug) uxe — 3uxxet) »

c? = % (2(-1+ aux) uxt + 2 (=2 + auy) Uxx + 3Uxxxt) -

(43)

cl= % {-8 + 8aux + 2atu (-1 + auy)
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Figure 2: contour plot of (33) @ = 80, ¢; = 5, ¢ = 0.5
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Figure 4: contour plot of (23) @ = 80,8 = 10,a = 3, b = 2.5,
C3 = 0.5, Cr =C4 = 10

— hatuy + 2axuye — 8bXuy; (44)
—2a%u(x, uy + sabu(x, uy (45)

+ 4abxuyUye + Uy (Sb - 8abuy + Zaztuxt) (46)

= QUxxt + 3AtUyxer + AXUxxxe } 47)

c? = % {4+4a Y — 2atuye

- 4atuXx + zaxuxx - beuXX - 2a2u(X, t)uxx
+ 4abu(x, Ouxx + 2a* tusuxx + 2auy (—4 + atuy
+ szuXx) + 4auXxx + 3atuxxx[ + axuxxxx }.

6 Conclusion

In this study, Lie symmetry analysis, one dimensional op-
timal system and Cls for GSWW equation were studied.
Some reductions and their solutions were reported from
the obtained one dimensional optimal system. We pre-
sented some figures for some of the obtained exact solu-
tions. The exact solutions include an expression with a
Bessel function and an Airy function. We verified the au-
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thenticity of the solution by substitution into the original
equation. The GSWW equation is a NSA with the obtained
differential substitution, we obtained Cls using the new
conservation theorem presented by Ibragmov.
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