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Abstract: In this work, Lie symmetry analysis for the time
fractional simplified modified Kawahara (SMK) equation
with Riemann-Liouville (RL) derivative, is analyzed. We
transform the time fractional SMK equation to nonlin-
ear ordinary differential equation (ODE) of fractional or-
der using its Lie point symmetries with a new dependent
variable. In the reduced equation, the derivative is in the
Erdelyi-Kober (EK) sense. We solve the reduced fractional
ODE using a power series technique. Using Ibragimov’s
nonlocal conservation method to time fractional partial
differential equations, we compute conservation laws (Cls)
for the time fractional SMK equation. Some figures of the
obtained explicit solution are presented.

Keywords: time fractional SMK, Lie symmetry, exact solu-
tions, conservation laws
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1 Introduction

Symmetry analysis has many applications in the field of
science and engineering. Lie’s method is one of the global
and efficient methods for investigating analytical solu-
tions and symmetry properties of nonlinear partial differ-
ential equations (NLPDEs) [1-17]. Fractional calculus has
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been successfully used to explain many complex nonlin-
ear phenomena and dynamic processes in physics, en-
gineering, electromagnetics, viscoelasticity, and electro-
chemistry [18-34].

Generally, physical phenomenon might depend on its
current state and on its historical states, which can be
modelled successfully by applying the theory of deriva-
tives and integrals of fractional order [35, 36]. Due to this,
several analytical techniques are used to derive exact, ex-
plicit, and numerical solutions of nonlinear fractional par-
tial differential equations (FPDEs) [30-34]. We find very few
studies of symmetry analysis for FPDEs and their group
properties are not plainly understood [37-41].

In other words, Cls are universally known to possess
an important role in the analysis of NLPDEs from a physi-
cal viewpoint [42] . If the considered system has Cls, then
its integrability will be possible [43 ,44]. Noether theo-
rem supplies us with a strategic idea for constructing Cls
of NLPDEs so long as the Noether symmetry associated
with the Lagrangian is known for Euler-Lagrange equa-
tions [45]. Nevertheless, there are some techniques in the
literature for obtaining the Cls of the NLPDESs, that do not
have the Lagrangian [46-47].

Time fractional NLPDEs come from classical NLPDEs
by replacing its time derivative with a fractional derivative.
In the present work, we study Lie symmetry analysis, ex-
plicit solution using the power series technique and Ibrag-
imov’s nonlocal Cls [48] for the time fractional SMK equa-
tion given by

0%u

ot
in Eq. (1), 0 < a < 1, and B and ~ are arbitrary con-
stants, and «a is the order of the fractional time derivative.
If « = 1, Eq. (1) reduces to the classical SMK equation
which was considered for exact travelling wave solutions
and Cls in [49-51]. Moreover, one can find more details on
the construction of analytical, exact, numerical solutions,
and other information for classical NLPDEs, in [52-69].

+ Bu Uy + yuxoox = 0, 6y
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2 Preliminaries

Consider the RL fractional derivative [70, 71] given by

Q
E
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a=n,
O<n-1<a<n,
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where n is a natural number and I*£(t) is the RL fractional
integral of order u given by

t
wey o L [p - gt
PO = 705 0/ (¢~ sV f(s)ds, u >0

() = f(2) @

and I'(z) represents Gamma function.
Consider time-fractional PDEs as below

‘t"u=F(t,x,u,ux, Uxx, Uxxxs +o0), (0 <a<1). 3)

Given a one-parameter Lie group of infinitesimal transfor-
mations of the form

t=t+e&’(t,x,u)+ 0(e?),
X = x + €& (t, x, u) + 0(e?),

X
it =u+en(t,x,u) + 0(e?),
a(;%l_‘ = 30;1: +ena(t,x, u) + 0(e?),
%g - ?Tz +en*(t, x, u) + 0(e?), (4)
Fu P 0
23% = 3371; +en™(t, x, u) + 0(e?),
‘;47'3 = 3471: + e (t, x, u) + 0(e?),
3571;1 _ gis + e (t, x, u) + 0(e?),

where

1" = Dx(n) - uxDx(&Y) — uD((&2),

N = De(") - uxDa(&") - uncDe(&),

M = Dx(™) = wxneDx(§") - wxDe(§),

W% = Dx(1™) = txee Dx(§) = e Do), (5)
% = D (1) = Ut Dx(€Y) = U De(E2),
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In Eq. (5), Dy is the total differential operator defined by

0

Dx = ox

+ Ux<— + Uxx —

0 0

ou Olx

The corresponding Lie algebra of symmetries consists of a
set of vector fields of the form

X = é' f (6)

”au

The vector field Eq. (6) is a Lie point symmetry of Eq. (3)
provided

P rX(7)| =0 = 0. @)

Also, the invariance condition yields [72] gives

EX(t, X, =0 = O 8)

and the a" extended infinitesimal related to RL fractional
time derivative with Eq. (8) is given by [54, 55].

n2= O - aDg) S - u O ©
—;(ﬁm@wWW)
- a aarlu n+1 a-n
+nz_;[<n> ota _<n+1>D (f) D),
in Eq. (9)
c© n m k-1 k -
=S (3 () (g @
n=2 m=2 k=2 r=0
. om e bl m+k
T P e

It is worth noting that, y = 0 if the infinitesimal 7 is linear

in u, due to the presence of 21 where k = 2 in Eg. (10).

ak’

Definition 2.1. The function u = O(x, t) is an invariant so-
lution of Eq. (3) corresponding to the infinitesimal generator
Eq. (6) provided that
1. u = O(x, t) satisfies Eq. (3).
2. u = O(x, t) is an invariant surface of Eq. (5), that is to
say
E(x,t,0)0: + 1(x, t, ©)0x = n(x, t, O).

3 Lie symmetries and reduction for
Eq. (1)

Suppose that Eq. (1) is an invariant under Eq. (5), we have
that
(11)

—a _2_ _
Uy + pu” g + ylzzzzz = 0,
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so that, u = u(x, t) satisfies Eq. (1). Using Eq. (5) in Eq. (11),
we get the invariant equation

XXXXX
=0.

n% + (2Buux)n + (Bu?)n* +vn (12)

Putting the values of 13, n* and ™ from Eq. (5) and Eq.
(9) into Eq. (12) and isolating coefficients in partial deriva-
tives with respect to x and power of u, we get

a‘txrl - ua}“nu _ﬁuzﬂx - YNxxxxx = 0,

(Z‘) () - (n f 1)1);”1(52) -0, n=1,2,..

$&=€3=€}=ff=nuu=0,
56 - agf =0,

Solving these equations, we get:

.{1=c1+xacz, £2=5tcz, n =-2aucy,

where c; and ¢, are arbitrary constants. Thus infinitesimal
symmetry group for Eq. (1) is spanned by the two vector

fields
0 0 0 0

=3 X5 = xaa + Stfa - Zuaa.

The similarity variables for the infinitesimal generator
X, can be obtained by solving the following equations

X1 (13)

dx _dt _ du

ax 5t 2au’
Solving the above equations, we get

z1=xt"5, zy=uts. (14)

Hence, from the symmetry X,, we get the group-invariant
solution

u=t5f(), £=xts, (15)

in Eq. (15), f is an arbitrary function of . Using Eq. (15), Eq.
(1) is transformed to a special nonlinear ODE of fractional
order.

Consider the following theorem

Theorem 3.1. The similarity transformation Eq. (15) re-
duces Egq. (1) to the nonlinear ODE of fractional order as be-
low:

(PE_?’af> (&) + Bf*fe + Afgegee = O (16)

with the EK fractional differential operator [22]

(Péz’“f) =15 (fz - p 5:) (RS, ()
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[a] +1,

n-=
a,

s [ - Dt O gun)du, a0,

f(f)! a=0,
(19)

a#N,

18
aeN, 8)

where

(KN - {

is the EK fractional integral operator [74, 75].
Proof.letn-1<a < 1,n=1,2,3,.... Based on the RL
fractional derivative in Eq. (15), we get

t

ou _ o" 1 _n-a-1.2 -(2)

o _at"[l‘(n—a) / (t - )15 flxs )ds}. (20)
1

Letv = £, ds = -5 dv. Thus, Eq. (20) becomes

a n a 7 a a
5 = 5 [tné 7F(n1— ) / (V—l)”“v(””@)f(é’W)dv} :
1

1)
Applying EK fractional integral operator Eq. (19) in Eq. (21),
we get

o on _Ia —2a p_
e iyt r)o].

We simplify the right hand side of Eq. (22). Consider ¢ =
xt™s ¢ € (0, o0), we acquire

(22)

0 oy, a1, a, o0

(59O =D O = -LE T 0O, @)
Hence,

o n-1g 1-2 n-a _

et (i)

ot _n—%"‘—l 7 a,0 1-2 n-a
2o m203) ()]

Repeating n - 1 times, we have

j—; {t"'? (KEZ:’"“f) (6)] -
n-1 Ta 2 g
- [ft (t"s (Kg i f) (s)ﬂ
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= t'%HJ {(1— % +j- {%)
y (1(1 f) (5)}.

Applying EK fractional differential operator Eq. (17) in Eq.
(25), we get

o {( ¥ (K;?'"“f) (5))} - 9
€% (PE?’“f> ©®

Substituting Eq. (26) into Eq. (22), we get
- t( i )(f) (27)

Thus, Eq. (1) can be reduced into a fractional order ODE

7a
(15’
5
a

The proof of the theorem is completed. O

) (&) + Bf*fe + Vfsggee = 0 (28)

4 Conservation laws

We now construct the Cls for Eq. (1). We start with some
definitions. The RL left-sided time-fractional derivative
given by

oDfu = D} (oI" *u), (29)

where Dy is the total differential operator with respect to
t,n = [a] + 1, and oI" “u represents the left sided time-
fractional integral of n — a order given by

u(6, x)

o do- G0

(oI *u)(x, t) = e a)/(t

In Eq. (30), I'(z) represents Gamma function.
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A Cls for Eq. (1) is represented as

D(CYH + Dx(C¥) =0 (31

where C! = Cl(x, t,u,...), C¥ = C*(x, t, u, ..
holds for all solutlons u(x, t) of the Eq. (1).

We now apply Ibragimov method [48] for constructing
the Cls of Eq. (1). Lagrangian for Eq. (1) can be presented
as

.), and Eq. (31)

(32)

+ ﬂu Ux + ’Yuxxxxx>

L=v(x, t)<at“

where v(x, t) is another dependent variable. The Euler-
Lagrange operator [45, 46] is

) 0 > 0 3 0
Su +(DF)' aD”‘ “Dxgye Julx Doy Olxx ~ Droax Olxxx
(33)
+DY¥ 9 ; 9

_% _p _9
XXXX XXXXX
OUxxxx OUxxxx

where (D¥)" is the adjoint operator of (D%). The adjoint
equation to Eq. (1) is given by [48]
6L
Su
Consider two independent variables x, t and one depen-
dent variable u(x, t), we have that

=0. (34)

Wi + DN + DyN*,

X+ D)+ DuEDl = W s

(35)
in Eq. (35), I represent the identity operator, % is the Euler-
Lagrangian operator, N' and N* represent the Noether op-
eration, X is defined by

s 20 0 0 o O x O xx O
XS o T ow e gpd T g T S
(36)
XXX a XXXX a XXXXX a
B Olxxx ’ Olxxxx " OUxxxxx
and the Lie characteristic function W is given by
W=n-&u - &ux 37)

When RL time-fractional derivative is used in Eq. (1),
N'is defined by [45, 46]

=& +k§;( D*op* K (W)Df ——— S Da - (-1)"
(38)
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0
><](W, D?m)-
t

With J given by

[ £E 0800 g0

(}l %’2)0&1 n (39)

1
](f’g) = F(n—a)/
0

For Eq. (1), the operator N* is given by

0 0 2 0

.f 1+ W(a —Dy~— S + DXiauxxx

S d
Dx OUxxxx +Dx auxxxxx) " DX(W) (auxx

0 2 0 3 0
-D D -D
X Ollxxx X OUxxxx X auxxxxx)
0 0 2 0
Di(W -D D
* X( ) (auxxx X OUxxxx T auxxxxx)

, > d
" DX(W) <auxxxx Dx auxxxxx)

+ DY W)

(40)

OUxxxxx

The invariance condition for any given generator X of
Eqg. (1) and its solutions reads

(XL + D¢(&*)L + Dx(EML)| gy 1) = O, (41)
and consequently the Cls of Eq. (1) can be written as
D¢(N'L) + Dx(N*L) = 0. (42)

Now, we present the Cls for Eq. (1) using the basic
definitions presented above. We consider two cases corre-
sponding to the order of a.

Case 1. When a < (0, 1), with the help of Eq. (38) and
Eg. (39), the components of the conserved vectors are

_ P2 0 a-1 1
— 820 + (-1)°0D? (W)Dta( Da ;- (D)
oL
X]<W11Dt c)(oD”‘u))
= VOD;X_l(Wi) +](Wi’ V[)’
d O 5, 0 5 0
€ 1+W<au Dxauxx Dxauxxx Dxauxxxx

40 W2 _p, 9
* DX ()lexxxx) * DX(WI) ( auXX DX auxxx

DE GRUYTER
0 0 0
+ D2 -D} + DE(W;
x OUxxxx x OUxxxxx ) X( 1) (auxxx
0 2 0 3 0
-D +D + Dy (W;
X Olxxxx x OUxxxxx > X( l) ( Olxxxx

0 4
-D + Dy (W;
X dynx OUxxxxx > ( ) auxxxxx

<ﬁu v+D w) + Dy (W;) ( - D§W>

+D3(Wy) (D%w) — VxDY(W;) + yvDY (W),

where i = 1, 2 and the functions W; are given by

Wy =-ux, Wy =-2ua - 5tus — axuy.

Case 2. When a € (1, 2), with the help of Eq. (38) and
Eg. (39), the components of the conserved vectors are

oL

= &L+ (-1)°%Df N (W)DP 5(oD%w) - (D'

J(Wi,D% oL

1 a-2 1
a(oD;"u)) +(-1)"oDf “(W;)D;

oL 1 oL
7@(0[)?11) _(_1) ](Wth a( DD( )>

= voDE (W) + J(Wi, ve) = vioDE 2 (W;) = J(Wi, vee)

=W, (ai Dxafxx Diauixx _D?‘aufw
+ Dy auixxX> * De) <a§xx _ DX%XXX
o Lo a) +D§(Wf)(auixx
~ Dy aufxxx + D3 aui){ﬂ) +Dy(W)) (auixxx
- Dy auxxxxX> + Di(W) auxxxxx

(ﬁu v+D w) + Dy (W) ( - D?mv)

+ Dy (W) <D§W> — yVx DY (W;) + yvDE(W)),

where i = 1, 2 and the functions W; are given by

Wy =-ux, Wy =-2ua - 5tu; — axuy.
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e o . . _ 12a na
5 Explicit power series solutions WO Rl il 0 B a
7a na) ]
re- E k=0 j=0
j=

Here, we investigate the exact analytic solutions via power ;
series method [76] and symbolic computations [77] for Eq. x(n-k+1)ap_j1 }f "
(28). Set

- Consequently, we acquire the exact power series solution

f@ =" and", (43) forEq. (28)as
n=0

ux, t) = aot‘%a + alxt_%a + azxzt_%a +asxct™
from Eq. (43), we can have ’

+ax' s + 1 - 12al)a + Bada XS
=2 nang", (44) ' 1200\ re-7)
)‘l=0oo . Z 1
f(S) _ Z nin-1)(n-2)(n-3)n- 4)an€n75. — m+5)n+4)n+3)n+2)(n+ 1)7
" x G-’ a +B Z Z a; (47)
Substituting Egs. (44) into Eq. (28), we obtain r2- ”“) § =0 i J
n+5 - 79
re- 1za + na) x(n-k+ 1)ank+1}x t s
Z F(Z 70( na) nff +angnz;a”5
x Z(n + Dan &+ Z(n +5)(n+4)(n+3) . 4. .
"0 70 6 Physical interpretation of the
x(n+2)(n + Danis¢" = 0. 45 power series solution for Egs.
Comparing coefficients in Eq. (45) when n = 0, we obtain (47)
1 F(Z 1201) .
s = 155 TG ) ao + Baja; (46) In order to have clear and proper understanding of the
v physical properties of the power series solution, the 3-D,

2-D and contour plots for the solution Egs. (47), are plotted

when n = 1, we have
in Figures 1-4 by using suitable parameter values.

1
m+5)n+4)n+3)n+2)n+1)y

F(Z 12a mx)
—50n
1—-(2 7tx na)

Anis =

'WWIIWHW

. : Wﬂ mﬂ m ;
. fo ww
+ Z Z aj(n—k+1ay g } . _ / ’,gm%f’iff”ww !

i
ity
k=0 j=0 'ﬂn”’ﬂﬂw#f”f,fr/m#ff;/mfg,{jfﬁflmp

lﬂ(lfl
fl

Thus, the power series solution for Eq. (28) can be repre-
sented in the form:

2
f(&) =ag+a,&+ax¢ +a3¢“3+a4§4+a5.{5 )
Figure 1: 3D plot of (47) ap = a; = a; = 1,a3 = 0.5,a,4 = 1.7, 8 =

5 2,v=1,a=0.5,T =0.85
+Zan+5$n+ v

=ag+a,é+ a2§2 + a3{3 + a4.§'4 +

1 F(Z 12a)
120y \ r(2 - 70‘)

, > 1
+ﬂa0a1> 55 + ; (n+5)n+4)n+3)n+2)n+1)y
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Figure 2: Contour plotof (47) ap = a; = a» = 1,a3 = 0.5,a4 =
1.7,=2,y=1,a=0.5,T' =0.85

b

L /’fll/lf/pf,,,

i 1 ’fmi
’Ij;f#ﬂu me‘f%w W
i ’f”fl!ﬂ,’;ﬂ"”flf\ Wg :

e
I

Figure 3: 3D plot of (47) ap = a; = a» = 0.8,a3 = a5, = 1,8 =
1.2,7v=3,a=0.9,T=0.1

Figure 4: Contour plotof (47) ap = a; = a; =0.8,a3 =a, =1, =
1.2,7v=3,2=0.9,T=0.1

7 Concluding remarks

In this research, we analyzed time fractional SMK by
means of Lie symmetry analysis using the RL derivative.
We reduced the governing equation to a nonlinear ODE of
fractional order. The obtained fractional ODE was solved
using a power series technique. Ibragimov’s nonlocal con-
servation theorem was applied to establish Cls for the gov-
erning equation. Some 3-D, 2-D, and contour plots were
also presented.

References

)

(2]

E]

[4]

[5]

(6]

[71

(8]

191

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

Olver P.J., Application of Lie Group to Differential Equation,
1986, Springer, New York

Ovsiannikov L.V., Group Analysis of Differential Equations,
1982, Academic Press, New York

Lie S., Onintegration of a class of linear partial differential equa-
tions by means of definite integrals, 1881, Arch. Math. Log., 6(3),
328-368.

Bluman G.W., Kumei S., Symmetries and Differential Equations,
1989, Springer, New York

Ibragimov N.H., Handbook of Lie Group Analysis of Differential
Equations, 1994, vol. 1, CRC Press, Boca Raton

Wang X.B., Tian S.F., Qin C.Y., Zhang T.T., Lie symmetry analy-
sis, conservation laws and exact solutions of the generalized
time fractional Burgers equation, Europhys. Lett., 2016, 114(2),
20003

Wang X.B., Tian S.F., Qin C.Y., Zhang T.T., Lie symmetry analysis,
conservation laws and analytical solutions of a time-fractional
generalized KdV-type equation. J. Nonlinear Math. Phys., 2017,
24, 516-530.

Feng L.L., Tian S.F., Wang X.B., Zhang T.T., Lie Symmetry Anal-
ysis, Conservation Laws and Exact Power Series Solutions
for Time-Fractional Fordy-Gibbons Equation. Commun. Theor.
Phys., 2016, 66(3), 321

TuJ.M,, Tian S.F, Xu M.)., Zhang T.T., On Lie symmetries, optimal
systems and explicit solutions to the Kudryashov-Sinelshchikov
equation, Appl. Math. Comput., 2016, 275, 345-352.

Ma P.L,, Tian S.F., Zhang T.T., On symmetry-preserving differ-
ence scheme to a generalized Benjamin equation and third- or-
der Burgers equation, Appl. Math. Lett., 2015, 50, 146-152.

Inc M., Yusuf A., Aliyu A.l., Baleanu D., Lie symmetry analy-
sis and explicit solutions for the time fractional generalized
Burgers-Huxley equation, Opt. Quant. Electron., 2018, 50, 94
Wang G.W., Xu T.Z., Invariant analysis and explicit solutions of
the time fractional nonlinear perturbed Burgers equation, Non-
linear Anal., 2015, 20, 570-584.

Wang G.W., Kara A.H., Fakhar K., Symmetry analysis and conser-
vation laws for the class of time-fractional nonlinear dispersive
equation, Nonlinear Dyn., 2015, 82,281-287.

Baleanu D., Inc M., Yusuf A., Aliyu A.l., Time Fractional Third- Or-
der Evolution Equation: Symmetry Analysis, Explicit Solutions,
and Conservation Laws, ). Comput. Nonlinear Dynam., 2017,
13(2), 021011

Baleanu D., Inc M., Yusuf A., Aliyu A.l., Lie symmetry analysis,
exact solutions and conservation laws for the time fractional
Caudrey-Dodd-Gibbon-Sawada-Kotera equation, Commun Non-
linear Sci. Numer. Simulat., 2018, 59, 222-234.

Jefferson G.F., On the second-order approximate symmetry clas-
sification and optimal systems of subalgebras for a forced
Korteweg-de Vries equation, Commun. Nonlinear Sci. Numer.
Simul., 2013, 18, 2340-2358.

Tchier F., Aliyu A.l., Yusuf A., Inc M., Dynamics of solitons to the
ill-posed Boussinesq equation, Eur. Phys. ). Plus., 2017, 132 136.
Diethelm K., The Analysis of Fractional Differential Equations,
2010, Springer, Berlin

Miller K.S., Ross B., An Introduction to the Fractional Calculus
and Fractional Differential Equations, 1993, Wiley, New York

Brought to you by | Cankaya University
Authenticated
Download Date | 12/24/19 11:48 AM



DE GRUYTER

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31

(32]

(33]

(34]

(35]

[36]

(37]

(38]

[39]

Podlubny I., Fractional Differential Equations, 1999, Academic
Press, San Diego

Oldham K.B., Spanier]., The Fractional Calculus, 1974, Academic
Press, San Diego

Kiryakova V., Generalised Fractional Calculus and Applications,
Pitman Res. Notes in Math., 1994, 301.

El-Sayed A.M.A.,Gaber M., The Adomian decomposition method
for solving partial differential equations of fractal order in finite
domains, Phys. Lett. A., 2006, 359, 175-182.

Chen Y., An H.L., Numerical solutions of coupled Burgers equa-
tions with time and space fractional derivatives, Appl. Math.
Comput., 2008, 200, 87-95.

Inc M., Yusuf A., Aliyu A.l., Baleanu D., Soliton structures to
some time-fractional nonlinear differential equations with con-
formable derivative, Opt, Quant, Electron., 2018, 50, 20

Odibat Z., Momani S., A generalized differential transform
method for linear partial differential equations of fractional or-
der, Appl. Math. Lett., 2008, 21, 194-199.

Li X., Chen W., Analytical study on the fractional anomalous dif-
fusion in a half-plane, J. Phys. A, Math. Theor., 2010, 43(49),
495206

He T.H., A coupling method of a homotopy technique and a per-
turbation technique for non-linear problems, Int. J. Non-Linear
Mech., 2000, 35, 37-43.

Inc M., Yusuf A., Aliyu A.l., Baleanu D., Lie symmetry analy-
sis, explicit solutions and conservation laws for the space-time
fractional nonlinear evolution equations, Physica A., 2018, 496,
371-383.

Zhang S., Zhang H.Q., Fractional sub-equation method and its
applications to nonlinear fractional PDEs, Phys. Lett. A., 2011,
375,1069-1073.

GuoS.,MeilL.Q,LiY., SunY.F., The improved fractional subequa-
tion method and its applications to the space-time fractional dif-
ferential equations in fluid mechanics, Phys. Lett. A., 2012, 376,
407-411.

Lu B., Backlund transformation of fractional Riccati equation
and its applications to nonlinear fractional partial differential
equations. Phys. Lett. A., 2012, 376, 2045-2048.

Jumarie G., Modiffed Riemann-Liouville derivative and fractional
Taylor series of non differentiable functions further results,
Comput. Math. Appl., 2006, 51, 1367-1376.

Jumarie G., Cauchy’s integral formula via the modified Riemann-
Liouville derivative for analytic functions of fractional order
Appl. Math. Lett.,2010, 23, 1444-1450.

Sahadevan R., Bakkyaraj T., Invariant analysis of time fractional
generalized Burgers and Korteweg-de Vries equations, J. Math.
Anal. Appl., 2012, 393, 341-347.

Wang G.W., Liu X.Q., Zhang Y.Y., Lie symmetry analysis to the
time fractional generalized fffth-order KdV equation, Commun.
Nonlinear Sci. Numer. Simul., 2013, 18, 2321-2326.

Inc M., Yusuf A. , Aliyu A.l., Baleanu D., Time-fractional Cahn-
Allen and time-fractional Klein-Gordon equations: Lie symme-
try analysis, explicit solutions and convergence analysis, Phys-
icaA., 2018, 493, 94-106.

Baleanu D., Inc M., Yusuf A., Aliyu A.l., Lie symmetry analy-
sis, exact solutions and conservation laws for the time frac-
tional modiffied Zakharov-Kuznetsov equation, Nonlinear Anal.:
Model. and Contr., 2017, 22(6), 861-876.

Buckwar E., Luchko Y. Invariance of a partial differential equa-
tion of fractional order under the Lie group of scaling transfor-

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

— 309

Lie symmetry analysis, and...

mations, J. Math. Anal. Appl., 1998, 227 81-97.

Djordjevic V.D., Atanackovic T.M., Similarity solutions to nonlin-
ear heat conduction and Burgers/Korteweg-de Vries fractional
equations, J. Comput. Appl. Math. 212, 2008, 701-714.

Liu H.Z., Complete group classifications and symmetry reduc-
tions of the fractional fifth-order KdV types of equations, Stud.
Appl. Math., 2013, 131, 317-330.

Olver P.J., Application of Lie Groups to Differential Equations,
1993, New York, Springer-Verlag

Ibragimov N.H., Elementary Lie Group Analysis and Ordinary Dif-
ferential Equations, 1999, John Wiley & Sons, Chichester
Baleanu D., Inc M., Yusuf A., Aliyu A.l., Space-time fractional
Rosenou-Haynam equation: Lie symmetry analysis, explicit so-
lutions and conservation laws, Adv. Diff. Eq., 2018, 2018, 46
Noether E., Invariante Variations Probleme, Transp. Theor. Stat.
Phys.,1971, 1(3), 186-207.

Kara A.H., Mahomed F.M., Noether-type symmetries and con-
servation laws via partial Lagragians, Nonlinear Dyn., 2006, 45,
367-383.

Anco S.C., Bluman G.W., Direct construction method for conser-
vation laws of partial differential equations. Part I: examples of
conservation law classifications, Eur. J. Appl. Math., 2002, 13,
545-566.

Ibragimov N.H., A new conservation theorem, J. Math. Anal.
Appl., 2007, 28, 333-311.

Wang G.W., Xu T.Z., Group Analysis and New Explicit Solutions
of Simplified Modified Kawahara Equation with Variable Coeffi-
cients, Abstr. Appl. Anal., 2013, 2013, 139160

Igor L., Julio C.F., Sampaio S. Conservation laws for Kawahara
equations, Matematica Aplicada E Computacional, 2012, 17(21),
287-292.

Hounkonnou M.N., Mahaman M.K., Symmetry, integrability and
solutions of the Kawahara equation, SUT J. Math., 2008, 44(1),
39-53.

Wang X.B., Shou-Fu T., Mei-Juan X., Tian-Tian Z. On integrability
and quasi-periodic wave solutions to a (3+1)-dimensional gen-
eralized KdV-like model equation, Appl. Math. Comput., 2016,
283, 216-233.

Tu ).M., Tian S.F., XU M.J., Ma P.L., Zhang T.T., On periodic wave
Solutions with asymptotic behaviors to a (3+1)-dimensional
generalized B-type Kadomtsev-Petviashvili equation in fluid dy-
namics, Comput. & Math. Appl., 2016, 72, 2486-2504.

Xu M.)., Tian S.F., Tu J.M., Zhang T.T., Backlund transforma-
tion, inffnite conservation laws and periodic wave solutionsto a
generalized (2+1)-dimensional Boussinesq equation, Nonlinear
Anal.: Real World Applications., 2016, 31, 388-408.

Wangs X.B., Tian S.F., Qin C.Y., Zhang T.T., Zhang. Characteris-
tics of the solitary waves and rogue waves with interaction phe-
nomena in a generalized (3+1)-dimensional Kadomtsev- Petvi-
ashvili equation, Appl. Math. Lett., 2017, 72, 58-64.

Tu J.M., Tian S.F, Xu M.J.,Zhang T.T., Quasi-periodic Waves
and SolitaryWaves to a Generalized KdV-Caudrey-Dodd-Gibbon
Equation from Fluid Dynamics, Taiwanese J. Math., 2016, 20,
823-848.

Wang X.B., Tian S.F., Qin C.Y., Zhang T.T. Dynamics of the
breathers, rogue waves and solitary waves in the (2+1)- dimen-
sional Ito equation, Appl. Math. Lett., 2017, 68, 40-47.

Tian S.F., Initial-boundary value problems for the general cou-
pled nonlinear Schrodinger equation on the interval via the
Fokas method, ). Diff. Eq., 2017, 262(1), 506-558.

Brought to you by | Cankaya University
Authenticated
Download Date | 12/24/19 11:48 AM



310 = Dumitru Baleanu, Mustafa Inc, Abdullahi Yusuf, and Aliyu Isa Aliyu

[59] Bridges T.J., Multi-symplectic structures and wave propagation,
Math. Proc. Cambr. Phil. Soc., 1997, 121,147-190.

[60] Hu W.P., Deng Z.C., Zhang Y., Multi-symplectic method for
peakon-antipeakon collision of quasi-Degasperis-Procesi equa-
tion, Comp. Phys. Comm., 2014,185, 2020-2028.

[61] HuW.P.,,DengZ.C.,HanS.M.,ZhangW.R., Generalized Multisym-
plectic Integrators for a Class of Hamiltonian Nonlinear Wave
PDEs, J. Comp. Phys., 2013, 235, 394-406.

[62] Hu W.P., Deng Z.C., Yin T.T., Almost structure-preserving anal-
ysis for weakly linear damping nonlinear Schrodinger equa-
tion with periodic perturbation, Comm. Nonlinear Sci. Numer.
Simul., 2017, 42, 298-312.

[63] HuW., Deng Z., Competition between geometric dispersion and

viscous dissipation in wave propagation of KdV-Burgers equa-

tion, J. Vibr. Contr., 2015, 21, 2937-2945.

Hu W., Song M., Deng Z., Yin T., Wei B., Axial dynamic buckling

analysis of embedded single-walled carbon nanotube by com-

plex structure-preserving method, Applied Mathematical Mod-

elling., 2017, 52, 15-27.

[65] Hu W.P., Deng Z.C., Chaos in embedded fluid-conveying single

walled carbon nanotube under transverse harmonic load series,

Nonlinear Dyn., 2015, 79, 325-333.

Hu W.P., Deng Z.C., Wang B., Ouyang H.J., Chaos in an embed-

ded single-walled carbon nanotube, Nonlinear Dyn., 2013, 72,

389-398.

[67] HuW., Song M., Deng Z., Zou H., Wei B., Chaotic region of elas-
tically restrained single-walled carbon nanotube, Chaos, Solit.
Fract., 2017, 27, 023118.

[64]

[66]

DE GRUYTER

[68] Hu W., Song M., Deng Z., Energy dissipation/transfer and sta-
ble attitude of spatial on-orbit tethered system, J. Sound Vibr.,
2018, 412, 58-73.

Hu W, Li Q., Jiang X., Deng Z., Coupling dynamic behaviors of

spatial flexible beam with weak damping, Int. J. Numer. Meth.

Eng., 2017, 111, 660-675.

Kiryakova V., Generalised Fractional Calculus and Applications,

Pitman Res. Notes Math., 1994, 301, Longman, London

[71] Podlubny I., Fractional Differential Equations, 1999, San Diego,
Academic Press

[72] Gazizov R.K., A.A. Kasatkin., S.Y. Lukashcuk., Symmetry prop-
erties of fractional diffusion equations, Phys. Scr., 2009, 136,
014-016.

[73] Gazizov R.K., Kasatkin A.A., Lukashcuk S.Y., Continuous trans-
formation groups of fractional differential equations, Vestnik,
USATU., 2007, 9, 125-135.

[74] Sahadevan R., Bakkyaraj T., Invariant analysis of time fractional
generalized Burgers and Korteweg-de Vries equations, ). Math.
Anal. Appl., 2012, 393, 341-347.

[75] Wang G.W., Xu T.Z., Invariant analysis and exact solutions of

nonlinear time fractional Sharma-Tasso-Olver equation by Lie

group analysis, Nonlinear Dyn., 2014, 76, 571-580.

Galaktionov V.A., Svirshchevskii S.R., Exact Solutions and In-

variant Subspaces of Nonlinear Partial Differential Equations in

Mechanics and Physics, 2006, Chapman and Hall/CRC, Boca Ra-

ton, Florida

[77] Tian S.F., Zhang H.Q., On the integrability of a generalized
variable-coeffcient Kadomtsev-Petviashvili equation, ). Phys. A:
Math. Theor., 2012, 45, 055203.

[69]

[70]

[76]

Brought to you by | Cankaya University
Authenticated
Download Date | 12/24/19 11:48 AM



	1 Introduction
	2 Preliminaries
	3 Lie symmetries and reduction for Eq. (1)
	4 Conservation laws
	5 Explicit power series solutions
	6 Physical interpretation of the power series solution for Eqs. (47)
	7 Concluding remarks

