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Abstract: In this work, Lie symmetry analysis for the time
fractional simpli�ed modi�ed Kawahara (SMK) equation
with Riemann-Liouville (RL) derivative, is analyzed. We
transform the time fractional SMK equation to nonlin-
ear ordinary di�erential equation (ODE) of fractional or-
der using its Lie point symmetries with a new dependent
variable. In the reduced equation, the derivative is in the
Erdelyi-Kober (EK) sense. We solve the reduced fractional
ODE using a power series technique. Using Ibragimov’s
nonlocal conservation method to time fractional partial
di�erential equations,we compute conservation laws (Cls)
for the time fractional SMK equation. Some �gures of the
obtained explicit solution are presented.
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1 Introduction
Symmetry analysis has many applications in the �eld of
science and engineering. Lie’s method is one of the global
and e�cient methods for investigating analytical solu-
tions and symmetry properties of nonlinear partial di�er-
ential equations (NLPDEs) [1-17]. Fractional calculus has
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been successfully used to explain many complex nonlin-
ear phenomena and dynamic processes in physics, en-
gineering, electromagnetics, viscoelasticity, and electro-
chemistry [18-34].

Generally, physical phenomenon might depend on its
current state and on its historical states, which can be
modelled successfully by applying the theory of deriva-
tives and integrals of fractional order [35, 36]. Due to this,
several analytical techniques are used to derive exact, ex-
plicit, and numerical solutions of nonlinear fractional par-
tial di�erential equations (FPDEs) [30-34].We�ndvery few
studies of symmetry analysis for FPDEs and their group
properties are not plainly understood [37-41].

In other words, Cls are universally known to possess
an important role in the analysis of NLPDEs from a physi-
cal viewpoint [42] . If the considered system has Cls, then
its integrability will be possible [43 ,44]. Noether theo-
rem supplies us with a strategic idea for constructing Cls
of NLPDEs so long as the Noether symmetry associated
with the Lagrangian is known for Euler-Lagrange equa-
tions [45]. Nevertheless, there are some techniques in the
literature for obtaining the Cls of the NLPDEs, that do not
have the Lagrangian [46-47].

Time fractional NLPDEs come from classical NLPDEs
by replacing its time derivativewith a fractional derivative.
In the present work, we study Lie symmetry analysis, ex-
plicit solution using the power series technique and Ibrag-
imov’s nonlocal Cls [48] for the time fractional SMK equa-
tion given by

∂αu
∂tα + βu2ux + γuxxxxx = 0, (1)

in Eq. (1), 0 < α ≤ 1, and β and γ are arbitrary con-
stants, and α is the order of the fractional time derivative.
If α = 1, Eq. (1) reduces to the classical SMK equation
which was considered for exact travelling wave solutions
and Cls in [49-51]. Moreover, one can �nd more details on
the construction of analytical, exact, numerical solutions,
and other information for classical NLPDEs, in [52-69].
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2 Preliminaries
Consider the RL fractional derivative [70, 71] given by

Dα f (t) =
{

dn f
dtn , α = n,
d
dtn I

n−α f (t), 0 ≤ n − 1 < α < n,

where n is a natural number and Iµ f (t) is the RL fractional
integral of order µ given by

Iµ f (t) = 1
Γ(µ)

t∫
0

(t − s)µ−1f (s)ds, µ > 0

Iµ f (t) = f (t) (2)

and Γ(z) represents Gamma function.
Consider time-fractional PDEs as below

∂αt u = F(t, x, u, ux , uxx , uxxx , ...), (0 < α < 1). (3)

Given a one-parameter Lie group of in�nitesimal transfor-
mations of the form

t̄ = t + ϵξ2(t, x, u) + O(ϵ2),
x̄ = x + ϵξ1(t, x, u) + O(ϵ2),
ū = u + ϵη(t, x, u) + O(ϵ2),

∂α ū
∂t̄

= ∂αu
∂tα + ϵη0

α(t, x, u) + O(ϵ2),

∂ū
∂x̄ = ∂u

∂x + ϵηx(t, x, u) + O(ϵ2), (4)

∂2ū
∂x̄2 = ∂2u

∂x2 + ϵηxx(t, x, u) + O(ϵ2),

∂3ū
∂x̄3 = ∂3u

∂x3 + ϵηxxx(t, x, u) + O(ϵ2),

∂4ū
∂x̄4 = ∂4u

∂x4 + ϵηxxxx(t, x, u) + O(ϵ2),

∂5ū
∂x̄5 = ∂5u

∂x5 + ϵηxxxxx(t, x, u) + O(ϵ2),

where

ηx = Dx(η) − uxDx(ξ1) − utDt(ξ2),
ηxx = Dx(ηx) − uxtDx(ξ1) − uxxDt(ξ2),
ηxxx = Dx(ηxx) − uxxtDx(ξ1) − uxxxDt(ξ2),
ηxxxx = Dx(ηxxx) − uxxxtDx(ξ1) − uxxxxDt(ξ2), (5)
ηxxxxx = Dx(ηxxxx) − uxxxxtDx(ξ1) − uxxxxxDt(ξ2),

In Eq. (5), Dx is the total di�erential operator de�ned by

Dx = ∂
∂x + ux

∂
∂u + uxx

∂
∂ux

+ ... .

The corresponding Lie algebra of symmetries consists of a
set of vector �elds of the form

X = ξ1 ∂
∂x + ξ2 ∂

∂t + η ∂∂u . (6)

The vector �eld Eq. (6) is a Lie point symmetry of Eq. (3)
provided

Pα,5rX(5)|5=0 = 0. (7)

Also, the invariance condition yields [72] gives

ξ2(t, x, u)|t=0 = 0, (8)

and the αth extended in�nitesimal related to RL fractional
time derivative with Eq. (8) is given by [54, 55].

η0
α = ∂αη

∂tα + (ηu − αDt(ξ2))∂
αu
∂tα − u

∂αηu
∂tα + µ (9)

−
∞∑
n=1

(
α
n

)
Dnt (ξ1)Dα−nt (ux)

+
∞∑
n=1

[(
α
n

)
∂αηu
∂tα −

(
α

n + 1

)
Dn+1
t (ξ2)

]
Dα−nt (u),

in Eq. (9),

µ =
∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α
n

)(
n
m

)(
k
r

)
1
k!

tn−α
Γ(n + 1 − α) (10)

× [−u]r ∂
m

∂tm [uk−r] ∂n−m+k

∂tn−m∂uk
.

It is worth noting that, µ = 0 if the in�nitesimal η is linear
in u, due to the presence of ∂η

k

∂uk , where k ≥ 2 in Eq. (10).

De�nition 2.1. The function u = Θ(x, t) is an invariant so-
lution of Eq. (3) corresponding to the in�nitesimal generator
Eq. (6) provided that

1. u = Θ(x, t) satis�es Eq. (3).
2. u = Θ(x, t) is an invariant surface of Eq. (5), that is to

say
ξ2(x, t, Θ)Θt + ξ1(x, t, Θ)Θx = η(x, t, Θ).

3 Lie symmetries and reduction for
Eq. (1)

Suppose that Eq. (1) is an invariant under Eq. (5), we have
that

ūαt̄ + βū2ūx̄ + γ ūx̄x̄x̄x̄x̄ = 0, (11)
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so that, u = u(x, t) satis�es Eq. (1). Using Eq. (5) in Eq. (11),
we get the invariant equation

η0
α + (2βuux)η + (βu2)ηx + γηxxxxx = 0. (12)

Putting the values of η0
α, ηx and ηxxxxx fromEq. (5) and Eq.

(9) into Eq. (12) and isolating coe�cients in partial deriva-
tives with respect to x and power of u, we get

∂αt η − u∂αt ηu − βu2ηx − γηxxxxx = 0,(
α
n

)
∂nt (η) −

(
α

n + 1

)
Dn+1
t (ξ2) = 0, n = 1, 2, ...

ξ1
u = ξ2

u = ξ1
t = ξ2

x = ηuu = 0,

5ξ1
x − αξ2

t = 0.

Solving these equations, we get:

ξ1 = c1 + xαc2, ξ2 = 5tc2, η = −2αuc2,

where c1 and c2 are arbitrary constants. Thus in�nitesimal
symmetry group for Eq. (1) is spanned by the two vector
�elds

X1 = ∂
∂x , X2 = xα ∂∂x + 5t ∂∂t − 2uα ∂∂u . (13)

The similarity variables for the in�nitesimal generator
X2 can be obtained by solving the following equations

dx
αx = dt

5t = − du2αu .

Solving the above equations, we get

z1 = xt−
α
5 , z2 = ut

2α
5 . (14)

Hence, from the symmetry X2, we get the group-invariant
solution

u = t−
2α
5 f (ξ ), ξ = xt−

α
5 , (15)

in Eq. (15), f is an arbitrary function of ξ . Using Eq. (15), Eq.
(1) is transformed to a special nonlinear ODE of fractional
order.

Consider the following theorem

Theorem 3.1. The similarity transformation Eq. (15) re-
duces Eq. (1) to the nonlinear ODE of fractional order as be-
low: (

P1− 7α
5 ,α

5
α

f
)

(ξ ) + βf 2fξ + γfξξξξξ = 0 (16)

with the EK fractional di�erential operator [22]

(
Pξ

2 ,α
β f

)
= Πn−1

j=0

(
ξ2 + j − 1

β
d
dξ

)
(Kξ

2+α,n−α
β f )(ξ ), (17)

n =
{

[α] + 1, α ≠ N,
α, α ∈ N,

(18)

where

(Kξ
2 ,α
β f )(ξ ) =

{
1
Γ(α)

∫∞
1 (u − 1)α−1u−(ξ2+α)f (ξu

1
β )du, α > 0,

f (ξ ), α = 0,
(19)

is the EK fractional integral operator [74, 75].
Proof. Let n − 1 < α < 1, n = 1, 2, 3,.... Based on the RL
fractional derivative in Eq. (15), we get

∂αu
∂tα = ∂n

∂tn

[
1

Γ(n − α)

t∫
1

(t − s)n−α−1s
α
5 f (xs−( α5 ))ds

]
. (20)

Let v = t
s , ds = − t

v2 dv. Thus, Eq. (20) becomes

∂αu
∂tα = ∂n

∂tn

[
tn−

7α
5

1
Γ(n − α)

∞∫
1

(v−1)n−α−1v−(n+1− 7α
5 )f (ξv

α
5 )dv

]
.

(21)
ApplyingEK fractional integral operator Eq. (19) inEq. (21),
we get

∂αu
∂tα = ∂n

∂tn

[
tn−

7α
5

(
K1− 2α

5 ,n−α
5
α

f
)

(ξ )
]
. (22)

We simplify the right hand side of Eq. (22). Consider ξ =
xt−

α
5 , ϕ ∈ (0,∞), we acquire

t ∂∂t ϕ(ξ ) = tx(−α5 )t−
α
5 −1ϕ′(ξ ) = −α5 ξ

∂
∂ξ ϕ(ξ ). (23)

Hence,

∂n
∂tn

[
tn−

7α
5

(
K1− 2α

5 ,n−α
5
α

f
)

(ξ )
]

= (24)

∂n−1

∂tn−1

[
∂
∂t

(
tn−

7α
5

(
K1− 2α

5 ,n−α
5
α

f
)

(ξ )
)]

=

∂n−1

∂tn−1

[
tn−

7α
5 −1
(
n − 7α

5 − α5 ξ
∂
∂ξ

)(
K1− 2α

5 ,n−α
5
α

f
)

(ξ )
]
.

Repeating n − 1 times, we have

∂n
∂tn

[
tn−

7α
5

(
K1− 2α

5 ,n−α
5
α

f
)

(ξ )
]

= (25)

∂n−1

∂tn−1

[
∂
∂t

(
tn−

7α
5

(
K1− 2α

5 ,n−α
5
α

f
)

(ξ )
)]
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=

∂n−1

∂tn−1

[
tn−

7α
5 −1
(
n − 7α

5 − α5 ξ
∂
∂ξ

)

×
(
K1− 2α

5 ,n−α
5
α

f
)

(ξ )
]
.

.

.

= t−
7α
5 Πn−1

j=0

[(
1 − 7α

5 + j − α5 ξ
∂
∂ξ

)

×
(
K1− 2α

5 ,n−α
5
α

f
)

(ξ )
]
.

Applying EK fractional di�erential operator Eq. (17) in Eq.
(25), we get

∂nu
∂tn

[
(tn−

7α
5

(
K1+ α

5 ,n−α
5
α

f
)

(ξ )
)]

= (26)

t−
7α
5

(
P1− 5α

6 ,α
5
α

f
)

(ξ )

Substituting Eq. (26) into Eq. (22), we get

∂αu
∂tα = t−

7α
5

(
P1− 7α

5 ,α
5
α

f
)

(ξ ) (27)

Thus, Eq. (1) can be reduced into a fractional order ODE(
P1− 7α

5 ,α
5
α

f
)

(ξ ) + βf 2fξ + γfξξξξξ = 0 (28)

The proof of the theorem is completed.

4 Conservation laws
We now construct the Cls for Eq. (1). We start with some
de�nitions. The RL left-sided time-fractional derivative
given by

oDαt u = Dnt (oIn−αu), (29)

where Dt is the total di�erential operator with respect to
t, n = [α] + 1, and oIn−αu represents the left sided time-
fractional integral of n − α order given by

(oIn−αu)(x, t) = 1
Γ(n − α)

t∫
0

u(θ, x)
(t − θ)1−n+α dθ. (30)

In Eq. (30), Γ(z) represents Gamma function.

A Cls for Eq. (1) is represented as

Dt(Ct) + Dx(Cx) = 0, (31)

where Ct = Ct(x, t, u, ...), Cx = Cx(x, t, u, ...), and Eq. (31)
holds for all solutions u(x, t) of the Eq. (1).

We now apply Ibragimovmethod [48] for constructing
the Cls of Eq. (1). Lagrangian for Eq. (1) can be presented
as

L = v(x, t)
(
∂αu
∂tα + βu2ux + γuxxxxx

)
(32)

where v(x, t) is another dependent variable. The Euler-
Lagrange operator [45, 46] is

δ
δu = ∂

∂u + (Dαt )* ∂
∂Dαt u

− Dx
∂
∂ux

+ D2
xx

∂
∂uxx

− D3
xxx

∂
∂uxxx

(33)

+ D4
xxxx

∂
∂uxxxx

− D5
xxxxx

∂
∂uxxxxx

,

where (Dαt )* is the adjoint operator of (Dαt ). The adjoint
equation to Eq. (1) is given by [48]

δL
δu = 0. (34)

Consider two independent variables x, t and one depen-
dent variable u(x, t), we have that

X̄ + Dt(ξ2)l + Dx(ξ1)l = W δ
δu + DtN t + DxNx , (35)

in Eq. (35), l represent the identity operator, δ
δu is the Euler-

Lagrangian operator, N t and Nx represent the Noether op-
eration, X̄ is de�ned by

X̄ = ξ2 ∂
∂t + ξ1 ∂

∂x + η ∂∂u + η0
α

∂
∂Dαt u

+ ηx ∂
∂ux

+ ηxx ∂
∂uxx

(36)

+ ηxxx ∂
∂uxxx

+ ηxxxx ∂
∂uxxxx

+ ηxxxxx ∂
∂uxxxxx

,

and the Lie characteristic functionW is given by

W = η − ξ2ut − ξ1ux . (37)

When RL time-fractional derivative is used in Eq. (1),
N t is de�ned by [45, 46]

N t = ξ2l +
n−1∑
k=0

(−1)koDα−1−k(W)Dkt
∂

∂oDαt u
− (−1)n

(38)
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× J(W , Dnt
∂

∂oDαt u
).

With J given by

J(f , g) = 1
Γ(n − α)

t∫
0

T∫
t

f (ξ2, x)g(µ, x)
(µ − ξ2)α+1−n dµdt. (39)

For Eq. (1), the operator Nx is given by

Nx = ξ1l + W
(

∂
∂ux

− Dx
∂

∂uxx
+ D2

x
∂

∂uxxx

− D3
x

∂
∂uxxxx

+ D4
x

∂
∂uxxxxx

)
+ Dx(W)

(
∂

∂uxx

− Dx
∂

∂uxxx
+ D2

x
∂

∂uxxxx
− D3

x
∂

∂uxxxxx

)

+ D2
x(W)

(
∂

∂uxxx
− Dx

∂
∂uxxxx

+ D2
x

∂
∂uxxxxx

)

+ D3
x(W)

(
∂

∂uxxxx
− Dx

∂
∂uxxxxx

)

+ D4
x(Wi)

∂
∂uxxxxx

(40)

The invariance condition for any given generator X of
Eq. (1) and its solutions reads

(X̄L + Dt(ξ2)L + Dx(ξ1)L)|Eq.(1) = 0, (41)

and consequently the Cls of Eq. (1) can be written as

Dt(N tL) + Dx(NxL) = 0. (42)

Now, we present the Cls for Eq. (1) using the basic
de�nitions presented above. We consider two cases corre-
sponding to the order of α.

Case 1. When α ∈ (0, 1), with the help of Eq. (38) and
Eq. (39), the components of the conserved vectors are

Cti = ξ2L + (−1)0oDα−1
t (Wi)D0

t
∂L

∂(oDαt u) − (−1)1

× J
(
Wi , D1

t
∂L

∂(oDαt u)

)
= voDα−1

t (Wi) + J(Wi , vt),

Cxi = ξ1l + Wi

(
∂
∂ux

− Dx
∂

∂uxx
+ D2

x
∂

∂uxxx
− D3

x
∂

∂uxxxx

+ D4
x

∂
∂uxxxxx

)
+ Dx(Wi)

(
∂

∂uxx
− Dx

∂
∂uxxx

+ D2
x

∂
∂uxxxx

− D3
x

∂
∂uxxxxx

)
+ D2

x(Wi)
(

∂
∂uxxx

− Dx
∂

∂uxxxx
+ D2

x
∂

∂uxxxxx

)
+ D3

x(Wi)
(

∂
∂uxxxx

− Dx
∂

∂uxxxxx

)
+ D4

x(Wi)
∂

∂uxxxxx

= Wi

(
βu2v + D4

xγv
)

+ Dx(Wi)
(
− D3

xγv
)

+ D2
x(Wi)

(
D2
xγv
)
− γvxD3

x(Wi) + γvD4
x(Wi),

where i = 1, 2 and the functionsWi are given by

W1 = −ux , W2 = −2uα − 5tut − αxux .

Case 2.When α ∈ (1, 2), with the help of Eq. (38) and
Eq. (39), the components of the conserved vectors are

Cti = ξ2L + (−1)0oDα−1
t (Wi)D0

t
∂L

∂(oDαt u) − (−1)1

J
(
Wi , D1

t
∂L

∂(oDαt u)

)
+ (−1)1oDα−2

t (Wi)D1
t

∂L
∂(oDαt u) − (−1)1J

(
Wi , D1

t
∂L

∂(oDαt u)

)

= voDα−1
t (Wi) + J(Wi , vt) − vtoDα−2

t (Wi) − J(Wi , vtt)

Cxi = ξ1l + Wi

(
∂
∂ux

− Dx
∂

∂uxx
+ D2

x
∂

∂uxxx
− D3

x
∂

∂uxxxx

+ D4
x

∂
∂uxxxxx

)
+ Dx(Wi)

(
∂

∂uxx
− Dx

∂
∂uxxx

+ D2
x

∂
∂uxxxx

− D3
x

∂
∂uxxxxx

)
+ D2

x(Wi)
(

∂
∂uxxx

− Dx
∂

∂uxxxx
+ D2

x
∂

∂uxxxxx

)
+ D3

x(Wi)
(

∂
∂uxxxx

− Dx
∂

∂uxxxxx

)
+ D4

x(Wi)
∂

∂uxxxxx

= Wi

(
βu2v + D4

xγv
)

+ Dx(Wi)
(
− D3

xγv
)

+ D2
x(Wi)

(
D2
xγv
)
− γvxD3

x(Wi) + γvD4
x(Wi),

where i = 1, 2 and the functionsWi are given by

W1 = −ux , W2 = −2uα − 5tut − αxux .
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5 Explicit power series solutions
Here, we investigate the exact analytic solutions via power
series method [76] and symbolic computations [77] for Eq.
(28). Set

f (ξ ) =
∞∑
n=0

anξ n , (43)

from Eq. (43), we can have

f ′ =
∞∑
n=0

nanξ n−1, (44)

f (5) =
∞∑
n=0

n(n − 1)(n − 2)(n − 3)(n − 4)anξ n−5.

Substituting Eqs. (44) into Eq. (28), we obtain

∞∑
n=0

Γ(2 − 12α
5 + nα

5 )
Γ(2 − 7α

5 + nα)
5
anξ n + β

∞∑
n=0

∞∑
n=0

anξ n

×
∞∑
n=0

(n + 1)an+1ξ n + γ

∞∑
n=0

(n + 5)(n + 4)(n + 3)

× (n + 2)(n + 1)an+5ξ n = 0. (45)

Comparing coe�cients in Eq. (45) when n = 0, we obtain

a5 = 1
120γ

(
Γ(2 − 12α

5 )
Γ(2 − 7α

5 )
a0 + βa2

0a1

)
, (46)

when n ≥ 1, we have

an+5 = 1
(n + 5)(n + 4)(n + 3)(n + 2)(n + 1)γ

×
{
Γ(2 − 12α

5 + nα
5 )

Γ(2 − 7α
5 + nα)

5
an

+ β
n∑
k=0

k∑
j=0

aj(n − k + 1)an−k+1

}
.

Thus, the power series solution for Eq. (28) can be repre-
sented in the form:

f (ξ ) = a0 + a1ξ + a2ξ2 + a3ξ3 + a4ξ4 + a5ξ5

+
∞∑
n=1

an+5ξ n+5

= a0 + a1ξ + a2ξ2 + a3ξ3 + a4ξ4 + 1
120γ

(
Γ(2 − 12α

5 )
Γ(2 − 7α

5 )
a0

+ βa2
0a1

)
ξ5 +

∞∑
n=1

1
(n + 5)(n + 4)(n + 3)(n + 2)(n + 1)γ

×
{
Γ(2 − 12α

5 + nα
5 )

Γ(2 − 7α
5 + nα)

5
an + β

n∑
k=0

k∑
j=0

aj

× (n − k + 1)an−k+1

}
ξ n+5

Consequently, we acquire the exact power series solution
for Eq. (28) as

u(x, t) = a0t−
2α
5 + a1xt−

3α
5 + a2x2t−

4α
5 + a3x3t−α

+ a4x4t−
6α
5 + 1

120γ

(
Γ(2 − 12α

5 )
Γ(2 − 7α

5 )
a0 + βa2

0a1

)
x5t−

7α
5

+
∞∑
n=1

1
(n + 5)(n + 4)(n + 3)(n + 2)(n + 1)γ

×
{
Γ(2 − 12α

5 + nα
5 )

Γ(2 − 7α
5 + nα)

5
an + β

n∑
k=0

k∑
j=0

aj (47)

× (n − k + 1)an−k+1

}
xn+5t−

(n+7α)
5

6 Physical interpretation of the
power series solution for Eqs.
(47)

In order to have clear and proper understanding of the
physical properties of the power series solution, the 3-D,
2-D and contour plots for the solution Eqs. (47), are plotted
in Figures 1-4 by using suitable parameter values.

Figure 1: 3D plot of (47) a0 = a1 = a2 = 1, a3 = 0.5, a4 = 1.7, β =
2, γ = 1, α = 0.5, Γ = 0.85
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Figure 2: Contour plot of (47) a0 = a1 = a2 = 1, a3 = 0.5, a4 =
1.7, β = 2, γ = 1, α = 0.5, Γ = 0.85

Figure 3: 3D plot of (47) a0 = a1 = a2 = 0.8, a3 = a4 = 1, β =
1.2, γ = 3, α = 0.9, Γ = 0.1

Figure 4: Contour plot of (47) a0 = a1 = a2 = 0.8, a3 = a4 = 1, β =
1.2, γ = 3, α = 0.9, Γ = 0.1

7 Concluding remarks
In this research, we analyzed time fractional SMK by
means of Lie symmetry analysis using the RL derivative.
We reduced the governing equation to a nonlinear ODE of
fractional order. The obtained fractional ODE was solved
using a power series technique. Ibragimov’s nonlocal con-
servation theoremwas applied to establish Cls for the gov-
erning equation. Some 3-D, 2-D, and contour plots were
also presented.
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