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We apply reproducing kernel method to the density-dependent diffusion Nagumo
equation. Powerful method has been applied by reproducing kernel functions. The
approximations to the exact solution are obtained. In particular, series solutions
are obtained. These solutions demonstrate the certainty of the method. The results
acquired in this work conceive many attracted behaviors that assure further work
on the Nagumo equation.
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Introduction

Nagumo equation is presented as [1]:

ov_ 0 ov

—=—|V"— |+v(1-V)(v—a), aecR m>1 1

Py 6x( axj (I-vv-a) (1)
Utilizing the subalgebra L, ; we get the analogue variables and solutions v(¢,x) = V' (7),

7 = x —ct. The reduced ODE is obtained:

(V@) V'@)] +eV' (@) +V(@N-V@IV(r)-al=0 2)
Solutions of eq. (2) are traveling wave solutions of eq. (1). The natural conditions are

given:
lim V(r)=4, limV(r)=8B 3)

where 4, B € {0,1,} are considered for investigating eq. (2). The initial conditions V'(0) = 0.5
and V'(0)= A, (A eR) and particular A =0, which are defined by the implementation at hand
are used in our calculations.
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In the mathematics area, many problems have exact solutions and these models play
the role of test problems to investigate the reliability and power of approximation methods.
On the other hand, some applicable and significant models in physics and engineering have
not exact solutions and we have to utilize just the powerful methods with strong mathematical
background. The reproducing kernel method (RKM) is one of the most reliable method which
can be analyzed it very deeply for many problems without exact solutions. To the best of our
knowledge, the initial value problem of eq. (2) has not exact solution and is very important from
the application side.

Reproducing kernel theory has valuable applications in integral equations, differential
equations, probability, and statistics. This theory is implemented for many model problems in
recent years. We use RKM to search the density-dependent diffusion Nagumo equation in this
work.

The notion of reproducing kernel has been presented by Zaremba [2]. Mercer has
introduced the following inequality [3]:

Zn: m(x,,1,)5&, 20

p-q=1

He presented the reproducibility of the kernel:
(1) = (v(x), m(x,1))

Aronszajn [4] reduced the studies of the formers and presented a systematic reproduc-
ing kernel theory containing the Bergman kernel function. For more details see [5-13].

Reproducing kernel functions
Definition 1. WZI[O,I] is given:
W,10,1]1={f € AC[0,1]: /" € L’[0,1]}

where AC shows the space of absolutely continuous functions.

(1.8 = [[F e+ f'g'@]dn. f.g eW10.1] (4)

and

Uy =7y 7 <Wion ®

are the inner product and the norm in I, [0,1], respectively. Reproducing kernel function T.(5)
of W,[0,1] is given [3]:

__ _ -
T,(5)= 2sinh(1)[008h(77+§ 1)+ cosh(n —¢g|-1)] (6)
Definition 2. We describe the space ”W; [0,1] by:
“W30,1]={f € AC[0,1]: f', f" € AC[0,1], /¥ € L’[0,1], £(0) =0 = f'(0)}
(FV)oys = 2SO O+ [ 100 dn, fve WIN01]

and
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are the inner product and the norm in °W,’[0,1], respectively.

where

and

Theorem 3. Reproducing kernel function 7, of “W;[0,1] is given:

5
ZC,-H(G)??’, 0<np<¢<l
Yo (m= 1:50 o
de(g)ﬂla 0<¢g<n<il
i=0

I I
(=0, ¢(©)=0, a(@)=7¢" a@=7¢

1 1
Cs(g)——ﬂg, () m

1 1
d)=—=¢°, d(c)=——c*
(6) 0° ,(6) 2a®

1 1
d(c)=—¢c +—¢2
,(6) ¢ T2

dy(6)=0, di(c)=0, di(5)=0
Proof. Let f € W,[0,1]and 0<¢ <1. Define r. by eq. (7). We have:

4
Y i+, (o', 0<p<g<l

’ i=0

r(m=1,

d(i+d, (', 0<g<p<l

i=0

3
D E+D+2)c,, (o', 0<np<g<l
i=0

rim =9,
i+ +2)d,, (', 0<c<p<]

S+ 2+ e (s 0<y<g<l
=1
D+DE+2)(i+3)d,,, (o', 0<g<p<l
ZI:(I' + 1) +2)(i +3)i +4)c,,, (o)’ 0<np<g<1
754)(77) _ izlo
D+D)i+2)(i+3)i+4)d, (', 0<g<p<l

i=0
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5 120¢5(¢), 0<np<g<l1
() =
: 120d,(g), 0<¢c<n<l
We get:

(£ )os = 28O O+ [ 19 G ()i =
= 'O+ ")) + (D (1)~ f"(O)r(0) -
—f' (W )+ 1) )+ [ £y (mdn =

=¢(9)/(0)+2¢,(5) /" (0) +
+6[d, (5) +4d,(5) +10d, ()] /"'(1) — 6¢,() /"(0) -
—24[d,(5) +5d5(5)1 /(1) + 24¢,(5) f'(0) +

+[120¢,()/"Onydn + [120d,(¢) ") =

=[ci(6) +24¢,(9)1/'(0) + 2[c,(6) = 3¢, ()1 (0) +
+6[d; () +4d,(5) +10d,(5)]1/"(1) - 24[d,(5) + 5d5 ()] /' (1) +
+120[c5(6) —ds ()] (6) =
=1

Solutions in ° ¥, [0,1]
The solution of eq. (1) is investigated in the °I¥,[0,1] in this section. We define:

A:°W;[0,1]1— W,[0,1]
as

Af () =0.51"(m) +¢f"(m)+0.25 f () ®)
model problem of eq. (2) changes to the following problem:

{Af=M(77,f), 1 €[0,1]
f(0)=0=7"0)

Theorem 4. Ais a boundezd linear operator.
Proof. We will show ||Lf ||W1 <M || S0, where P> 0. By egs. (4) and (5), we obtain:
2 2

)

|47l = (47,47 ),) = j[Af(n)z +Af' () Jdn
We get '
G R VIONAC) I
by reproducing property and
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AF ) = (1), 4r,0)), 2

SO

[Aran|<|f

where B > 0. Therefore, we get:

=h ||u

|Ar

[ | o
W w3

1

JL(4r) @] dn <P |uf:

03
"
0

Since

AN =(fOLr)O), 5

then
(AN < Mo 473 = B oy
where P, > 0. Therefore, we have:
[N @F <P |1,

and

1

Jlcaryay dn<p |1,

0
that is

Jarty < I{ [N +[A4 ] fdn < (B + B )|/

o W3
where P =P’ + P} >0 is a positive constant.

The main results

Letg(m) =T, () and y,(7) = 4"¢,(x), A" is adjoint operator of L. The orthonormal
system {¥.(7)},, of ° W3 [0,1] can be achieved:

V=Y pnn. (5,70, i=12,.) (10

Theorem 5. Let {1}, be dense in [0,1] and ,(n) = 4.7, (g)| _ . Then the sequence
{w.(m)}z2, is a complete system in °IW,'[0,1]. s
Proof. By reproducing property and property of the operator we get:

w1 = (A'8)1) = (4 $)€)or () = (#)(6). Acr, () = 41,9 _,

Itis clear that y, (1) € "W, [0,1]. For each fixed £ () € “W,[0,11, let { £ (17),, (1)) =
(i=1,2,..):

(£, (4°8)() = (A (). 4.0} = (Af)(,) =0
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where {,}7, is dense in [0,1]. Therefore, (4f)(7)=0. u=0 by the 4™".
Theorem 6. If f(n) is the exact solution of eq. (9), then:

f= izl‘,ﬂ,-kM(ﬂk’fk)@i(U)

i=1 k=1

(11)

where {(77,)}, is dense in [0,1].

Proof. We get:
A

o VAN
fn= Z<f (n),‘I’f(n)> Wi(n) =
i VAN

- izﬂ!k <f(77)’lPk (77)>u Wzs \Pi(ﬂ) =
AN

ZZﬁ (ron. 4, (77)>0W23 P () =

© i A
= DX B (A (). (), () =

i

© N
2D BuAf () Wi () =

k=1

o i A
PRV AU

k=1

from the eq. (10) and uniqueness of solution of eq. (9).
The approximate solution f, can be achieved:

n_ i A
o= ZZ:BikM(nksfk)\Pi(n)

i=1 k=1
op3 ™ 0, n,>n, (n—>wo) and M(n,f) is continuous for

(12)

Lemma 7. If \f, = f

n €[0,1], then [3]:

Min,, f,.\(n,)]1—=> Mln, f()] as n— o

Theorem 8. For any fixed f; (17) € W, [0,1] assume that the following conditions are hold:

1,61 = B, ) (13)

i (14)

B, = My, £ ()]

k=1

7. o3 is bounded
- {ni}jilzls densein [0,1],
~ M(n,f)eW,[0,1] forany f (1) € W;[0,1]
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Then £, (17) in eq. (14) converges to the exact solution of eq. (11) in ° W, [0,1] and

f(m)= 23,-;,- (m),

where B, is given by eq. (14).
Proof. We demonstrate the convergence of f, (77) firstly. By eq. (13), we obtain:

AN
Joa = 1,0+ B,; Wi (1) (15)

A
from the orthonormality of {¥:},, we acquire:

n+l

[ +B + A, ==Y B (16)
i=1

|2_ 2+B2 _

n+l

f;z+1
S

J,

o3 > We get:

So

ntl ot

from boundedness of

o0
ZBiz <
i=l1

{B}el’, (i=1,2,..)
Let m > n, by (fm —fmfl)J_(f,H —fmfz)J_...J_(an —fn),we acquire:

1o = Sllows = = fos ¥ S = Sz + e fra = o,

<

2
03
"

ﬁwl _f;t

<|

1, —fm4||2 o+

2
o3 =
L6

m
= ZBf -0, m,n— oo,

i=n+1
where L denotes the orthogonality. Taking into consideration the completeness of *W;[0,1],
there exists f (1) €” W,'[0,1], such that:
S —> f(m) as n— o
— Taking limits in eq. (10), gives:

f(m)= ib’,»l;i (m)

Since
(400 = 38,4, (.0, m), = S8, (v ). 9,0, = S8, (v )

03 03
i=1 () i=1 "

we get:

n 0

5, (A= Y5 <J,- SV AT (n>> =38 {v.(mv,@), . =B,

j=1 o3 i=1 2
J W2
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If n=1, then:
Af (n,)=MIn,, fo(17,)] (17)

If n=2, then:
B (AN ,) + Py (Af )11,) = B M1y, fo (1)1 + B M [y, 11 ()] (18)

From eqs. (17) and (18):

(Af)(n,) = M(n,, £,(m,)]
Additionally, it is simple to show by induction that:

ANm)=Mln,, f,,(1,)] (19)

Therefore, we get:

(Af)() = Mg, f(5)]

that is, f(77) is the solution of eq. (9) and:

Sm)= iBi;i

where B, are given by eq. (14). This completes the proof.

Theorem 9. 1f f € "W,'[0,1] then:

Jo=Sloys 20, n—oo
2
Additionally a sequence || f, — f|,,s is monotonically decreasing in n.
Proof. We acquire: ?
0 i A\
f;l _f 0W23 = Z Zﬂikf(nk’f;(a)\yi
i=n+1k=1 0 3
"

by egs. (11) and (12). Thus, we get:

fi=f op ™ 0, n—>o
2 2
) o i AN 0 i AN
f=r o3 = ZZﬁikf(ﬂkafk)\Pi = Z|:ZﬂikM(77kafk)\Pi:|
i=n+1 k=1 o3 i=n+1| k=1
Obviously, | f, = fllo,s 1s monotonically decreasing in n. Now, we are ready to show

2y

the effectiveness and accuracy of the presented technique in this section. We found approximate
solutions of the Nagumo equation. Approximate solutions are given in tabs. 1-4. We calculated
all our results by MAPLE 16. We used:

for our numerical results.
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Table 1. Approximate solutions of V'(z) when m =1, « =0.6, V' (0)=0.5,
V'(0)=0 for varying ¢

x/c 4 2 1 0.8 0.6

0 0.500000 0.500000 0.500000 0.500000 0.500000
5 0.524629 0.542982 0.568164 0.577177 0.588971
10 0.544890 0.569795 0.592220 0.596909 0.600339
15 0.559630 0.583898 0.598078 0.599581 0.600019
20 0.570374 0.591380 0.599523 0.599943 0.599998
25 0.578224 0.595373 0.599881 0.599992 0.599999
30 0.583973 0.597513 0.599970 0.599998 0.600000
35 0.588109 0.598569 0.599982 0.599999 0.600000
40 0.590711 0.598650 0.599936 0.599994 0.599999
45 0.590711 0.597755 0.599831 0.599986 0.599999

Table 2. Approximate solutions of V() when m =1, =0.2,

V(0)=0.5, V'(0)=0 for varying ¢

x/c 0.4 0.6 1.0 2.0

0 0.500000 0.500000 0.500000 0.500000
5 0.105788 0.207712 0.290385 0.370545
10 0.156800 0.197117 0.229971 0.295967
15 0.200621 0.199541 0.211500 0.257317
20 0.200577 0.199935 0.204636 0.235579
25 0.199916 0.199991 0.201905 0.222629
30 0.200000 0.199999 0.200788 0.214616
35 0.199972 0.199998 0.200404 0.209759
40 0.199836 0.199991 0.200641 0.207804

Table 3. Approximate solutions of V' (z) when m =1, ¢=0.3, V(0)=0.5, V'(0)=0
for varying o

x/o. 0.3 0.4 0.5 0.6 0.7 0.8

0 | 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000
5 0.211963 0.369630 0.500000 0.615833 0.720430 0.812370
10 | 0.303934 0.405871 0.500000 0.596365 0.697911 0.809419
15 | 0.300229 0.398670 0.500000 0.600775 0.699829 0.796569
20 | 0.299599 0.400288 0.500000 0.599832 0.700185 0.800677
25 | 0.300160 0.399936 0.500000 0.600035 0.699926 0.799949

Table 4. Approximate solutions of V() when m =1,¢=1.0,V(0)=0.5,'(0)=0
for varying o

x/a

0.3

0.4

0.5

0.6

0.7

0.8

0

0.500000

0.500000

0.500000

0.500000

0.500000

0.500000

5

0.359637

0.430018

0.500000

0.568164

0.633221

0.694019

10

0.316199

0.407192

0.500000

0.592220

0.681381

0.764472

15

0.304763

0.401768

0.500000

0.598078

0.694499

0.786410

20

0.301433

0.400437

0.500000

0.599523

0.698343

0.794531

25

0.300434

0.400108

0.500000

0.599881

0.699497
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Conclusion

We discussed the RKM for investigating the the density-dependent diffusion Nagu-

mo equation in this paper. An example was chosen to present the computational accuracy. As
shown in tabs. 1-4 this method is very accurate. We obtained some significant reproducing
kernel functions in this work. We proved many useful theorems in the paper.
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