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ABSTRACT
Thepresent studyaims to investigate anew fractionalmodel describing thedynamical behaviour
of the tuberculosis infection. In this new formulation, we use a recently introduced fractional
operator with Mittag–Leffler nonsingular kernel. To solve and simulate the proposed model, a
new and efficient numerical method is developed based on the product-integration rule. Sim-
ulation results are provided and some discussions are given to verify the theoretical analysis.
The results indicate that employing the nonsingular operator can extract the hidden aspects
of the model under consideration while these features are invisible when we use the ordinary
time-derivatives. Therefore, the non-integer calculus supplies more flexible models describing
the asymptotic behaviours of the real-world phenomena and helps us to better understand their
complex dynamics.
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1. Introduction

Mathematicalmodelling is an important tool todescribe
different aspects of the natural phenomena more pre-
cisely. Among the existing excellent works in this direc-
tion, themathematical models for different kinds of dis-
eases have extensively attracted the attention of many
scientists. One of the main advantages in this area is
to identify the impressive factors preventing the spread
of diseases for the purpose of treatment. This property
makes this field of study more attractive for both math-
ematicians and biologists. Recently, the fractional cal-
culus has been widely used to model and describe the
biological processes. Somenoticeable efforts havebeen
done in [1–3] for the fractional modelling of membrane
charging, nerve axon and vestibular ocular models, vis-
coelastic model of cells, etc. In recent years, the non-
integer calculus has also been employed to investigate
and discuss the spread of diseases. In [4], the malaria
transmission was modelled by a fractional formalism.
In [5], a time-fractional model of immunogenic tumour
was studied. In [6], a fractional model of HIV infection
was introduced. In [7], a fractional HIV/HCV coinfection
model was employed for the effect of HIV viral load.
More recent study in this direction can also be found
in [8].

Tuberculosis is a bacterial disease, which is known as
one of the most important causes of death in the world
[9]. This disease is caused by Mycobacterium tuberculo-
sis and spread with active tuberculosis through the air

by people. A good review on the mathematical model
of tuberculosis can be found in [10]. In [11], an interest-
ing model was investigated for this infectious disease
for thepurposeof treatmentby anoptimal control strat-
egy. In [12], a time-delay model was introduced for the
tuberculosis. In [13], numerical simulations were pro-
vided using the tuberculosis data from Angola. In [14],
a new tuberculosis model was developed to investigate
the impact of treatment for both latently and actively
infected tuberculosis populations. In [15], a tuberculo-
sis dynamic was studied and used to reduce the infec-
tion in the Philippines’ population. As well as numerous
works mentioned above, there are some studies on the
fractional modelling of tuberculosis infection. In [16],
a fractional multi-strain tuberculosis model was pro-
posed and an approximation technique was developed
to obtain the endemic solution. In [17], a fractional anal-
ysiswas carriedout to identify the transmissiondynamic
of a tuberculosis model. In [18], a new fractional model
was introduced for the tuberculosis infection. In [19],
the authors developed a fractionalmodel to explore the
impact of diabetes and resistant strains on the dynamic
of tuberculosis. In [20], the tuberculosis dynamic was
explored by a fractional-order model in the Caputo
sense. In [21], an optimal control strategy was studied
for a fractional tuberculosis model containing the effect
of diabetes and resistant strains.

In recent years, the fractional calculus has gained
the importance and popularity for the modelling of the
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real-world problems [22–28]. However, many scientists
have shown that the conventional form of the frac-
tional derivatives with singular kernel may not be able
to characterize the nonlocal dynamics in an appropri-
ate manner; hence, to better investigate the real-world
phenomena with hereditary property, there is a need
to apply new types of the fractional operators with
nonsingular kernel. For this purpose, a new differential
operatorwithMittag–Leffler (ML) kernel (ABC) has been
recently developed in [29] and its main properties have
been deeply investigated [30, 31]. Nowadays, this new
operator has been extensively applied to describemany
realistic systems [32–35]; however, the application of
this operator for more practical cases (such as those in
[36, 37]) should be explored and extended. In addition,
more efficient numerical methods need to be improved
to solve theABC fractionalmodels effectively. Thismoti-
vates us to study the characteristics of the tuberculosis
infection by using its new formulation in the fractional
ABC calculus. We also develop an efficient numerical
technique on the basis of the product-integration (PI)
rule to solve the above-mentioned equations properly.
Simulation results indicate that employing nonsingular
operator can extract the hidden aspects of the model
under consideration, which may be invisible when we
use this model in a classic integer manner. Therefore,
more flexible models are available by the non-integer
calculus to investigate the real-world phenomena and
understand their complex dynamics.

The rest of this paper is organized as follows. Some
preliminary results are given in Section 2. Section 3
is devoted to the new fractional tuberculosis model
and its main characteristics. A generalized numerical
method is proposed in Section 4 solving the ABC tuber-
culosismodel. Numerical and comparative are provided
in Section 5. Finally, the paper is finished in Section 6 by
some concluding remarks.

2. Preliminary results

In this section, some preliminaries are presented for
the new direction of the non-integer calculus involving
the nonsingular operators. Following [29], we introduce
the ABC operator with ML kernel and recall its main
characteristics.

Definition 2.1: Let 0< t< T and φ ∈ H
1(0, T). Then,

the ABC fractional operator of order ζ ∈ (0, 1) of the
function φ is given by

ABC
0D

ζ
t φ(t) = A(ζ )

1 − ζ

∫ t

0
Eζ

[−θ(t − ρ)ζ
] dφ(ρ)

dρ
dρ,

(1)

where θ = ζ/(1 − ζ ), A(ζ ) with the property A(0) =
A(1) = 1 denotes the normalization function, and Eζ is
the one-parameterML function. The associated integral

operator is also given as

ABC
0I

ζ
t φ(t) = 1 − ζ

A(ζ )
φ(t)

+ ζ

A(ζ )�(ζ )

∫ t

0
(t − ρ)ζ−1φ(ρ)dρ. (2)

Note that, the integral operator (2) recovers the orig-
inal functionwhen ζ = 0, while it becomes the ordinary
integral for ζ = 1.

Definition 2.2: The constant φ∗ is the equilibrium
point of the system ABC

0D
ζ
t ϕ(t) = f (φ(t))with the initial

condition φ(0) = φ0 if and only if f (φ∗) = 0.

In the following, some useful properties are given for
the ABC fractional operator [29].

Property 2.1: Let φ1,φ2 ∈ H
1(0, T) be such that

ABC
0D

ζ
t φ1(t), ABC0D

ζ
t φ2(t) exist a.e., and k1, k2 ∈ R. Then,

the expression ABC
0D

ζ
t (k1φ1(t) + k2φ2(t)) exists a.e., and

ABC
0D

ζ
t (k1φ1(t) + k2φ2(t))

= k1
ABC

0D
ζ
t φ1(t) + k2

ABC
0D

ζ
t φ2(t). (3)

Property 2.2: For a constant function φ(t) ≡ c, the
ABC operator is zero, i.e.

ABC
0D

ζ
t c = 0. (4)

Property 2.3: The Laplace transform of the ABC differ-
ential operator is in the form

L
{
ABC

0D
ζ
t φ(t)

}
(p) = A(ζ )

1 − ζ

pζ L {φ(t)} (p)

pζ + ζ
1−ζ

. (5)

Property 2.4: The following useful relation is satisfied
between the operators (1) and (2)

ABC
0I

ζ
t

[
ABC

0D
ζ
t φ(t)

]
= φ(t) − φ(0). (6)

Property 2.5: For each φ ∈ H
1(0, T), the operator (1)

satisfies ∥∥∥ABC0Dζ
t φ(t)

∥∥∥ ≤ A(ζ )

1 − ζ
‖φ(t)‖ , (7)

where ‖φ(t)‖ = max0≤t≤T |φ(t)|.

Property 2.6: The ABC operator (1) fulfils the Lipschitz
condition, i.e. for each φ1,φ2 ∈ H

1(0, T) there exists a
constant L>0 such that∥∥∥ABC0Dζ

t φ1(t) − ABC
0D

ζ
t φ2(t)

∥∥∥ ≤ L ‖φ1(t) − φ2(t)‖ . (8)

Some additional information is available in [29, 38],
which the interested readers can refer to.
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3. The new fractional tuberculosis model

This section develops a new fractional version of a
tuberculosis model in the ABC sense with incomplete
treatment. The original version of this model including
integer-order derivatives has beenpreviously examined
in [39]; however, the influence of hereditary, as a fun-
damental feature of many biological processes, has not
been included in this model. To overcome this draw-
back, we employ the newly introducedABC operator (1)
instead of ordinary time-derivative in the tuberculosis
model since the ABC operator essentially includes the
effect of memory in its definition. In addition, accord-
ing to [40], we modify the fractional operator by an
auxiliary parameter σ , having the dimension of sec., to
ensure that the right- and left-hand sides of the resul-
tant equation possess the same dimension s−1. Consid-
ering these features, the new transmissionmodel of the
tuberculosis infection takes the form

1
σ 1−ζ

ABC
0D

ζ
t S(t) = 	 − μS(t) − bS(t)I(t), t ≥ 0,

1
σ 1−ζ

ABC
0D

ζ
t L(t) = −(μ + ε)L(t) + (1 − k)δT(t)

+ bI(t)S(t), t ≥ 0,

1
σ 1−ζ

ABC
0D

ζ
t I(t) = −(μ + γ + a1)I(t) + kδT(t)

+ εL(t), t ≥ 0,

1
σ 1−ζ

ABC
0D

ζ
t T(t) = −(μ + δ + a2)T(t) + γ I(t), t ≥ 0,

(9)

along with the initial conditions

S(0) = S0, L(0) = L0, I(0) = I0, T(0) = T0. (10)

As can bee seen, the fractional operator in Equation (9)
has been taken in the sense of ABC with ζ ∈ (0, 1). A
physical description of the parameters and variables is
given as below. The total population is partitioned into
four distinct categories depending on their epidemio-
logical stages. The first category, which is denoted by
S(t), includes the susceptible individuals. This popula-
tion is never infected by the tuberculosis. The second
compartment is denoted by L(t) and contains the latent
infected persons. Although these people have been
infected, they do not have the symptoms of the disease,
and they are not infectious as well. The next compart-
ment is the population of infectious individuals, which
is signified by I(t), has active tuberculosis, can transmit
the infection, and is not in treatment. The last group,
denoted by R(t), is the population of infected individ-
uals, which is under treatment. Since the state variables
in (9) reflect thehumanpopulation, they are all assumed
to be non-negative. From the first equation in (9), the
recruitment of individuals can increase the susceptible
population at a rate 	. The coefficient μ is the natu-
ral death rate of all individuals. The contact between

susceptible and infectious individuals acquire the tuber-
culosis infection within a transmission coefficient b.
After being infected, the individual first enters the
latently infected population at a rate bI(t)S(t), and then
becomes infectious at a rate ε. By detecting an infec-
tious individual, he/she will be treated and enter the
treatment compartment. The parameter γ is the per-
capita treatment rate of infected population. At a rate
δ, a treated individual leaves his/her population. How-
ever, the treatmentmay fail and the treated personmay
enter the compartment I; otherwise, due to the remain-
der of Mycobacterium tuberculosis, the treated individ-
ual becomes latently infectious and enters the popula-
tion L. The failure of the treatment is reflected by the
parameter k (0 ≤ k ≤ 1), where k = 1 denotes the com-
plete failure of the treatment, i.e. all the treated indi-
viduals are still infectious, while k = 0 expresses that
all the treated persons have become latently infectious.
The parameters a1 and a2 also denote the tuberculosis-
induced death rate of the infectious and under treat-
ment individuals, respectively.

3.1. Non-negative solution

In this section, we show that the feasibility region of the
system (9) is given by the closed set


 =
{
(S, L, I, T) ∈ R

+
4 : S + L + I + T ≤ 	

μ

}
, (11)

which is positively invariant. For this purpose, we con-
sider and prove the following lemma.

Lemma3.1: Theclosed set
 in (11) is positively invariant
with respect to the fractional model (9).

Proof: By adding all relations in (9), we obtain the frac-
tional derivative of total population as follows

1
σ 1−ζ

ABC
0D

ζ
t P(t) = 	 − μP(t) − a1I(t) − a2T(t)

≤ 	 − μP(t), (12)

where P(t) = S(t) + L(t) + I(t) + T(t). Applying
the Laplace transform, Equation (12) provides

P(t) ≤
(

A(ζ )

A(ζ ) + (1 − ζ )μ̃
P(0)

+ (1 − ζ )	̃

A(ζ ) + (1 − ζ )μ̃

)
Eζ ,1(−mtζ )

+ ζ 	̃

A(ζ ) + (1 − ζ )μ̃
Eζ ,ζ+1(−mtζ ), (13)

where m = ζ μ̃/(A(ζ ) + (1 − ζ )μ̃), 	̃ = σ 1−ζ 	, μ̃ =
σ 1−ζ μ, and Ea,b denotes the two-parameter ML func-
tion. Based on the fact that the ML function has an
asymptotic behaviour, we obtain P(t) ≤ 	̃/μ̃ = 	/μ

as t tends to infinity. Thus, the entire solution of the
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fractional model (9) remains in 
 for every t>0 when
the initial condition belongs to 
. Consequently, the
closed set
 is a positively invariant set according to the
fractional model (9). �

3.2. Equilibrium points and basic reproduction
number

The equilibriumpoints of the system (9) are obtained by
setting

1
σ 1−ζ

ABC
0D

ζ
t S(t) = 1

σ 1−ζ
ABC

0D
ζ
t L(t) = 1

σ 1−ζ
ABC

0D
ζ
t I(t)

= 1
σ 1−ζ

ABC
0D

ζ
t T(t) = 0. (14)

This equation implies that the system (9) always has
a disease-free equilibrium point E0 = (	/μ, 0, 0, 0). In
addition, when the endemic threshold R0 is greater
than 1,

R0 =
(
bε 	

μ

)
(μ + δ + a2)

(μ + ε)(μ + γ + a1)(μ + δ + a2)
−(γ δ)(k(μ + ε) + (1 − k)ε)

, (15)

the system (9) possesses another endemic steady-state
Ee = (Se, Le, Ie, Te),

Se = 	

μ + bIe
,

Le = 1
ε

(
(μ + γ + a1) − k

γ δ

μ + δ + a2

)
Ie,

Ie = μ

b
(R0 − 1), Te = γ

μ + δ + a2
Ie. (16)

Note that, the endemic threshold R0 in Equation (15),
which is also known as the basic reproduction num-
ber, is obtained by the next generation matrix tech-
nique described in [41]. To do so, let us consider Z(t) =
(L(t), I(t), T(t), S(t)) and write the system (9) in a com-
pact form

ABC
0D

ζ
t Z(t) = F(Z(t)) − V(Z(t)), (17)

where

F(Z(t)) = σ 1−ζ

⎡
⎢⎢⎣
bI(t)S(t)

0
0
0

⎤
⎥⎥⎦,

V(Z(t)) = σ 1−ζ

⎡
⎢⎢⎣

(μ + ε)L(t) − (1 − k)δT(t)
(μ + γ + a1)I(t) − kδT(t) − εL(t)

(μ + δ + a2)T(t) − γ I(t)
−	 + μS(t) + bS(t)I(t)

⎤
⎥⎥⎦.
(18)

For F(Z(t)) and V(Z(t)), the Jacobian matrices at E0 are,
respectively, obtained as

JF(E0) = σ 1−ζ

[
M3×3 0
0 0

]
,

JV(E0) = σ 1−ζ

[
N3×3 0

0 b	
μ

0 μ

]
, (19)

where

M =

⎡
⎢⎣0

b	
μ

0
0 0 0
0 0 0

⎤
⎥⎦,

N =
⎡
⎣μ + ε 0 −(1 − k)δ

−ε μ + γ + a1 −kδ
0 −γ μ + δ + a2

⎤
⎦. (20)

For the system (9), the next generation matrix is
FV−1, and thus, the basic reproduction number (15) is
obtained from R0 = ρ(FV−1). From the epidemiologi-
cal viewpoint, this parameter R0 is interpreted as the
expected number of secondary cases produced by a
typical infectious individual in a completely susceptible
population.

4. Numerical method

For the fractional tuberculosis model (9), the exact solu-
tion may not be available in general; hence, a new
numerical method based on the product-integration
(PI) rule [42] is developed to provide a precise approx-
imate solution. For this purpose, first we consider the
initial-value problem

ABC
0D

ζ
t φ(t) = f (φ(t), t),

φ(0) = φ0, (21)

where f (φ(t), t) is a continuous function. By apply-
ing the integral operator (2) to the both sides of
Equation (21) and using the Property 2.4 in Equation (6),
the following Volterra integral equation is derived

φ(t) − φ(0) = 1 − ζ

A(ζ )
f (φ(t), t)

+ ζ

A(ζ )�(ζ )

∫ t

0
(t − ρ)ζ−1f (φ(ρ), ρ)dρ.

(22)

By putting t = tn = n� in Equation (22), inwhich � is the
time step size, we obtain

φ(tn) = φ(0) + 1 − ζ

A(ζ )
f (φ(tn), tn)

+ ζ

A(ζ )�(ζ )

n−1∑
i=0

∫ ti+1

ti
(tn − ρ)ζ−1f (φ(ρ), ρ)dρ.

(23)
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Now, the function f (φ(ρ), ρ) is approximated by the
first-order Lagrange interpolation

f (φ(ρ), ρ) ≈ f (φi+1, ti+1) + ρ − ti+1

�

× (f (φi+1, ti+1) − f (φi, ti)) , ρ ∈ [ti, ti+1],

(24)

where the notation φi denotes the quantity φ(ti). Sub-
stituting (24) into (23) and doing some algebraicmanip-
ulations, the PI formula in the ABC sense (ABC-PI) is
derived in the form below

φn = φ0 + ζ�
ζ

A(ζ )

×
(

αnf (φ0, t0) +
n∑
i=1

βn−if (φi, ti)

)
, n ≥ 1,

(25)

where

αn = (n − 1)ζ+1 − nζ (n − ζ − 1)
�(ζ + 2)

,

βj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
�(ζ + 2)

+ 1 − ζ

ζ�ζ
, j = 0,

(j − 1)ζ+1 − 2jζ+1 + (j + 1)ζ+1

�(ζ + 2)
,

j = 1, 2, . . . , n − 1.

(26)

Note that, according the analysis in [43], the error here
satisfies |φ(tn) − φn| = O(�1+ζ ), i.e. the order of con-
vergence is 1 + ζ . Applying of the proposed scheme to
the system (9), we attain the recursive formulas

φ1,n = φ1,0 + ζ�
ζ

A(ζ )

(
αnf1(φ1,0,φ2,0,φ3,0,φ4,0)

+
n∑
i=0

βn−if1(φ1,i,φ2,i,φ3,i,φ4,i)

)
,

φ2,n = φ2,0 + ζ�
ζ

A(ζ )

(
αnf2(φ1,0,φ2,0, . . . ,φ14,0)

+
n∑
i=0

βn−if2(φ1,i,φ2,i,φ3,i,φ4,i)

)
,

φ3,n = φ2,0 + ζ�
ζ

A(ζ )

(
αnf3(φ1,0,φ2,0,φ3,0,φ4,0)

+
n∑
i=0

βn−if3(φ1,i,φ2,i,φ3,i,φ4,i)

)
,

φ4,n = φ4,0 + ζ�
ζ

A(ζ )

(
αnf4(φ1,0,φ2,0,φ3,0,φ4,0)

+
n∑
i=0

βn−if4(φ1,i,φ2,i,φ3,i,φ4,i)

)
,

(27)

where the symbols φ1,φ2,φ3,φ4 are correspondent to
the variables S, L, I, T, respectively, and

f1 (φ1,φ2,φ3,φ4) = 	 − μφ1 − bφ1φ3,

f2 (φ1,φ2,φ3,φ4) = −(μ + ε)φ2 + (1 − k)δφ4 + bφ3φ1,

f3 (φ1,φ2,φ3,φ4) = −(μ + γ + a1)φ3 + kδφ4 + εφ2,

f4 (φ1,φ2,φ3,φ4) = −(μ + δ + a2)φ4 + γφ3. (28)

5. Results and discussion

In this section, the proposed scheme in Section 4 is
used to numerically simulate the fractional-order tuber-
culosis model (9). The dynamical behaviour of the new
model is also studied for different non-integer order
ζ . The results in the ABC sense are compared with
those of a classic integer model [39] and a fractional
model with conventional Caputo derivative [17]. The
values of biological parameters used in these simula-
tions are selected according to a realistic analysis in dif-
ferent literature [39, 44–48]. Table 1 reports these values
including appropriate citations. Without loss of gener-
ality, we take the order of fractional operator and its
modification parameter as ζ = 0.93, 0.95, 0.97, 0.99 and
σ = 0.99, respectively. The initial conditions are also
selected as (S(0), L(0), I(0), T(0)) = (0.8, 0.05, 0.1, 0.05)
[17].
Figures 1–4 display the approximate solutions within
two different fractional operators and various values
of ζ as compared to the classic integer solution. Note
that, in this case, the basic reproduction number and
the disease-free equilibrium are R0 = 0.7121 < 1 and
E0 = (55445, 0, 0, 0), respectively. As can be seen, the
state trajectories converge to the disease-free steady-
state for all cases as t → ∞. In addition, the solution of
the fractional models tends to the classic integer solu-
tion when ζ → 1. In the next simulation, we change
the parameter b = 5 × 10−4 in order to get a bigger
value than 1 for R0 to reach an endemic state, while
the other parameters remain unchanged as in Table 1.
In this case, we have the following values for R0 and
the endemic steady-state R0 = 7.1206 > 1 and Ee =
(7787, 43458, 175, 78), respectively. Simulation results
for this new case are depicted in Figures 5–8, which
show the convergence of the fractional-order models
to the endemic equilibrium. However, the difference

Table 1. The realistic values of
parameters.

Parameters Values

	 792.8571 [39]
b 5 × 10−5 [44]
μ 1

70 [45]
k 0.15 [39]
δ 1.5 [46]
ε 0.00368 [47]
γ 0.7 [39]
a1 0.3 [48]
a2 0.05 [39]
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Figure 1. The stability of the disease-free steady-state (ζ = 0.93 and R0 < 1). (a) Susceptible individuals. (b) Latently infected
individuals. (c) Actively infectious individuals and (d) under treatment individuals.

Figure 2. The stability of the disease-free steady-state (ζ = 0.95 and R0 < 1). (a) Susceptible individuals. (b) Latently infected
individuals. (c) Actively infectious individuals and (d) under treatment individuals.
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Figure 3. The stability of the disease-free steady-state (ζ = 0.97 and R0 < 1). (a) Susceptible individuals. (b) Latently infected
individuals. (c) Actively infectious individuals and (d) under treatment individuals.

Figure 4. The stability of the disease-free steady-state (ζ = 0.99 and R0 < 1). (a) Susceptible individuals. (b) Latently infected
individuals. (c) Actively infectious individuals and (d) under treatment individuals.
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Figure 5. The stability of theendemic stead-state (ζ = 0.93andR0 > 1). (a) Susceptible individuals. (b) Latently infected individuals.
(c) Actively infectious individuals and (d) under treatment individuals.

Figure 6. The stability of theendemic stead-state (ζ = 0.95andR0 > 1). (a) Susceptible individuals. (b) Latently infected individuals.
(c) Actively infectious individuals and (d) Under treatment individuals.
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Figure 7. The stability of theendemic stead-state (ζ = 0.97andR0 > 1). (a) Susceptible individuals. (b) Latently infected individuals.
(c) Actively infectious individuals and (d) Under treatment individuals.

Figure 8. The stability of theendemic stead-state (ζ = 0.99andR0 > 1). (a) Susceptible individuals. (b) Latently infected individuals.
(c) Actively infectious individuals and (d) Under treatment individuals.
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between the ABC and Caputo asymptotic behaviours
is obvious by the figures, and both the fractional solu-
tions converge to the classic integer solution as ζ → 1.
Therefore, the fractional operator itself can be consid-
ered a degree of freedom in themodelling procedure to
extract hidden aspects of the real-world dynamics. This
property, i.e. flexibility of the model, is one of the main
advantages of the fractional calculus over the classic
integer-order models. Indeed, compared to the power
functionkernel of the classical Caputoderivative, theML
type kernel in the ABC definition provides a remarkable
chance to analyse various natural andphysical phenom-
ena in the real-world systems.

6. Conclusions

The main objective of this research was to investigate
a new fractional tuberculosis model involving a non-
singular operator with ML kernel. The proposed model
was solved by a new and efficient numerical algorithm
based on the PI rule. Numerical results in Figures 1–8
verified the usefulness of employing nonsingular oper-
ator to extract different aspects of the consideredmodel
compared to the other integer and non-integer order
operators. Therefore, the fractional calculus has the
potential of providing more flexible models than the
classic integer calculus to describe the complex dynam-
ics of the real-world phenomena.
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