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ABSTRACT
In thiswork, the time fractional Gardner equation is presented as a new fractionalmodel for Atan-
gana–Baleanu fractional derivative with Mittag-Leffler kernel. The approximate consequences
are analysed by applying a recurrent process. The existence and uniqueness of solution for this
system is discussed. To explain the effects of several parameters and variables on themovement,
the approximate results are shown in graphics and tables.

ARTICLE HISTORY
Received 5 February 2019
Revised 10 June 2019
Accepted 27 June 2019

KEYWORDS
The time fractional Gardner
equation; Atangana–Baleanu
derivative; Mittag-Leffler
kernel; existence and
uniqueness; series solution

1. Introduction

In the last few years, there has been considerable inter-
est and significant theoretical developments in frac-
tional calculus used in many fields and in fractional
differential equations and its applications [1–7]. Abdel-
jawad and Baleanu [8] used discrete fractional differ-
ences with non-singular discrete Mittag-Leffler kernels;
Owolabi and Atangana [9] investigated the mathemat-
ical analysis and numerical simulation of pattern for-
mation in a subdiffusive multicomponent fractional-
reaction diffusion system; in [10], Abdeljawad and
Baleanu introduced non-local fractional derivative with
Mittag-Leffler kernel; Abdeljawad [11] defined a Lya-
punov type inequality for fractional operators with
non-singular Mittag-Leffler kernel; Abdeljawad and Al-
Mdallal studied the Caputo and Riemann–Liouville type
discrete fractional in [12]; in [13], Abdeljawad and Mad-
jidi investigated Lyapunov-type inequalities for frac-
tional difference operators with discrete Mittag-Leffler
kernel of order 2 < α < 5/2; Zhang et al. [14] applied
the series expansion process with local fractional oper-
ator to find the solutions of transport equations;
Khan et al. investigated the advection–reaction diffu-
sion model involving fractional-order derivatives with
Mittag-Leffler kernel in [15]; Khan et al. [16] deal with
two core aspects of fractional calculus in Caputo sense;
Gómez-Aguilar et al. [17] considered three-dimensional
cancer model using the Caputo–Fabrizio–Caputo type
andwithMittag-Leffler kernel in Liouville–Caputo sense
and Khan et al. [18] studied fractional order nonlinear

Klein–Gordon equations with the help of the Sumudu
decomposition method. Many more research studies
related to fractional derivatives can be seen in [19–28].

In this study, we apply the fractional homotopy per-
turbation transformmethod (FHPTM) to find numerical
solution for a fractional equation. The FHPTM is a com-
bination ofHPMand Laplace transformprocess [19–21].
Besides, the solution is in the form of a convergent
series. An iterative process is composed for the shape of
the infinite numerical solution. In [22], Kumar et al. anal-
ysed the numerical solution for fractional RLW equation
by using this method, and, in [23], this method is used
to find the series solutions of logarithmic KdV equation.

In this work, we analysed the time fractional Gardner
equation (FGE). The Gardner equation is an
advantageous example for the definition of interior
solitary waves in shallow water , while Buckmaster’s
equation is applied in thin viscous fluid sheet flows and
has been generally examined by several methods (see
[24–26]).

This equation is given by [26],

Dα
τ p(κ, τ) + 6(p(κ, τ) − ε2p(κ, τ)2)pκ(κ, τ)

+ pκκκ(κ, τ) = 0,

κ ∈ R, τ > 0, 0 < α ≤ 1,

with the primary situation

p(κ, 0) = 1
2

+ 1
2
tanh

κ

2
.
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The analytical solution to this model, for ε = 1 and α =
1, is

p(κ, τ) = 1
2

+ 1
2
tanh

κ − τ

2
.

Some fractional derivatives contain singular kernels.
Two of them are Riemann and Caputo and they have
their own restrictions due to their singular kernels.
However, recently some fractional operators such as
Atangana–Baleanu (AB) have defeated these restric-
tions and deficiencies. In particular, AB used a new frac-
tional derivative with non-singular, non-local and ML
kernel and cleared its significant effects [27,29]. In [30],
Yadav et al. investigated numerical schemes to com-
pute ABC derivative; Chatibi et al. applied variational
calculus involving non-local fractional derivative with
Mittag-Leffler kernel in [31] and Koca obtained numeri-
cal solutions the fractional partial differential equations
with non-singular kernel derivatives in [32].

We analyse FGE for AB fractional operator with
Mittag-Leffler kernel due to the great importance of AB
fractional derivative in scientific and engineering fields.

The FGE with AB fractional derivative is given as

ABC
a Dα

τ p(κ, τ) + 6(p(κ, τ) − ε2p(κ, τ)2)pκ(κ, τ)

+ pκκκ(κ, τ) = 0, 0 < α ≤ 1.

The main purpose of this article is to analyse FGE
with Mittag-Leffler kernel. The existence and unique-
ness analysis of the solutions for FGE has been viewed
by using the fixed-point theorem.

In Section 2 of this study, various basic knowledge
regarding the AB fractional order derivative are defined.
In the next section, FGE with AB fractional derivative
is investigated and the existence and uniqueness of
solutions for these systems has been investigated by
using the fixed-point theorem. In the next section, the
FHPTM is applied to construct the solutions of the FGE
for AB fractional derivative with Mittag-Leffler kernel. In
Section 5, some graphical representations of the solu-
tions are shown to display the accuracy and efficiency
of the method. Moreover, some results are pointed out
in Section 6.

2. Preliminaries

In this part, we will present the basic definitions and
several properties for AB fractional order derivative
[8,28,29,33–35].

Definition 2.1: When p ∈ H1(κ, y),α ∈ [0, 1], y > κ

and differentiable, AB fractional order derivative with
arbitrary order in the case of Caputo is given as

ABC
a Dα

τ (p(τ ))

= B(α)

1 − α

∫ τ

κ

p′(s)Eα

[
− α

1 − α
(τ − s)α

]
ds, (2.1)

where B(α) provides the requirement B(0) = B(1) = 1.

Definition 2.2: When p ∈ H1(κ, y),α ∈ [0, 1], y > κ

and is not necessarily differentiable, the AB derivative of
arbitrary order in the case of Riemann–Liouville is given
as

ABR
a Dα

τ (p(τ ))

= B(α)

1 − α

d
dτ

∫ τ

κ

p(s)Eα

[
− α

1 − α
(τ − s)α

]
ds. (2.2)

Definition 2.3: When 0 < α < 1, and p = p(τ ), the
fractional integral operator of order α is given as [8]

ABR
a Iατ (p(τ ))

= 1 − α

B(α)
p(τ ) + α

B(α)�(α)

∫ τ

κ

p(l)(τ − l)α−1 dl.

(2.3)

3. Analysis of the FGE with AB fractional
derivative

The FGE is written as: 0 < α < 1,

ABC
a Dα

τ p(κ, τ) + 6(p(κ, τ) − ε2p(κ, τ)2)pκ(κ, τ)

+ pκκκ(κ, τ) = 0, (3.1)

with the initial condition

p(κ, 0) = 1
2

+ 1
2
tanh

(
κ

2

)
.

Using the fractional integral operator produced by AB
[8,35] in Equation (3.1), we obtain

p(κ, τ) − p(κ, 0)

= 1 − α

B(α)
K(κ, τ , p)

+ α

B(α)�(α)

∫ τ

0
(τ − l)α−1K(κ, l, p)dl, (3.2)

where

K(κ, τ , p) = −6(p(κ, τ) − ε2p(κ, τ)2)pκ(κ, τ)

− pκκκ(κ, τ)

= −6p(κ, τ)pκ(κ, τ) + 6ε2p(κ, τ)2pκ(κ, τ)

− pκκκ(κ, τ).

The kernel K(κ, τ , p) has the Lipschitz state, which
justified that the function p(κ, τ) has upper bound. So,

‖K(κ, τ , p) − K(κ, τ , P)‖
= ∥∥−6 (ppκ − PPκ) + 6ε2

(
p2pκ − P2Pκ

)
− (pκκκ − Pκκκ)

∥∥ . (3.3)
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By applying the triangular inequality of norm in
Equation (3.3),

‖K(κ, τ , p) − K(κ, τ , P)‖
≤ −6 ‖ppκ − PPκ‖ + 6ε2

∥∥p2pκ − P2Pκ

∥∥
− ‖pκκκ − Pκκκ‖

≤ −3

∥∥∥∥ ∂

∂κ

(p2 − P2)

∥∥∥∥ + 2ε2
∥∥∥∥ ∂

∂κ

(p3 − P3)

∥∥∥∥
−

∥∥∥∥ ∂3

∂κ
3 (p − P)

∥∥∥∥
≤ −3δ(a + b) ‖p − P‖

+ 2ε2γ (a2 + ab + b2) ‖p − P‖ − κ3 ‖p − P‖
≤ (−3δ(a + b) + 2ε2γ (a2 + ab + b2) − κ3)

× ‖p − P‖ . (3.4)

Setting 
 = −3δ(a + b) + 2ε2γ (a2 + ab + b2) − κ3,
where p and P are limited functions, we can say ‖p‖ ≤
a, ‖P‖ ≤ b and we have

‖K(κ, τ , p) − K(κ, τ , P)‖ ≤ 
 ‖p − P‖ .

Then, the Lipschitz state is justified for the kernel
K(κ, τ , p).

3.1. Existence and uniqueness analysis for
solutions

In this part, we will present the existence and unique-
ness of the solution of FGE for arbitrary order (3.1). From
Equation (3.2), we have

pn+1(κ, τ) = 1 − α

B(α)
K(κ, τ , pn)

+ α

B(α)�(α)

∫ τ

0
(τ − l)α−1K(κ, l, pn)dl,

(3.5)

and p0(κ, τ) = p(κ, 0).
The difference of the successive terms is represented

as follows:

Yn(κ, τ) = pn(κ, τ) − pn−1(κ, τ)

= 1 − α

B(α)
{K(κ, τ , pn−1)

− K(κ, τ , pn−2)} + α

B(α)�(α)

×
∫ τ

0
(τ − l)α−1{K(κ, l, pn−1)

− K(κ, l, pn−2)}dl, (3.6)

where we say that,

pn(κ, τ) =
n∑

k=0

Yk(κ, τ). (3.7)

From Equation (3.7), we get

‖Yn(κ, τ)‖
= ‖pn(κ, τ) − pn−1(κ, τ)‖

=

∥∥∥∥∥∥∥∥∥

1 − α

B(α)
{K(κ, τ , pn−1) − K(κ, τ , pn−2)}

+ α

B(α)�(α)

∫ τ

0
(τ − l)α−1{K(κ, l, pn−1)

−K(κ, l, pn−2)}dl

∥∥∥∥∥∥∥∥∥
(3.8)

Using the triangular inequality in Equation (3.8), we
have

‖Yn(κ, τ)‖

≤
1 − α

B(α)
‖K(κ, τ , pn−1) − K(κ, τ , pn−2)‖

+ α

B(α)�(α)

∫ τ

0
(τ − l)α−1

∥∥∥∥ K(κ, l, pn−1)

−K(κ, l, pn−2)

∥∥∥∥ dl.

(3.9)

As the kernel justifies the Lipschitz state, they give

‖Yn(κ, τ)‖ ≤ 1 − α

B(α)

 ‖pn−1 − pn−2‖ + α

B(α)�(α)

×
∫ τ

0
(τ − l)α−1
 ‖pn−1 − pn−2‖ dl,

(3.10)

or

‖Yn(κ, τ)‖ ≤ 1 − α

B(α)

 ‖Yn−1(κ, τ)‖ + α

B(α)�(α)

× 


∫ τ

0
(τ − l)α−1 ‖Yn−1(κ, τ)‖ dl.

(3.11)

Theorem 3.1: The FGE given as Equation (3.1) has the
solutions that provide the following conditions that is
found with ξ0:

1 − α

B(α)

 + α

B(α)�(α)

ξα

0 < 1. (3.12)

Proof: Let us consider that the function p(κ, τ) is
limited. Additionally, it has already been stated that
the kernel provides the Lipschitz state; hence, from
Equation (3.12), Equation (3.11) is written as follows:

‖Yn(κ, τ)‖ ≤
[
1 − α

B(α)

 + α

B(α)�(α)

ξα

]n
‖p(κ, 0)‖

(3.13)
Therefore, the function

pn(κ, τ) =
n∑

k=0

Yk(κ, τ) (3.14)

exists and is smooth. Now, we examine that the func-
tion given in the above equation is the solution of
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Equation (3.1). Let us consider

p(κ, τ) − p(κ, 0) = pn(κ, τ) − Dn(κ, τ).

Therefore, we have

‖Dn(κ, τ)‖ =

∥∥∥∥∥∥∥∥∥∥∥∥

1 − α

B(α)

[
K(κ, τ , p) − K(κ, τ , pn−1)

]
+ α

B(α)�(α)

∫ τ

0
(τ − l)α−1[

K(κ, l, p)
−K(κ, l, pn−1)

]
dl

∥∥∥∥∥∥∥∥∥∥∥∥
≤ 1 − α

B(α)
‖K(κ, τ , p) − K(κ, τ , pn−1)‖

+ α

B(α)�(α)

∫ τ

0
(τ − l)α−1

×
∥∥∥∥ K(κ, l, p)
−K(κ, l, pn−1)

∥∥∥∥ dl

≤ 1 − α

B(α)

 ‖p − pn−1‖

+ 1
B(α)�(α)


 ‖p − pn−1‖ ξα . (3.15)

�

By continuing the same process, we have

‖Dn(κ, τ)‖ ≤
(
1 − α

B(α)
+ 1

B(α)�(α)
ξα

)n+1


n+1d.

Then, at ξ = ξ0, we have

‖Dn(κ, τ)‖ ≤
(
1 − α

B(α)
+ 1

B(α)�(α)
ξα
0

)n+1


n+1d,

where when n → ∞, we have

‖Dn(κ, τ)‖ → 0.

Then, the proof of existence is completed.
Now, we analyse the uniqueness of solution for

FGE (3.1). Let us assume that p(κ, τ) gets another solu-
tion for Equation (3.1),

p(κ, τ) − P(κ, τ)

= 1 − α

B(α)
{K(κ, τ , p) − K(κ, τ , P)}

+ α

B(α)�(α)

∫ τ

0
(τ − l)α−1

{
K(κ, l, p)

−K(κ, l, P)

}
dl.

(3.16)

Taking the norm on Equation (3.18) gives

‖p(κ, τ) − P(κ, τ)‖

≤ 1 − α

B(α)
‖K(κ, τ , p) − K(κ, τ , P)‖

+ α

B(α)�(α)

∫ τ

0
(τ − l)α−1

∥∥∥∥ K(κ, l, p)
−K(κ, l, P)

∥∥∥∥ dl.

Since the kernel justifies the Lipschitz states, we have

‖p(κ, τ) − P(κ, τ)‖

≤ 1 − α

B(α)

 ‖p(κ, τ) − P(κ, τ)‖

+ 1
B(α)�(α)


ξα ‖p(κ, τ) − P(κ, τ)‖ . (3.17)

This gives

‖p(κ, τ) − P(κ, τ)‖

×
(
1 − 1 − α

B(α)

 − 1

B(α)�(α)

ξα

)
≤ 0. (3.18)

Theorem 3.2: If the following inequality is provided,
there is a unique solution of FGE (3.1),(

1 − 1 − α

B(α)

 − 1

B(α)�(α)

ξα

)
> 0. (3.19)

Proof: If the (3.19) condition is satisfied, then

‖p(κ, τ) − P(κ, τ)‖

×
(
1 − 1 − α

B(α)

 − 1

B(α)�(α)

ξα

)
≤ 0 (3.20)

implies that

‖p(κ, τ) − P(κ, τ)‖ = 0.

Then, we get

p(κ, τ) = P(κ, τ).

It completes the proof of the uniqueness of the solution
for Equation (3.1). �

4. FHPTM for the time fractional Gardner
equation with AB fractional derivative

In this part, first of all, we consider the Laplace transform
for FGEwithAB fractional operator (3.1) by using FHPTM
and use the following initial condition:

p(κ, 0) = 1
2

(
1 + tanh

(
κ

2

))
,

which yields

L[p(κ, τ)] =
1
2

(
1 + tanh

(
κ

2

))
s

−
(
sα + α(1 − sα)

sα

)

L[−6ppκ + 6ε2p2pκ − pκκκ]. (4.1)

By using the inverse of Laplace transform in Equation
(4.1), we have

p(κ, τ) = 1
2

(
1 + tanh

(
κ

2

))
− L−1

×
⎡
⎣

(
sα + α(1 − sα)

sα

)
L
[−6ppκ + 6ε2p2pκ − pκκκ

]
⎤
⎦ , (4.2)
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by applying the HPM, we have

∞∑
n=0

znpn = 1
2

(
1 + tanh

(
κ

2

))

− z

(
L−1

[(
sα + α(1 − sα)

sα

)

× L

[
−6

∞∑
n=0

znHn(p)

+ 6ε2
∞∑
n=0

znKn(p) −
∞∑
n=0

znpκκκ

]])
.

(4.3)

In Equation (4.3), Hn(p) and Kn(p) are He’s polynomials
as follows:

∞∑
n=0

znHn(p) = ppκ,
∞∑
n=0

znKn(p, q) = p2pκ.

The initial elements of the He’s polynomials are
described as

H0(p) = p0p0κ
,

H1(p) = p0p1κ
+ p1p0κ

,

H2(p) = p0p2κ
+ p1p1κ

+ p2p0κ
,

...

K0(p) = p20p0κ
,

K1(p) = p20p1κ
+ 2p0p1p0κ

,

K2(p) = p20p2κ
+ 2p0p1p1κ

+ 2p0p2p0κ
+ p21p0κ

...

Comparing the coefficients of the power of z, we obtain

z0 :

p0(κ, τ) = 1
2

(
1 + tanh

κ

2

)
,

z1 :

p1(κ, τ) = − 1
8�(1 + α)

(ταα − (−1 + α) �(1 + α))

× sec h
(

κ

2

)4
(−1 + (−4 + 3ε2)

× coshκ + 3(−1 + ε2) sinhκ),

z2 :

p2(κ, τ) = − 1
64�(1 + α)�(1 + 2α)

× (−2τα(−1 + α)α�(1 + 2α)

+ �(1 + α)(t2αα2 + (−1 + α)2�(1 + 2α)))

× sec h
(

κ

2

)7 (
−24(−1 + ε2) cosh

κ

2

− 6(22 − 37ε2 + 15ε4) cosh
3κ

2

24 cosh
5κ

2
− 42ε2 cosh

5κ

2

+ 18ε4 cosh
5κ

2
+ 206 sinh

κ

2

− 204ε2 sinh
κ

2
− 129 sinh

3κ

2

+ 222ε2 sinh
3κ

2
− 90ε4 sinh

3κ

2

+ 25 sinh
5κ

2
− 42ε2 sinh

5κ

2

+ 18ε4 sinh
5κ

2

)
,

...

Continuing the same process, we obtain pn(κ, τ). Then,
the solutions can be presented as

p(κ, τ) = p0(κ, τ) + p1(κ, τ) + p2(κ, τ) + · · · . (4.4)

5. Graphical representation of the solutions

The graphical illustrations of the solutions are given in
the figures and tables with the aid of Mathematica.

In Table 1, we present the comparison between the
approximate results for integer order FGE. The approxi-
mate results obtained are fractional ABderivative, famil-
iar fractional Caputo–Fabrizio (CF) derivative and frac-
tional Liouville–Caputo (LC) derivative [29].

Table 1. Comparison of numerical solutions with Liouville–Caputo (LC), Caputo–Fabrizio (CF) and fractional Atangana–Baleanu (AB)
derivative atκ = 2 for p(κ, τ).ε = 1.

LC CF AB

τ α = 1 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95

0.01 0.879743 0.882992 0.882139 0.895462 0.886766 0.89622 0.887026
0.02 0.878681 0.884724 0.883377 0.896147 0.887678 0.897363 0.888114
0.03 0.877611 0.886301 0.884572 0.896827 0.888583 0.898404 0.889163
0.04 0.876533 0.88778 0.885736 0.897502 0.88948 0.899379 0.890185
0.05 0.875447 0.889184 0.886874 0.898172 0.890371 0.900306 0.891185
0.06 0.874352 0.89053 0.887991 0.898836 0.891255 0.901193 0.892166
0.07 0.873249 0.891826 0.889088 0.899496 0.892133 0.902048 0.89313
0.08 0.872138 0.893078 0.890168 0.90015 0.893003 0.902874 0.894078
0.09 0.871019 0.894292 0.891231 0.9008 0.893867 0.903675 0.895012
0.1 0.869892 0.895472 0.892279 0.901444 0.894725 0.904453 0.895933
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Figure 1. The 3D graphic for the FGE with AB fractional opera-
tor when α = 0.85. ε = 1.

Figure 2. The 2D graphic of the FGE for different value of α

whenκ = 2. ε = 1.

In Figure 1, we draw 3D graphic for the FGE with
AB fractional operator and in Figure 2, we plot the
approximate solution p(κ, τ) by using FHPTM for α =
0.75, 0.8, 0.95, 1. These figures show that the converg-
ing of the numerical solutions to the analytical solution
connected to the exact error and the order of the solu-
tion becomes smaller as the order of the solution is
increasing.

6. Final remarks

In this study, the time fractional Gardner equation
is analysed for Atangana–Baleanu fractional operator
with Mittag-Leffler kernel. We applied the fractional
homotopy perturbation transform method for the
time fractional Gardner equationwith Caputo–Fabrizio,
Liouville–Caputo and Atangana–Baleanu fractional-
order derivatives. We obtained approximate solutions
of the equation with these different fractional-order
derivatives. We showed the existence and uniqueness
of the solutions for FGE. We compared these approx-
imate solutions with each other via graphical and
numerical consequences. From these conclusions, we
can say that the FGE with fractional AB derivative is

suitable for examining many problems in the fields of
science and engineering.
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