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Abstract: Fractional calculus dates its inception to a correspondence between Leibniz and L’Hopital
in 1695, when Leibniz described “paradoxes” and predicted that “one day useful consequences
will be drawn” from them. In today’s world, the study of non-integer orders of differentiation has
become a thriving field of research, not only in mathematics but also in other parts of science such
as physics, biology, and engineering: many of the “useful consequences” predicted by Leibniz have
been discovered. However, the field has grown so far that researchers cannot yet agree on what a
“fractional derivative” can be. In this manuscript, we suggest and justify the idea of classification of
fractional calculus into distinct classes of operators.
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1. Background

Fractional calculus is a venerable branch of mathematics, first conceptualised in 1695 in a series of
letters. L’Hopital posed the question to Leibniz of what would happen if the order of differentiation
were taken to be 1

2 , and Leibniz replied [1]:

“It appears that one day useful consequences will be drawn from these paradoxes.”

After these prophetic words, however, Leibniz did not propose a definition, leaving this task to
the later scientists who followed him.

The concepts of fractional differentiation and fractional integration were examined further over
the course of the 18th and 19th centuries. The topic attracted the attention of mathematical giants
such as Riemann [2], Liouville [3], Abel [4], Laurent [5], and Hardy and Littlewood [6,7]. Detailed
discussions of the history of fractional calculus may be found in [8–11]; here, we wish to focus on a
few key points concerning the directions in which the field developed.

The “paradoxes” described by Leibniz were resolved by later authors, but this is not to say that
the field of fractional calculus is now wholly free of open problems. One recurring issue through the
centuries has been the existence of multiple conflicting definitions. In the mid-19th century, several
different definitions of fractional calculus had already been proposed: Liouville had created one
definition based on differentiating exponential functions and another based on an integral formula
for inverse power functions, while Lacroix had created a different definition based on differentiating
power functions. The definitions of Liouville and Lacroix are not equivalent, which led some critics to
conclude that one must be “correct” and the other “wrong”. De Morgan, however, wrote [12] that:

“Both these systems, then, may very possibly be parts of a more general system.”
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His words, like those of Leibniz 145 years earlier, were prophetic. Both Liouville’s formula and
Lacroix’s are in fact special cases of what is now called the Riemann–Liouville definition of fractional
calculus. This involves an arbitrary constant of integration c, which when set to zero yields Lacroix’s
formula and when set to −∞ yields Liouville’s.

This general Riemann–Liouville definition, for the fractional derivative and fractional integral of
an arbitrary function, emerged in the late 19th century through a complex-analysis approach. Although
the Riemann–Liouville formula is now used mostly in a real-analysis context, its original motivation
came from generalising the Cauchy integral formula for repeated derivatives of a complex analytic
function. Now, Riemann–Liouville is the most common way of defining fractional calculus. In this
model, the fractional integral and fractional derivative of a function f (x) are defined as follows:

RL
c Iν

x f (x) =
1

Γ(ν)

∫ x

c
(x− t)ν−1 f (t)dt, Re(ν) > 0;

RL
cDν

x f (x) =
dn

dxn
RL

c In−ν
x f (x), n = bRe(ν)c+ 1, Re(ν) ≥ 0.

This definition is sufficiently general to cover the formulae both of Liouville and of Lacroix.
However, it is still not the only proposed way of defining fractional calculus: multiple conflicting
formulae persist to this day, confusing many newcomers to the field who expect to see a single
definition of fractional derivatives just like there is a single definition of the first-order derivative.
Fractional calculus may be called an “extension of meaning” [13], but there is more than one way to
extend meaning. The Riemann–Liouville model can be used to describe processes with power-law
behaviour, due to the power-function kernel in the definition of the integral transform, but there
are many other types of behaviours that occur in nature and that cannot be described by simple
power functions.

In the late 20th century, fractional calculus began to undergo a large increase in popularity and
research output. The first international conference on fractional calculus was organised in 1974 in the
USA; the same year also saw the publication of the first textbook [14] devoted to this field. Since then,
fractional calculus has become a very active field of research, with several specialist journals on the
topic. Applications have been discovered in many fields of science, as summarised in [15–18] and
the references therein. In particular, the intermediate property of fractional-calculus operators is vital
for the modelling of certain intermediate physical processes, e.g., in viscoelasticity [19,20]. Fractional
calculus has also become a standard part of the graduate mathematics curriculum in some universities,
with several textbooks [8,11,14,21–23] that can function as an introduction to the field for students and
young researchers.

From the point of view of research, currently there are several differing perspectives and directions
of exploration, which in some respects may be in opposition to each other. In the following section, we
propose a possible way of resolving these issues.

2. The Question of Classification

In recent years, two trends have emerged in the consideration of fractional-calculus operators,
motivated by a number of different considerations.

Firstly, there exists a desire to explore and create new definitions and models for fractional
integral and differential operators. Dozens of definitions have been proposed in the 2010s alone, with
a wide variety of types and properties [24–27]. One motivation here is the pure mathematician’s desire
to generalise: for example, to go beyond simple power functions and extend definitions to cover a
whole host of different kernel functions. Another motivation is the applied scientist’s need for models
to describe accurately a wide variety of different systems: several definitions of fractional calculus
have been inspired directly by real-world applications. The result of both types of research is to expand
the field of fractional calculus. However, the question arises of how far the field can be stretched and
still be called “fractional calculus”, and the validity of some definitions has been debated.
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Secondly, there exists a desire to impose criteria and strict definitions for what we call a
“fractional derivative” or “fractional integral”: which operators between functions should be named
as such and which should not. The proposals range from strict requirements to mere suggestions,
and multiple different criteria have been proposed [13,28–31]. The motivation here is to create a
mathematical framework for fractional calculus, to know the boundaries of the field. Metric spaces and
vector spaces, for example, have rigorous definitions and strict sets of criteria, so why not fractional
integrals and fractional derivatives? The result of such a system would be to restrict the study of
fractional calculus within certain boundaries. However, there is no consensus on where the boundaries
should be drawn: opinions differ widely on what the criteria should be.

At first, these two ways of thinking seem very different. One seeks to expand the field without
regard for boundaries, while the other seeks to restrict the field to within prescribed boundaries.
However, as both points of view have some merit, we would like to seek a middle path, a way of
satisfying both the desire for generalisation and diversification and the desire for rigorous classification.

The key lies in considering the valid motivations for both approaches. Mathematical structures
have an aesthetic, intuitive logic, which guides our path to choosing appropriate criteria to define
them and which often connects directly or indirectly with their physical applications. These real-world
connections are of paramount importance: if one particular mathematical model emerges from some
real data, then that model must be worth studying, and so we should not exclude it from consideration
by imposing overly strict criteria.

The desire for generalisation and the desire for criteria, which seem opposed to each other, may
both be satisfied by considering broad classes of fractional-calculus operators. We recall again the
words of Augustus de Morgan, quoted above: if different definitions seem in contradiction, it is worth
considering whether they may be unified as part of “a more general system”. Ideally, such a system
would be itself part of fractional calculus. Formally, then, we seek to define sets A , B, C , etc. (we do
not presume to know how many such sets will emerge), of operators between function spaces, such
that each element of each of these sets may be interpreted as a “fractional operator” acting on functions
and such that each set has some unifying properties which enable useful results to be proven for the
entire class. We do not impose any requirements in general on how large or small these classes should
be, or which function spaces they should act between, as we believe such a system should be able to
cover many different families of operators.

Fractional calculus has been usefully interpreted in connection with many different branches
of mathematics: for example, distributional calculus, functional calculus, spectral theory, Cauchy
integrals, and Laplace transforms, as described and summarised in [32] (pp. 58–64). Our aim here is
related but different: instead of embedding the whole of fractional calculus into other fields of analysis,
we seek to create classifications within fractional calculus itself. Some recent studies [30,33–35] have
proposed general classes of operators that are broad enough to cover many existing models of fractional
calculus but still narrow enough to be rigorously analysed themselves. This approach is optimal for
several reasons:

1. It satisfies the desire for generalisation. Any class of fractional-calculus operators will be more
general than any one particular model, and the specific models can be studied as before within
this framework or as special cases of the general class. If real-world applications give rise to a new
model of fractional calculus, it may be able to fit into such a class, and then many of its properties
would be known directly from general theorems about the class.

2. It also satisfies, to a certain degree, the desire for restrictions and criteria. Not all types of fractional
calculus fall into one particular class, but each class can be studied in its own right; its defining
attributes could be considered as “axioms” or criteria for that particular class. Thus, it is possible
to study fractional calculus within the framework of certain prescribed conditions, without
dismissing everything outside that framework as invalid.

In shaping the mathematical theory of fractional calculus, we should look beyond single specific
formulae and create wider avenues of study. This will eliminate the need for many different research
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papers proving the same results in the same way for many different types of fractional calculus: instead,
we can prove them just once for a whole class and then deduce the individual results as special cases.
From the applications point of view, a particular collection of real data can be fitted to a particular
model of fractional calculus which is already known as a special case of one of these broad classes.

At some point in the future, it may be possible to create a “most general” definition of fractional
calculus by defining one single class F that covers all fractional operators and nothing else, with all
the other classes of fractional derivatives and integrals as subsets. However, we believe that such
a breakthrough is not imminent. We must wait to discover the full range of applications before we
can decide where to draw the boundaries of the field, and at present, new applications of fractional
calculus are still being discovered all the time. It would be hasty to restrict the field too far now and
then discover after a few years that the restrictions exclude those fractional-calculus operators that are
most useful in real-world modelling.

3. The Class of Analytic Kernels

To illustrate the ideas discussed in the previous section, we shall conduct a detailed analysis of
one general class of fractional-calculus operators that was recently proposed in [35]. First we consider
briefly some of the many models of fractional calculus that may be covered by this class.

• A model proposed by Atangana and Baleanu [25], which was defined more rigorously in [36]
and whose applications have been discussed in [37–39], utilises an integral transform with a
one-parameter Mittag-Leffler function (Eν(z) = ∑∞

n=0
zn

Γ(nν+1) for Re(ν) > 0) in the kernel and an
arbitrary normalisation function multiplier:

AB
c Iν

x f (x) =
1− ν

B(ν)
f (x) +

ν

B(ν)
RL

c Iν
x f (x);

ABRL
cDν

x f (x) =
B(ν)
1− ν

· d
dx

∫ x

c
Eν

( −ν
1−ν (x− t)ν

)
f (t)dt;

ABC
cDν

x f (x) =
B(ν)
1− ν

∫ x

c
Eν

( −ν
1−ν (x− t)ν

)
f ′(t)dt.

• A model due to Prabhakar [40], which was formally connected to fractional calculus in [41]
and whose applications have been discussed in [42,43], utilises an integral transform with
a three-parameter Mittag-Leffler function (Eρ

µ,ν(z) = ∑∞
n=0

(ρ)nzn

Γ(nµ+ν)
for Re(µ), Re(ν) > 0) in

the kernel:

P
c Iµ,ν,ρ,ω

x f (x) =
∫ x

c
(x− t)ν−1Eρ

µ,ν (ω(t− x)µ) f (t)dt;

P
cDµ,ν,ρ,ω

x f (x) =
dn

dxn
P
c Iµ,n−ν,−ρ,ω

x f (x), n = bRe(ν)c+ 1.

• A model known as tempered fractional calculus [44,45], utilises an integral transform with the
product of a power function and an exponential function in the kernel:

T
c I(α,β)

x f (x) =
1

Γ(α)

∫ c

c
(x− t)α−1e−β(x−t) f (t)dt;

T
cD(α,β)

x f (x) =
(

d
dx

+ β

)n (
T
c I(n−α,β)

x f (x)
)

, n = bRe(ν)c+ 1.

• A model due to Srivastava et al. [26] utilises an integral transform with a Fox H-function in
the kernel:

SHJ
c Iω;m,n,p,q;α,β

x f (x) =
∫ x

c
(x− t)α−1Hm,n

p,q

(
ω(x− t)β

)
f (t)dt,
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where Hm,n
p,q (z) = 1

2πi
∫
L Θ(s)zs ds with L being a Mellin–Barnes contour from −i∞ to i∞ and

Θ(s) =
∏m

j=1 Γ(cj−djs)∏n
j=1 Γ(1−aj+bjs)

∏
p
j=n+1 Γ(aj−bjs)∏

q
j=m+1 Γ(1−cj+djs)

with parameters satisfying the conditions stated in [26].

The definition presented in [35] is general enough to cover all of the above as special cases, while
not so general as to lose its connection to fractional calculus. For this reason, we use it as an example
of a broad class of fractional-calculus operators as discussed in the previous section. We may define a
class A consisting of all operators given by the following general integral transform formula:

A
c Iα,β

x f (x) =
∫ x

c
(x− t)α−1 A

(
(x− t)β

)
f (t)dt, (1)

where c is a constant in the extended real line (often taken as zero or −∞), α and β are complex
parameters with positive real parts, and A(z) = ∑∞

k=0 akzk is a general analytic function whose
coefficients ak ∈ C are permitted to depend on α and β. We may consider x as a real variable larger
than c; function spaces for f are discussed below. Many properties of this newly-defined operator
were already proved in [35]; here, as well as providing a brief summary of these, we shall extend the
discussion by considering more properties and potential subclassifications.

Part of fractional calculus. The following series formula, proved in [35], expresses this integral
transform directly in terms of the Riemann–Liouville fractional integral:

A
c Iα,β

x f (x) =
∞

∑
k=0

akΓ(βk + α) RL
c Iβk+α

x f (x). (2)

Formally, we may write this series formula as a relation between functional operators:

A
c Iα,β

x = AΓ

(
RL

c Iβ
x

)
RL

c Iα
x, (3)

where AΓ is the transformed analytic function defined by:

A(z) =
∞

∑
k=0

akzk ⇒ AΓ(z) =
∞

∑
k=0

akΓ(βk + α)zk. (4)

From the relation (2), it is clear that the general operator (1) can always be described using only
the classical Riemann–Liouville fractional integral, which is indisputably part of fractional calculus.
Thus, we contend that it makes sense to consider the general operator (1) as always a part of fractional
calculus as well. It is already known [35] that the series formula (2) may be used to prove various
useful properties, such as for example the product rule and chain rule [46,47], for the general operator
(1) directly from the corresponding known result for Riemann–Liouville.

Generalisation of well-known models. It was verified in [35], or is clear from the definitions, that
all four of the specific example models of fractional calculus mentioned above are special cases of
the general definition (1). Of course, this class does not cover all possible types of fractional calculus:
there are also many that are not special cases of (1). These include the Hadamard and Erdelyi–Kober
definitions, and some definitions involving special functions applied to 1− t

x instead of x− t, like
[27,48].

Now we have confirmed that it makes sense to use (1) as the definition of a class of
fractional-calculus operators: not all of fractional calculus, not just one specific model, but a general
class that covers many cases and can be analysed in its own right. We continue with a further analysis
of this class, its properties, and subclasses.
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Historical connections and integral transform. The transformation between A and AΓ defined by
Equation (4) has some historical significance. In one of his “notes” working on what we now call the
Mittag-Leffler function, Gösta Mittag-Leffler himself [49] considered the following transformation:

F(x) =
∞

∑
n=0

knxn ⇒ Fβ(x) =
∞

∑
n=0

kn

Γ(βn + 1)
xn. (5)

After relabelling notation, it is clear that Mittag-Leffler’s transformation of F to Fβ is precisely the
inverse of the transformation (4) from A to AΓ in the case where α = 1. Mittag-Leffler noted that using
F(x) = 1

1−x yields Fβ(x) = Eβ(x), which we now call the Mittag-Leffler function. Thus, the study of
the general class (1) intimately involved with the transformation (4) has some historical justification.

Furthermore, Mittag-Leffler [49] found the following relation between the functions in (5):

F(x) =
∫ ∞

0
e−ω Fβ(ω

βx)dω.

By a natural extension of this result to the case of general α, β, we obtain the following integral
transform between A and AΓ:

AΓ(z) =
∫ ∞

0
e−ωωα−1 A(ωβz)dω. (6)

Going back to the classics is often a useful endeavour, and indeed, Mittag-Leffler’s 1905 paper
provided us with an elegant integral formula (6) for transforming between the functions A and AΓ,
which are important in the analysis of the class (1) of fractional models.

Local and non-local operators. In classical fractional calculus such as the Riemann–Liouville model,
the operators are non-local. Like integrals, fractional derivatives depend not just on the behaviour of
a function near a single point, but also on its behaviour in a wider region. This non-locality is often
useful in modelling physical processes that have memory effects.

For our general class, the fractional integrals are always non-local since they are defined by an
integral from c to x. The fractional derivatives as discussed in [35] are also non-local, except in the very
special case when they reduce to the standard differentiation operations dn

dxn . This reminds us that our
class does not cover the entirety of what has been called fractional calculus: any operators with locality
properties are not contained in this class and must be classified using some other class.

Possession or lack of a semigroup property. One important property of any fractional-calculus
operator is whether or not it has a semigroup property in one (or more) of the parameters associated
with the operator. For example, in the Riemann–Liouville model, fractional integrals have a semigroup
property while fractional derivatives do not. It is natural to ask, is the mth derivative/integral of the
nth derivative/integral always equal to the (m + n)th derivative/integral?

For the general class (1), it was proved in [35] that a semigroup property in both α and β is
impossible, but a semigroup property in the first parameter α can be obtained under the following
condition on the coefficients ak for the analytic function A:

∑
m+n=k

an(α1, β)am(α2, β)B(α1 + nβ, α2 + mβ) = ak(α1 + α2, β) ∀k ∈ Z+
0 . (7)

It is easy to see that this class is general enough to cover both some fractional models with a
semigroup property (such as Riemann–Liouville and Prabhakar) and some without a semigroup
property (such as Atangana–Baleanu). However, Equation (7) gives us an explicit condition to know
whether a given special case possesses a semigroup property or not.

We note that a semigroup property is not always required by physical motivations: fractional
models either with or without such properties can be used to describe real-world problems [50].
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Singular and non-singular operators. Another property that has been subject to much discussion is
the singularity or non-singularity of fractional-calculus operators. The classical Riemann–Liouville
model is defined by a singular integral, due to the power function (x− t)ν−1 in the integrand, but the
singularity is integrable provided that Re(ν) > 0. Some other models [24,25] have been promoted due
to the non-singularity of their defining integrals.

Again, the class (1) is general enough to cover both some singular and some non-singular
fractional-calculus operators. This time it is easy to find a condition for which is which. We write
v0(A) ≥ 0 for the valency (multiplicity or ramification index) of the analytic function A(z) at the point
z = 0, so that A(z) = zv0(A)B(z) for some function B that is analytic and nonzero in a neighbourhood
of z = 0. Then, the general integral transform (1) is non-singular if:

Re (α + βv0(A)) ≥ 1

(the most usual case is α = 1, v0(A) = 0), and it has an integrable singularity if:

0 < Re (α + βv0(A)) < 1.

(In the case where Re (α + βv0(A)) ≤ 0, we have a non-integrable singularity, and the integral (1)
is not defined since the function cannot be integrated near t = x.)

Again, neither singularity nor non-singularity is always required by physical motivations.
Both singular and non-singular fractional-calculus operators have discovered many applications
to real-world problems [51].

Dual operators. The definition (1) is, for a left-sided fractional integral operator, the integration being
performed from c to x. We can equally well define a right-sided fractional integral operator, for x
contained in some fixed interval [c, d], namely:

A
x Iα,β

d f (x) =
∫ d

x
(t− x)α−1 A

(
(t− x)β

)
f (t)dt. (8)

This modified operator has the property that it is the dual of the original left-sided fractional
integral operator: ∫ d

c

(
A
c Iα,β

x f (x)
)

g(x)dx =
∫ d

c
f (x)

(
A
x Iα,β

d g(x)
)

dx.

This can be quickly proved using Fubini’s theorem, and it is an analogue of the integration by
parts rule for standard integrals and Riemann–Liouville fractional integrals.

Functional bounds. The operator A
c Iα,β

x defined by (1) defines a map between function spaces, and it
may be useful to consider bounds and properties of this functional map.

In [35] it was proved that A
c Iα,β

x is bounded on the space L1[c, c + R], with∥∥∥A
c Iα,β

x f (x)
∥∥∥

L1
≤ RRe(α) sup

|z|<RRe(β)

|A(z)|
∥∥∥ f (x)

∥∥∥
L1

.

Using Young’s inequality for convolutions, we can prove that the same operator is also bounded
on any Lp space, with ∥∥∥A

c Iα,β
x f (x)

∥∥∥
Lp
≤ RRe(α) sup

|z|<RRe(β)

|A(z)|
∥∥∥ f (x)

∥∥∥
Lp

for all p ∈ [1, ∞]. This functional space bound strengthens the pure mathematical foundation for the
general class of operators, and it may be useful in the future study of fractional differential equations
using operators in this class.

Fractionally-iterated operators. Some fractional operators in the literature have arisen by means of
iteration. The process here is to start from some standard operator K between functions, write a
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formula for the iterated operator Kn, and then generalise that formula to non-integer values of n. This
idea is of course what gave rise to fractional calculus in the first place, with the starting operator being
simply K = d

dx , but it is also possible to apply the same process from a starting operator K which is
already fractional.

However, doing so does not always yield a new fractional operator. In some cases, the process does
give rise to new types of fractional calculus [52,53], but this relies on the semigroup property not being
valid for the starting operator D. For example, if K is the Riemann–Liouville fractional integral RL

c Iα,
then Kn = RL

c Inα, and so, the fractionally-iterated operator Kν = RL
c Iνα is also a Riemann–Liouville

fractional integral, not a new type of operator.
Some of the issues around fractional iteration were also discussed in ([54], §5).

4. Conclusions

Fractional calculus is currently in a stage of rapid and continuous expansion and development.
Right now, several different fractional-calculus operators are being proposed, with many different
behaviours such as singular or non-singular, semigroup law or none, etc. On the other hand, several
classifications of fractional-calculus operators have been suggested, proposing a variety of possible
conditions that might be imposed. Some models of fractional calculus are subject to debate, being
acceptable under one classification system, but not another.

There are many different points of view and approaches being taken in the study of fractional
calculus. In terms of real-world problems, it is important to remember that not everything is known:
some systems and behaviours are not yet understood using fractional calculus. In our opinion, going to
the extremes—e.g., creating operators without regard for applications, or imposing hard conditions for
all potential fractional-calculus operators—will not lead to significant progress in the understanding of
the still hidden flavours of fractional calculus and their applications.

Instead of imposing criteria, we suggest organising fractional-calculus operators into classes
having different types of properties. One large class of operators, presented in detail in this manuscript,
is one example of a class with real-world applications where both singular and non-singular operators,
both with and without semigroup properties, may live together in the same class. We think the
words “true” and “false” are too simplistic to describe the complex process of debates that is
occurring nowadays.
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