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Abstract: In this study we introduce several new Ostrowski-type inequalities for both left and right
sided fractional integrals of a function g with respect to another function ψ. Our results generalized
the ones presented previously by Farid. Furthermore, two illustrative examples are presented to
support our results.
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1. Introduction and Preliminaries

Since 1695 [1–3], fractional calculus has been studied by many researchers from both theoretical
and applied viewpoints [4,5]. Particularly, fractional calculus is used to generalize classical inequalities.
Studies involving integral inequalities are important in several areas such as mathematics, physics,
chemistry, biology, engineering and others [6–15]. We recall that there are many definitions of fractional
operators, including Riemann–Liouville (RL), Hadamard, Liouville, Weyl (see [16–19]). From such
fractional integrals, one can obtain generalizations of the inequalities: Hadamard, Hermite–Hadamard,
Hardy, Opial, Gruss, and Montgomery, among others [20–32].

We mention that the following inequality was developed by Ostrowski [33]:

Theorem 1. Let g : I → R be a mapping differentiable in I◦ such that I is an interval in R, I◦ is the interior of
I and a1, b1 ∈ I◦, a1 < b1. If |g′(ξ)| ≤ M for all ξ ∈ [a1, b1], then the integral inequality holds

∣∣∣∣g(x)− 1
b1 − a1

∫ b1

a1

g (ξ) dξ

∣∣∣∣ ≤ [1
4
+

(
x− a1+b1

2

)2

(b1 − a1)
2

]
(b1 − a1) M, (1)

for all x ∈ [a1, b1].

In the literature, the inequality (1) is called the Ostrowski inequality, see [34]. This inequality has
a great importance while studying the error bounds of different numerical quadrature rules. In recent
years, such inequalities have been generalized and developed by many researchers. Various authors
obtained new Ostrowski-type inequalities for different fractional operators, see [16–19,35–47] and the
references therein.

In 2009, Anastassiou et al. [20] obtained Montgomery identities for fractional integrals and a
generalization for double fractional integrals. For fractional integrals they discussed both Ostrowski
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and Grüss inequalities. In 2010, Alomari and Darus [36] presented some Ostrowski-type inequalities
for the class of convex (or concave) functions. In 2012, Set [41] obtained some new fractional
Ostrowski-type inequalities. In the same year, Liu [40] established some Ostrowski-type inequalities
involving RL fractional integrals for the h-convex function. His results are generalizations of [41,42].
He also provided new estimates on Ostrowski-type inequalities for fractional integrals.

In 2013, Yue [38] obtained Ostrowski inequalities for both fractional integrals and associated
fractional integrals. In 2014, Aljinević [16] studied Montgomery identities for fractional integrals of a
function f with respect to another function g. Also, he gave the Ostrowski inequality for fractional
integrals for functions whose first derivatives belong to Lp spaces. In the same year, Yıldırım and
Kırtay [46] established new generalizations for Ostrowski inequalities by using the generalized RL
fractional integral.

Yıldız et al. [47] used the RL fractional integrals to obtain several new generalizations of Ostrowski
type inequalities. Farid [35] found a new version of Ostrowski type inequalities in a very simple way
for RL fractional integrals. He also derived some related results. Recently, Dragomir studied several
generalizations of the Ostrowski type integral inequality involving RL fractional integrals of bounded
variation: Hölder and Lipschitzian functions, see [17–19]. In 2018, Yaldız and Set [45] obtained some
new Ostrowski type inequalities for generalized fractional integral operators.

Recently, Sousa and Oliveira [43] introduced the left and right sided fractional integrals and
the so-called ψ-Hilfer fractional derivative with respect to another function. They studied Gronwall
inequalities and the Cauchy-type problem by means of the ψ- Hilfer operator in [44]. Consequently,
they opened a window for new applications.

The following definitions are special approaches for when the kernel is unknown, involving
a function ψ. Let α1 > 0 and I = [a1, b1] be a finite or infinite interval. Also, let the function g be
integrable defined on I, and the function ψ be increasing and positive monotone on (a1, b1], having a
continuous derivative ψ′(x) on (a1, b1).

The expressions of the left sided and right sided fractional integrals of a function g with respect to
another function ψ can be seen [4,5], respectively:

Iα1;ψ
a+1

g (x) :=
1

Γ (α1)

∫ x

a1

ψ′ (ξ) (ψ (x)− ψ (ξ))α1−1 g(ξ)dξ (2)

and

Iα1;ψ
b−1

g (x) :=
1

Γ (α1)

∫ b1

x
ψ′ (ξ) (ψ (ξ)− ψ (x))α1−1 g(ξ)dξ. (3)

If we take ψ(x) = x and ψ(x) = ln x, then we obtain RL and Hadamard fractional
integrals, respectively.

The organization of this manuscript is as follows. In Section 1, we give the introduction
and preliminaries. Motivated by [35,43], several Ostrowski-type inequalities for the left sided and
right sided fractional integrals of a function g with respect to another function ψ are established in
Section 2. Illustrative examples are presented in Section 3 to support our results. Section 4 deals with
our conclusions.

2. Main Results

Below, we will show several new Ostrowski-type inequalities for both left and right sided
fractional integrals of a function g with respect to another function ψ.

Theorem 2. Assume that the conditions of the Theorem 1 are satisfied. Also, suppose that the function
ψ ∈ C1(I) is increasing and positive monotone, and ψ′(x) ≥ 1 (∀x ∈ I). Let Iα1;ψ

a+1
and Iβ1;ψ

b−1
be defined as (2)

and (3), respectively. Then the following inequality holds:∣∣∣((ψ (b1)− ψ (x))β1 + (ψ (x)− ψ (a1))
α1
)

g(x)
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−
(

Γ (β1 + 1) Iβ1;ψ
b−1

g (x) + Γ (α1 + 1) Iα1;ψ
a+1

g (x)
)∣∣∣∣

≤ M
(

β1

β1 + 1
(ψ (b1)− ψ (x))β1+1 +

α1

α1 + 1
(ψ (x)− ψ (a1))

α1+1
)

, (4)

where α1, β1 > 0 and x ∈ [a1, b1].

Proof of Theorem 2. Taking into account that ψ is an increasing and positive monotone function,
for α1 > 0 and ξ ∈ [a1, x] we get

(ψ (x)− ψ (ξ))α1 ≤ (ψ (x)− ψ (a1))
α1 . (5)

Utilizing (5) and the given condition on g′, we obtain∫ x

a1

(
Mψ′(ξ)− g′(ξ)

)
(ψ(x)− ψ(ξ))α1 dξ ≤ (ψ(x)− ψ(a1))

α1
∫ x

a1

(
Mψ′(ξ)− g′(ξ)

)
dξ

and ∫ x

a1

(
Mψ′(ξ) + g′(ξ)

)
(ψ(x)− ψ(ξ))α1 dξ ≤ (ψ(x)− ψ(a1))

α1
∫ x

a1

(
Mψ′(ξ) + g′(ξ)

)
dξ.

If the above integrals are calculated, we obtain the following inequalities, respectively:

(ψ (x)− ψ (a1))
α1 g(x)− Γ (α1 + 1) Iα1;ψ

a+1
g (x) ≤ Mα1

α1 + 1
(ψ (x)− ψ (a1))

α1+1 (6)

and
Γ (α1 + 1) Iα1;ψ

a+1
g(x)− (ψ(x)− ψ(a1))

α1 g(x) ≤ Mα1

α1 + 1
(ψ(x)− ψ(a1))

α1+1 . (7)

By using (6) and (7), we report the following inequality:∣∣∣∣(ψ(x)− ψ(a1))
α1 g(x)− Γ (α1 + 1) Iα1;ψ

a+1
g(x)

∣∣∣∣ ≤ Mα1

α1 + 1
(ψ(x)− ψ(a1))

α1+1. (8)

On the other hand, if ψ is an increasing and positive function, for ξ ∈ [x, b1] and β1 > 0 we get

(ψ(ξ)− ψ(x))β1 ≤ (ψ(b1)− ψ(x))β1 . (9)

By using (9) and the given condition on g′, we conclude

∫ b1

x

(
Mψ′(ξ)− g′(ξ)

)
(ψ(ξ)− ψ(x))β1 dξ ≤ (ψ(b1)− ψ(x))β1

∫ b1

x

(
Mψ′(ξ)− g′(ξ)

)
dξ

and ∫ b1

x
(Mψ′(ξ) + g′(ξ)) (ψ(ξ)− ψ(x))β1 dξ ≤ (ψ(b1)− ψ(x))β1

∫ b1

x

(
Mψ′(ξ) + g′(ξ)

)
dξ.

If the above integrals are calculated, we obtain the following inequalities, respectively:

Γ (β1 + 1) Iβ1;ψ
b−1

g(x)− (ψ(b1)− ψ(x))β1 g(x) ≤ Mβ1

β1 + 1
(ψ(b1)− ψ(x))β1+1 (10)

and
(ψ (b1)− ψ(x))β1 g(x)− Γ (β1 + 1) Iβ1;ψ

b−1
g(x) ≤ Mβ1

β1 + 1
(ψ(b1)− ψ(x))β1+1 . (11)
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By using (10) and (11), the following inequality will appear:∣∣∣∣(ψ(b1)− ψ(x))β1 g(x)− Γ (β1 + 1) Iβ1;ψ
b−1

g(x)
∣∣∣∣ ≤ Mβ1

β1 + 1
(ψ(b1)− ψ(x))β1+1 . (12)

So, by utilizing (8) and (12), we obtain (4).

Theorem 3. Let g : I → R be a mapping differentiable in I◦ (the interior of I) such that I is an interval
in R and a1, b1 ∈ I◦, a1 < b1. Assume that the function ψ ∈ C1(I) is increasing and positive monotone,
and ψ′(x) ≥ 1 (∀x ∈ I). Also, let Iα1;ψ

a+1
and Iβ1;ψ

b−1
be defined as (2) and (3), respectively. If m ≤ g′(t) ≤ M for

M ≥ 0, m ≤ 0 and all ξ ∈ [a1, b1], then the following inequalities hold:(
(ψ(x)− ψ (a1))

α1 − (ψ (b1)− ψ (x))β1
)

g (x)

−
(

Γ (α1 + 1) Iα1;ψ
a+1

g (x)− Γ (β1 + 1) Iβ1;ψ
b−1

g (x)
)

≤ M
(

α1

α1 + 1
(ψ(x)− ψ(a1))

α1+1 +
β1

β1 + 1
(ψ(b1)− ψ(x))β1+1

)
(13)

and (
(ψ(b1)− ψ (x))β1 − (ψ (x)− ψ (a1))

α1
)

g (x)

+

(
Γ (α1 + 1) Iα1;ψ

a+1
g(x)− Γ (β1 + 1) Iβ1;ψ

b−1
g (x)

)
≤ −m

(
β1

β1 + 1
(ψ(b1)− ψ(x))β1+1 +

α1

α1 + 1
(ψ(x)− ψ(a1))

α1+1
)

, (14)

where α1, β1 > 0 and x ∈ [a1, b1].

Proof of Theorem 3. Using the given comparing conditions on g′, the proof is similar to one of
Theorem 2. That is, from (5) and by using the given condition on g′, we conclude∫ x

a1

(
Mψ′ (ξ)− g′(ξ)

)
(ψ(x)− ψ(ξ))α1 dξ ≤ (ψ(x)− ψ(a1))

α1
∫ x

a1

(
Mψ′ (ξ)− g′(ξ)

)
dξ

and ∫ x

a1

(
g′(ξ)−mψ′ (ξ)

)
(ψ(x)− ψ(ξ))α1 dξ ≤ (ψ(x)− ψ(a1))

α1
∫ x

a1

(
g′(ξ)−mψ′ (ξ)

)
dξ.

If the above integrals are calculated, we obtain the following inequalities, namely:

(ψ(x)− ψ(a1))
α1 g(x)− Γ (α1 + 1) Iα1;ψ

a+1
g(x) ≤ Mα1

α1 + 1
(ψ(x)− ψ(a1))

α1+1 (15)

and
Γ(α1 + 1)Iα1;ψ

a+1
g(x)− (ψ(x)− ψ(a1))

α1 g(x) ≤ − mα1

α1 + 1
(ψ(x)− ψ(a1))

α1+1 . (16)

On the other hand, by using (9) and the given condition on g′, we have

∫ b1

x

(
Mψ′(ξ)− g′(ξ)

)
(ψ(ξ)− ψ(x))β1 dξ ≤ (ψ(b1)− ψ(x))β1

∫ b1

x

(
Mψ′(ξ)− g′(ξ)

)
dξ
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and ∫ b1

x

(
g′(ξ)−mψ′(ξ)

)
(ψ(ξ)− ψ(x))β1 dξ ≤ (ψ(b1)− ψ(x))β1

∫ b1

x

(
g′(ξ)−mψ′(ξ)

)
dξ.

If the above integrals are calculated, we obtain the following inequalities, namely:

Γ (β1 + 1) Iβ1;ψ
b−1

g (x)− (ψ (b1)− ψ (x))β1 g(x) ≤ Mβ1

β1 + 1
(ψ (b1)− ψ (x))β1+1 (17)

and
(ψ(b1)− ψ(x))β1 g(x)− Γ(β1 + 1)Iβ1;ψ

b−1
g(x) ≤ − mβ1

β1 + 1
(ψ(b1)− ψ(x))β1+1, (18)

respectively. By using (15) and (17), we obtain (13). In addition, by using (16) and (18),
we provide (14).

Theorem 4. Let g : I → R be a mapping differentiable in I◦ (the interior of I) such that I is an interval
in R and a1, b1 ∈ I◦, a1 < b1. Assume that the function ψ ∈ C1(I) is increasing and positive monotone,
and ψ′(x) ≥ 1 (∀x ∈ I). Also, let Iα1;ψ

a+1
and Iβ1;ψ

b−1
be defined as (2) and (3), respectively. If m ≤ g′(t) ≤ M for

M ≥ 0, m ≤ 0 and all ξ ∈ [a1, b1], then the following inequalities hold:(
(ψ(x)− ψ (a1))

α1 + (ψ (b1)− ψ (x))β1
)

g (x)

−
(

Γ (α1 + 1) Iα1;ψ
a+1

g (x) + Γ (β1 + 1) Iβ1;ψ
b−1

g (x)
)

≤ Mα1

α1 + 1
(ψ(x)− ψ(a1))

α1+1 − mβ1

β1 + 1
(ψ(b1)− ψ(x))β1+1 (19)

and
−
(
(ψ(b1)− ψ (x))β1 + (ψ (x)− ψ (a1))

α1
)

g (x)

+

(
Γ (α1 + 1) Iα1;ψ

a+1
g(x) + Γ (β1 + 1) Iβ1;ψ

b−1
g (x)

)
≤ Mβ1

β1 + 1
(ψ(b1)− ψ(x))β1+1 − mα1

α1 + 1
(ψ(x)− ψ(a1))

α1+1 , (20)

where α1, β1 > 0 and x ∈ [a1, b1].

Proof of Theorem 4. Proof is constructed in the same line as the proof of Theorem 3. By using (15)
and (18), we obtain (19). In addition, from (16) and (17), we get (20).

Theorem 5. Suppose that the conditions of the Theorem 2 are satisfied. Also, assume that the function
ψ ∈ C1(I) is increasing and positive monotone, and ψ′(x) ≥ 1 (∀x ∈ I). Let Iα1;ψ

a+1
and Iβ1;ψ

b−1
be defined as (2)

and (3), respectively. Then the following inequality holds:∣∣∣((ψ (b1)− ψ (x))β1 g (b1) + (ψ (x)− ψ (a1))
α1 g (a1)

)
−
(

Γ (β1 + 1) Iβ1;ψ
x+ g (b1) + Γ (α1 + 1) Iα1;ψ

x− g (a1)
)∣∣∣

≤ M
(

β1

β1 + 1
(ψ (b1)− ψ (x))β1+1 +

α1

α1 + 1
(ψ (x)− ψ (a1))

α1+1
)

, (21)

where α1, β1 > 0 and x ∈ [a1, b1].
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Proof of Theorem 5. Recalling ψ is an increasing and positive monotone function, for α1 > 0 and
ξ ∈ [a1, x] we obtain

(ψ (ξ)− ψ (a1))
α1 ≤ (ψ (x)− ψ (a1))

α1 . (22)

By using (22) and the given condition on g′, we have∫ x

a1

(Mψ′(ξ)− g′(ξ))(ψ(ξ)− ψ(a1))
α1 dξ ≤ (ψ(x)− ψ(a1))

α1
∫ x

a1

(
Mψ′(ξ)− g′(ξ)

)
dξ

and ∫ x

a1

(Mψ′(ξ) + g′(ξ))(ψ(ξ)− ψ(a1))
α1 dξ ≤ (ψ(x)− ψ(a1))

α1
∫ x

a1

(
Mψ′(ξ) + g′(ξ)

)
dξ.

If the above integrals are calculated, we obtain the following inequalities, respectively:

Γ(α1 + 1)Iα1;ψ
x− g(a1)− (ψ(x)− ψ(a1))

α1 g(a1) ≤
Mα1

α1 + 1
(ψ(x)− ψ(a1))

α1+1 (23)

and
(ψ(x)− ψ(a1))

α1 g(a1)− Γ(α1 + 1)Iα1;ψ
x− g(a1) ≤

Mα1

α1 + 1
(ψ(x)− ψ(a1))

α1+1 . (24)

By utilizing (23) and (24), the following inequality holds:∣∣∣(ψ (x)− ψ (a1))
α1 g (a1)− Γ (α1 + 1) Iα1;ψ

x− g (a1)
∣∣∣

≤ Mα1

α1 + 1
(ψ (x)− ψ (a1))

α1+1 . (25)

Using the fact that ψ is an increasing and positive monotone function, for ξ ∈ [x, b1] and β1 > 0
we get

(ψ (b1)− ψ (ξ))β1 ≤ (ψ (b1)− ψ (x))β1 . (26)

By using (26) and the given condition on g′, we have

∫ b1

x
(Mψ′(ξ)− g′(ξ))(ψ(b1)− ψ(ξ))β1 dξ ≤ (ψ(b1)− ψ(x))β1

∫ b1

x

(
Mψ′(ξ)− g′(ξ)

)
dξ

and ∫ b1

x
(Mψ′(ξ) + g′(ξ))(ψ(b1)− ψ(ξ))β1 dξ ≤ (ψ(b1)− ψ(x))β1

∫ b1

x

(
Mψ′(ξ) + g′(ξ)

)
dξ.

If the above integrals are calculated, we obtain the following inequalities, respectively:

(ψ(b1)− ψ(x))β1 g(b1)− Γ(β1 + 1)Iβ1;ψ
x+ g(b1) ≤

Mβ1

β1 + 1
(ψ(b1)− ψ(x))β1+1 (27)

and
Γ(β1 + 1)Iβ1;ψ

x+1
g(b1)− (ψ(b1)− ψ(x))β1 g(b1) ≤

Mβ1

β1 + 1
(ψ(b1)− ψ(x))β1+1 . (28)

By making use of (27) and (28), the following inequality holds:

|(ψ(b1)− ψ(x))β1 g(b1)− Γ(β1 + 1)Iβ1;ψ
x+ g(b1)| ≤

Mβ1

β1 + 1
(ψ(b1)− ψ(x))β1+1. (29)

So, from (25) and (29), we obtain (21).
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Corollary 1. If β1 = α1 in Theorem 2, then the following fractional Ostrowski inequality holds:∣∣((ψ (b1)− ψ (x))α1 + (ψ (x)− ψ (a1))
α1
)

g(x)

−Γ (α1 + 1)
(

Iα1;ψ
b−1

g (x) + Iα1;ψ
a+1

g (x)
)∣∣∣∣

≤ Mα1

α1 + 1

(
(ψ (b1)− ψ (x))α1+1 + (ψ (x)− ψ (a1))

α1+1
)

,

where α1 > 0 and x ∈ [a1, b1].

Corollary 2. If α1 = β1 = 1 and ψ(x) = x, then we lead to the Ostrowski inequality (1).

Corollary 3. If α1 = β1 in Theorem 5, then we obtain the following fractional Ostrowski inequality:∣∣((ψ (b1)− ψ (x))α1 g (b1) + (ψ (x)− ψ (a1))
α1 g (a1)

)
−Γ (α1 + 1)

(
Iα1;ψ
x+ g (b1) + Iα1;ψ

x− g (a1)
)∣∣∣

≤ Mα1

α1 + 1

(
(ψ (b1)− ψ (x))α1+1 + (ψ (x)− ψ (a1))

α1+1
)

,

where α1 > 0 and x ∈ [a1, b1].

Remark 1. If we take ψ (x) = x, then Theorem 2, Theorem 3, and Theorem 5 reduce to Theorem 1.2–Theorem 1.4
in Farid [35], respectively. But, in [35], −m should be M in the first inequality in Theorem 1.3. Also, M should
be −m in the second inequality.

Remark 2. After following the steps of the proof of Theorem 2 with ψ (x) = x and α1 = β1 = 1, an alternative
proof of the Ostrowski inequality is obtained (see [37]).

3. Examples

In this section, we support our main results by presenting two examples.

Example 1. Let α1 = 0.5, β1 = 2.2, ψ(x) = ex, g(x) = sin x and [a1, b1] = [0, π]. Then, we obtain
|g′(x)| = |cos x| ≤ 1, that is, M = 1. Also, ψ(x) = ex is an increasing continuous derivative and positive
monotone function with ψ′(x) = ex ≥ 1 for all x ∈ [0, π]. Then, using Theorem 2, for [0, π] we obtain the
following Ostrowski type inequality:∣∣∣((eπ − ex)2.2 + (ex − 1)0.5

)
sin x−

(
Γ (3.2) I2.2;ψ

π− sin x + Γ (1.5) I0.5;ψ
0+ sin x

)∣∣∣
≤ 11

16
(eπ − ex)3.2 +

1
3
(ex − 1)1.5 .

Example 2. Let α1 = 0.5, β1 = 2.2, ψ(x) = 6
√

x + 2, g(x) = (x− 1)2 and [a1, b1] = [0, 2]. Then, we get
g′(x) = 2 (x− 1). Let m = −2 and M = 2. Also, ψ(x) = 6

√
x + 2 is an increasing continuous derivative

and positive monotone function with ψ′(x) = 3√
x+2
≥ 1 for all x ∈ I = [0, 2].Then, using Theorem 3,

for x ∈ [0, 2] we obtain the following Ostrowski type inequality:((
6
√

x + 2− 6
√

2
)0.5
−
(

12− 6
√

x + 2
)2.2

)
(x− 1)2−

(
Γ (1.5) I0.5;ψ

0+ (x− 1)2 − Γ (3.2) I2.2;ψ
2− (x− 1)2

)

≤ 2
(

1
3

(
6
√

x + 2− 6
√

2
)1.5

+
11
16

(
12− 6

√
x + 2

)3.2
)
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and((
12− 6

√
x + 2

)2.2
−
(

6
√

x + 2− 6
√

2
)1.5

)
(x− 1)2 +

(
Γ (1.5) I0.5;ψ

0+ (x− 1)2 − Γ (3.2) I2.2;ψ
2− (x− 1)2

)

≤ 2
(

11
16

(
6
√

2− 6
√

x + 2
)3.2

+
1
3

(
6
√

x + 2− 6
√

2
)1.5

)
.

4. Conclusions

Studies involving integral inequalities play an important role in several areas of science
and engineering. During recent years, such inequalities have been generalized and developed by
many researchers. Ostrowski inequalities have a great importance while studying the error bounds of
different numerical quadrature rules, for example the midpoint rule, Simpson’s rule, the trapezoidal
rule and other generalized Riemann types. In this paper, by generalizing the inequalities in [35],
we proposed, within four theorems and their related corollaries, several new Ostrowski-type integral
inequalities for the left and right sided fractional integrals of a function g with respect to another
function ψ. Finally, we investigated in detail two examples to show the reported results.
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