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Abstract: The paper presents a new analytical method called the local fractional Laplace variational
iteration method (LFLVIM), which is a combination of the local fractional Laplace transform (LFLT)
and the local fractional variational iteration method (LFVIM), for solving the two-dimensional
Helmholtz and coupled Helmholtz equations with local fractional derivative operators (LFDOs).
The operators are taken in the local fractional sense. Two test problems are presented to demonstrate
the efficiency and the accuracy of the proposed method. The approximate solutions obtained are
compared with the results obtained by the local fractional Laplace decomposition method (LFLDM).
The results reveal that the LFLVIM is very effective and convenient to solve linear and nonlinear PDEs.

Keywords: coupled Helmholtz equation; local fractional variational iteration method; local fractional
Laplace transform (LFLT)

1. Introduction

The Helmholtz equation often arises in the study of physical problems involving partial differential
equation (PDEs) in both space and time. The Helmholtz equation with local fractional derivative
operators in two-dimensional case was suggested in [1,2] as follows:

∂2αH
∂x2α +

∂2αH
∂y2α +ω2αH = f (x, y) , 0 < α ≤ 1 (1)

with the initial value conditions as follows:

H(0, y) = ϕ(y) ,
∂αH(0, y)
∂xα

= ψ(y)

where H(x, y) is the unknown function and f (x, y) is a source term. While coupled Helmholtz equations
with local fractional derivative operators in two-dimensional case was introduced in [2] as follows:

∂2αH1
∂x2α + ∂2αH2

∂y2α +ω2α
1 H1 = f1 ,

∂2αH2
∂x2α + ∂2αH1

∂y2α +ω2α
2 H2 = f2 ,

(2)
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subject to the initial conditions:

H1(0, y) = ϕ1(y) , ∂αH1(0,y)
∂xα = ψ1(y) ,

H2(0, y) = ϕ2(y) , ∂αH2(0,y)
∂xα = ψ2(y) .

(3)

where H1 and H2 are unknown functions and f1(x, y) and f2(x, y) are source terms.
In recent years, many of the approximate and analytical methods have been utilized to solve

the PDEs with LFDOs such as the Adomian decomposition method [3–5], variational iteration
method [6–11], differential transform method [12,13], series expansion method [14–16], Sumudu
transform method [17], Fourier transform method [18], function decomposition method [19,20],
Laplace transform method [21,22], reduce differential transform method [23,24], homotopy perturbation
Sumudu transform [25], and the existence and uniqueness of solutions for local fractional differential
equations [26,27].

The main aim of this work is to propose the local fractional Laplace variational iteration method
to solve Helmholtz and coupled Helmholtz equations with LFDOs. It is important to note that the new
modification reduces the size of calculations compared to the LFVIM. This paper is organized as follows:
In Section 2, the basic mathematical tools of local fractional calculus are introduced. The analysis of the
proposed method is given in Section 3. Then in Section 4, the proposed method is implemented to
solve some examples. Finally, concluding remarks are presented in Section 5.

2. Basic Definitions of Local Fractional Calculus

In this section, we introduce the basic definitions and properties of the local fractional calculus
used to describe the proposed schemes.

Definition 1. The local fractional derivative of f (x) of order α at the point x = x0 is given by [19,20,24]:

f (α)(x0) = lim
x→x0

∆α( f (x) − f (x0))

(x− x0)
α (4)

where ∆α( f (x) − f (x0)) � Γ(α+ 1) ( f (x) − f (x0)).

Definition 2. A partition of the interval [a, b] is denoted as (t j , t j+1) , j = 0, . . . , N − 1, and tN = b with
∆t j = t j+1 − t j and ∆t = max{∆t0, ∆t1, . . .}. The local fractional integral of f (x) in the interval [a, b] is given
by [20,24]:

aI(α)

b f (x) =
1

Γ(1 + α)

b∫
a

f (t) (dt)α =
1

Γ(1 + α)
lim

∆t→0

N−1∑
j=0

f (t j) (∆t j)
α. (5)

If the functions are local fractional continuous then the local fractional derivatives and
integrals exist.

Definition 3. Let 1
Γ(1+α)

∞∫
0

∣∣∣ f (x)∣∣∣ (dx)α < k < ∞. The local fractional Laplace transform of f (x) is given

by [19,20]:

Lα{ f (x)} = f L,α
s (s) =

1
Γ(1 + α)

∞∫
0

Eα(−sαxα) f (x) (dx)α , 0 < α ≤ 1 (6)

where the latter integral converges and sα ∈ Rα.
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Definition 4. The inverse of the local fractional Laplace transform of f (x) is [19,28]:

L−1
α { f

L,α
s (s)} = f (t) =

1
(2π)α

β+iω∫
β−iω

Eα(sαxα) f L,α
s (s) (ds)α , 0 < α ≤ 1 (7)

where sα = βα + iαωα, and Re(s) = β > 0

Theorem 1. Suppose that Lα
{
f (x)

}
= f L,α

s (s) and Lα
{
g(x)

}
= gL,α

s (s) , then we have the following formulas:

Lα
{
a f (x) + bg(x)

}
= a f L,α

s (s) + bgL,α
s (s) (8)

Lα
{
Eα(cαxα) f (x)

}
= f L,α

s (s− c) (9)

Lα
{

f (kα)(x)
}
= skα f L,α

s (s) − s(k−1)α f (0) − s(k−2)α f (α)(0) − · · · − f ((k−1)α)(0) (10)

Lα
{
Eα(aαxα)

}
=

1
sα − aα

(11)

Lα
{
xkα

}
=

Γ(1 + kα)

s(k+1)α
(12)

Proof of Theorem 1: see [29].

Definition 5. The convolution of two functions is defined symbolically by [28,29]:

ψ1(x) ∗ψ2(x) =
1

Γ(1 + α)

x∫
0

ψ1(t)ψ2(x− t) (dt)α (13)

or

ψ2(x) ∗ψ1(x) =
1

Γ(1 + α)

x∫
0

ψ2(t)ψ1(x− t) (dt)α (14)

Theorem 2. Let Lα
{
ψ1(x)

}
= ΨL,α

s,1 (s) and Lα
{
ψ2(x)

}
= ΨL,α

s,2 (s), then

Lα
{
ψ1(x) ∗ψ2(x)

}
= ΨL,α

s,1 (s)ΨL,α
s,2 (15)

3. Analysis of the Method

In this section, we illustrate the basic idea of the Laplace variational iteration method for the local
fractional partial differential equation.

Let us consider the following local fractional partial differential equations:

Lαu(x, y) + Rαu(x, y) + Nαu(x, y) = f (x, y) , 0 < α ≤ 1 (16)

where Lα = ∂kα

∂xkα is the linear LFDO, Rα is a linear LFDO of order less than Lα, Nα represents the
general nonlinear LFDO, and f (x, y) is the source term.
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According to the rule of LFVIM, the correction local fractional functional for Equation (16) is
constructed as [6–10,30,31]:

un+1(x) = un(x) + 0I(α)x

(
λ(x− ξ)α

Γ(1 + α)
[Lαun(ξ) + Rαũn(ξ) + Nαũn(ξ) − f (ξ)]

)
, (17)

where λ(x−ξ)α

Γ(1+α) is a fractal Lagrange multiplier.
For initial value problems of Equation (16), we can start with:

u0(x) = u(0) +
xα

Γ(1 + α)
u(α)(0) + · · ·+

x(k−1)α

Γ(1 + (k− 1)α)
u((k−1)α)(0) (18)

We now take the Yang-Laplace transform of Equation (17), namely:

Łα
{
un+1

}
= Łα{un}+ Łα

{
0I(α)x

(
λ(x− ξ)α

Γ(1 + α)
[Lαun(ξ) + Rαũn(ξ) + Nαũn(ξ) − f (ξ)]

)}
(19)

or

Łα
{
un+1

}
= Łα{un}+ Łα

{
λ(x)α

Γ(1 + α)

}
Lα

{
Lαun(x) + Rαũn(x) + Nαũn(x) − f (x)

}
(20)

Taking the local fractional variation of Equation (20), which is given by:

δα(Łα
{
un+1

}
) = δα(Łα{un}) + δα

(
Łα

{
λ(x)α

Γ(1 + α)

}
Łα

{
Lαun(x) + Rαũn(x) + Nαũn(x) − f (x)

})
(21)

By using the computation of Equation (21), we get:

δα(Łα
{
un+1

}
) = δα(Łα{un}) + Łα

{
λ(x)α

Γ(1 + α)

}
δα(Łα

{
Lαun(x)

}
) (22)

Hence, from Equation (22) we get:

1 + Łα

{
λ(x)α

Γ(1 + α)

}
skα = 0 (23)

where:

δα(Łα
{
Lαun(x)

}
) = δα

(
skαŁα

{
un(x)

}
− s(k−1)αun(0) − · · · − u((k−1)α)

n (0)
)
= skαδα(Łα

{
un(x)

}
) (24)

Therefore, we get:

Łα

{
λ(x)α

Γ(1 + α)

}
= −

1
skα

(25)

Therefore, we have the following iteration algorithm:

Łα
{
un+1

}
= Łα{un} −

1
skα

Łα
{
Lαun(x) + Rαun(x) + Nαũn(x) − f (x)

}
(26)

where the initial value reads as:

u0(x)= u(0) +
xα

Γ(1 + α)
u(α)(0) + · · ·+

x(k−1)α

Γ[1 + (k− 1)α]
u((k−1)α)(0) (27)

Thus, the local fractional series solution of Equation (16) is:

u(x, y) = lim
n→∞

Ł−1
α (Łα

{
un(x, y)

}
) (28)
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4. Illustrated Examples

In order to illustrate the above results in Section 3, we give the following several examples.

Example 1. Let us consider the following Helmholtz equation involving the local fractional operator:

∂2αu(x, y)
∂x2α +

∂2αu(x, y)
∂y2α = u(x, y) , 0 < α ≤ 1 (29)

with the initial value conditions as follows:

u(0, y) = 0,
∂αu(0, y)
∂xα

= coshα(yα) (30)

Using relation Equation (26), we structure the iterative relation as:

Łα
{
un+1

}
= Łα{un} −

1
s2α Łα

{
∂2αun

∂x2α +
∂2αun

∂y2α − un

}
=

1
sα

un(0, y) +
1

s2α u(α)
n (0, y) −

1
s2α

∂2αŁα{un}

∂y2α +
1

s2α Łα{un}

(31)

In view of Equation (27), the initial value reads:

u0(x, y) = u(0, y) +
xα

Γ(1 + α)
u(α)(0, y) =

xα

Γ(1 + α)
coshα(yα) (32)

Making use of Equations (31) and (32), the successive approximate solutions are shown as follows:

Łα
{
u1(x, y)

}
= 1

sα u0(0, y) + 1
s2α u(α)

0 (0, y) − 1
s2α

∂2αŁα{u0(x,y)}
∂y2α + 1

s2α Łα
{
u0(x, y)

}
= 1

s2α coshα(yα) − 1
s4α coshα(yα) + 1

s4α coshα(yα)= 1
s2α coshα(yα),

Łα{u2} =
1

sα u1(0, y) + 1
s2α u(α)

1 (0, y) − 1
s2α

∂2αŁα{u1}

∂y2α + 1
s2α Łα{u1}

= 1
s2α coshα(yα),

Łα{u3} =
1

sα u2(0, y) + 1
s2α u(α)

2 (0, y) − 1
s2α

∂2αŁα{u2}

∂y2α + 1
s2α Łα{u2}

= 1
s2α coshα(yα),

Łα{u4} =
1

sα H3(0, y) + 1
s2α u(α)

3 (0, y) − 1
s2α

∂2αŁα{u3}

∂y2α + 1
s2α Łα{u3}

= 1
s2α coshα(yα),

Łα{un} =
1

s2α coshα(yα) , n ≥ 1.
Consequently, the local fractional series solution is :
u(x, y) = lim

n→∞
Ł−1
α

(
1

s2α coshα(yα)
)
= xα

Γ(1+α)
coshα(yα) .

(33)

The result is the same as the one that is obtained by the LFLDM [2].
In Figures 1–3, the three-dimensional plots of the approximate solutions of Equation (29) with

initial condition Equation (30) are shown for different values of α = 1
2 , ln(2)/ ln(3) , 1, respectively.
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Figure 1. The plot of the solution to the local fractional Helmholtz equation with fractional order
α = 1/2.
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Example 2. Consider the coupled Helmholtz equations with the local fractional derivative operators:

∂2αu(x,y)
∂x2α +

∂2αv(x,y)
∂y2α − u(x, y) = 0 ,

∂2αv(x,y)
∂x2α +

∂2αu(x,y)
∂y2α − v(x, y) = 0 ,

(34)

subject to the initial conditions:

u(0, y) = 0 , ∂αu(0,y)
∂xα = Eα(yα) ,

v(0, y) = 0 , ∂αv(0,y)
∂xα = −Eα(yα) .

(35)

In view of Equations (26) and (34), the local fractional iteration algorithm can be written as follows:

Łα
{
um+1

}
= Łα{um} −

1
s2α Łα

{
∂2αum
∂x2α + ∂2αvm

∂y2α − um

}
,

Łα
{
vm+1

}
= Łα{vm} −

1
s2α Łα

{
∂2αvm
∂x2α + ∂2αum

∂y2α − vm

}
,

(36)

which leads to:
Łα

{
um+1

}
= 1

sα um(0, y) + 1
s2α u(α)

m (0, y) − 1
s2α Łα

{
∂2αvm
∂y2α − um

}
,

Łα
{
vm+1

}
= 1

sα vm(0, y) + 1
s2α v(α)m (0, y) − 1

s2α Łα
{
∂2αum
∂y2α − vm

}
,

(37)

where the initial value reads:

Łα
{
u0(x, y)

}
= Łα

{
xα

Γ(1+α)Eα(yα)
}
=

Eα(yα)
s2α ,

Łα
{
v0(x, y)

}
= Łα

{
−

xα
Γ(1+α)Eα(yα)

}
= −

Eα(yα)
s2α .

(38)
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Making use of Equations (37) and (38), the successive approximate solutions are shown as follows:

Łα{u1} =
1
sα u0(0, y) + 1

s2α u(α)
0 (0, y) − 1

s2α Łα
{
∂2αv0
∂y2α − u0

}
,

Łα{v1} =
1
sα v0(0, y) + 1

s2α v(α)0 (0, y) − 1
s2α Łα

{
∂2αu0
∂y2α − v0

}
,

=
Eα(yα)

s2α +
2Eα(yα)

s4α ,

= −
Eα(yα)

s2α −
2Eα(yα)

s2α .

Łα{u2} =
1
sα u1(0, y) + 1

s2α u(α)
1 (0, y) − 1

s2α Łα
{
∂2αv1
∂y2α − u1

}
,

Łα{v2} =
1
sα v1(0, y) + 1

s2α v(α)1 (0, y) − 1
s2α Łα

{
∂2αu1
∂y2α − v1

}
,

=
Eα(yα)

s2α +
2Eα(yα)

s4α +
4Eα(yα)

s6α ,

= −
Eα(yα)

s2α −
2Eα(yα)

s4α −
4Eα(yα)

s6α .

Łα{u3} =
1
sα u2(0, y) + 1

s2α u(α)
2 (0, y) − 1

s2α Łα
{
∂2αv2
∂y2α − u2

}
,

Łα{v3} =
1
sα v2(0, y) + 1

s2α v(α)2 (0, y) − 1
s2α Łα

{
∂2αu2
∂y2α − v2

}
,

=
Eα(yα)

s2α +
2Eα(yα)

s4α +
4Eα(yα)

s6α +
8Eα(yα)

s8α ,

= −
Eα(yα)

s2α −
2Eα(yα)

s4α −
4Eα(yα)

s6α −
8Eα(yα)

s8α .

Łα{um} =
m∑

k=0

2kEα(yα)
s(2k+2)α ,

Łα{vm} = −
m∑

k=0

2kEα(yα)

s(2k+2)α .

(39)

Consequently, the local fractional series solution is:

u = Ł−1
α

(
Eα(yα)

s2α +
2Eα(yα)

s4α +
4Eα(yα)

s6α + . . .
)

v = Ł−1
α

(
−

Eα(yα)
s2α −

2Eα(yα)
s4α −

4Eα(yα)
s6α − . . .

)
= Eα(yα)

(
xα

Γ(1+α) +
2x3α

Γ(1+3α) +
4x5α

Γ(1+5α) − . . .
)
= Eα(yα)

sinhα(
√

2xα)
√

2
,

= −Eα(yα)
(

xα
Γ(1+α) +

2x3α

Γ(1+3α) +
4x5α

Γ(1+5α) − · · ·

)
= −Eα(yα)

sinhα(
√

2xα)
√

2
.

(40)

The result is the same as the one that is obtained by the LFLDM [2] and LFLHPM [32].
In Figures 4 and 5, the three-dimensional plots of the approximate solutions of Equation (34) with

initial condition Equation (35) are shown for different values of α = 1
2 , 1, respectively.
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Figure 5. The plot of the solutions to the coupled Helmholtz equations involving the local fractional
derivative operator with fractional order α = 1.

5. Conclusions

In this work we utilized the coupling method of the local fractional variational iteration method
and Laplace transform to solve Helmholtz and coupled Helmholtz equations and their approximate
solutions were obtained. The local fractional Laplace variational iteration method was proved to be an
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effective approach for solving partial differential equations with local fractional derivative operators
due to the excellent agreement between the obtained approximate solution and the exact solution.
A comparison was made to show that the method has a small size of computation in comparison with
the computational size required in other numerical methods, and its rapid convergence shows that the
method is reliable and introduces a significant improvement in solving linear and nonlinear partial
differential equations with local fractional derivative operators.
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