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Abstract
A finite difference scheme based on extended cubic B-spline method for the solution
of time fractional telegraph equation is presented and discussed. The Caputo
fractional formula is used in the discretization of the time fractional derivative.
A combination of the Caputo fractional derivative together with an extended cubic
B-spline is utilized to obtain the computed solutions. The proposed scheme is shown
to possess the unconditional stability property with second order convergence.
Numerical results demonstrate the applicability, simplicity and the strength of the
scheme in solving the time fractional telegraph equation with accuracies very close
to the exact solutions.
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1 Introduction
1.1 Problem statement
In this work, we consider the following one dimensional time fractional telegraph equation
(TFTE) with reaction term [1]:

∂2αu(x, t)
∂t2α

+ 2λ
∂αu(x, t)

∂tα
+ μu(x, t) = ν

∂2u(x, t)
∂x2 + f (x, t), (x, t) ∈ [a, b] × [0, T] (1)

with initial and boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(x, 0) = f1(x),

ut(x, 0) = f2(x),

u(a, t) = g1(t),

u(b, t) = g2(t),

(2)

where 0 < α < 1, and λ, μ, ν are arbitrary positive constants. f (x) is the forcing term and
f1(x), f2(x), g1(x), g2(x) are sufficiently smooth prescribed functions. If α = 1 Eq. (1) be-
comes the one dimensional hyperbolic telegraph equation. Time fractional derivatives
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∂2αu(x,t)
∂t2α and ∂αu(x,t)

∂tα denote the Caputo fractional derivative of order 2α and α, respectively,
which will be defined in Sect. 2.

This model has been developed to overcome the shortcomings of the classical telegraph
equation which might not adequately model the abnormal diffusion phenomena during a
long transmission process in a transmission line [2].

1.2 Application and literature review
Fractional differential equations have generated significant interest due to their appear-
ance in various fields. Fractional differential equation models are more effective for the de-
scription of certain systems. For example, fractional order derivatives have been used suc-
cessfully in diffusion processes, rheology, damping law visco-elasticity and fluid mechan-
ics. They also appear in the modeling of many mathematical biology, chemical processes
and a number of problems in engineering [3–5]. Our study will focus on the numerical so-
lution of reaction diffusion models which contain fractional order derivatives. Telegraph
equations are hyperbolic partial differential equations that are applicable in modeling the
reaction diffusion processes. These models appear in the study of random walk theory,
wave phenomena and wave propagation of electrical signal in the cable of a transmission
line [6–9].

There has been much interest in TFTE as of lately. The well-posedness and asymptot-
ical study about TFTE using Riemann–Liouville approach have been discussed by Cas-
caval et al. [10]. Analytical solution for the TFTE with three different nonhomogeneous
boundary conditions using separation of variables has been derived by Chen et al. [11].
Approximate solutions of space and TFTE using Adomian decomposition method have
been discussed by Momani [12]. Cauchy and signaling problems using Laplace and Fourier
transforms and the boundary problem using spatial Sine transform have been solved by
Huang [13] who derived analytical solution for three basic problems of TFTE. Dehghan
and Shokri [14] presented a numerical method for solving hyperbolic telegraph equation
using collocation points and approximated the solution via thin plate spline radial basic
functions. Yousefi [15] solved the hyperbolic telegraph equation via the Legendre mul-
tiwavelet Galerkin method. Wang et al. [16] discussed and analyzed the Galerkin mixed
finite element method for the numerical solution of TFTE. Li and Cao [17] presented a
scheme based on a finite difference method for a kind of linear TFTE. Saadatmandi and
Mohabbati [18] developed a computational technique for solving TFTE based on the Tau
method and Legendre polynomials. Alkahtani et al. [19] studied the space-time fractional
equation and obtained the solution via the Sumudu variational iteration method which
is a combination of the Sumudu transform and the variational iteration method. Asgari
et al. [1] discussed a method based on Bernstein polynomials operational matrices for
solving TFTE. Hashemi and Baleanu [2] proposed a numerical method for the solution of
TFTE using the Caputo fractional derivative in time direction, a combination of a group
preserving scheme and the method of line for spatial direction. The reproducing kernel
method has been presented for the solution of TFTE with initial boundary conditions by
Wang et al. [20]. Wang and Mei [21] proposed a method for solving TFTE via the Legendre
spectral Galerkin method and generalized finite difference scheme. Liu [22] discussed the
Caputo fractional difference formula and Grünwald difference formula for the solution of
TFTE.
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Motivated by the success of B-splines in the numerical solution of differential equa-
tions, our focus is to use an appropriate B-splines for the numerical solution of TFTE.
So far as we are aware there are no such studies on the use of splines for the fractional
telegraph partial differential equation. In the literature, there are some studies, based on
splines, for solving fractional partial differential equations. Tasbozan et al. [23] developed
a numerical solution of fractional diffusion equation via the cubic B-spline collocation
method. Akram and Tariq [24] presented a numerical scheme based on the quintic spline
collocation method for the solution of fractional boundary value problems. The cubic B-
spline collocation method has been used for the solution of fractional diffusion equation
by Sayevand et al. [25]. Arshed [26] solved a time fractional super-diffusion fourth order
differential equation using the quintic B-spline collocation method. Tasbozan and Esen
[27] discussed numerical solutions of TFTE using the quadratic B-spline Galerkin method.
Yaseen et al. [28] presented a scheme for the numerical solution of fractional diffusion
equation using a finite difference method based on cubic trigonometric B-spline basis
functions. Mohyud-Din et al. [29] constructed a fully implicit finite difference scheme
for solving a time fractional diffusion equation by incorporating an extended cubic B-
spline (ExCuBs) approach in its formulation. Because of the promising results obtained
by this scheme, efforts are now being made in this work extend the formulation to solve
the more complicated telegraph equation with fractional order derivatives. The purpose
of this study is to describe a possible way to find the numerical solution of telegraph model
which contains fractional order derivatives.

The structure of the paper is organized as follows: Sect. 2 provides the Caputo fractional
derivative and basis functions. Solving the TFTE for the discretization of time by Caputo
fractional derivative is presented in Sect. 3. The finite difference scheme by ExCuBs is dis-
cussed in Sect. 4. Initial state is presented in Sect. 5. The stability analysis and convergence
are discussed in Sect. 6 and Sect. 7, respectively. In Sect. 8, some numerical experiments
of TFTE are discussed to illustrate the reliability and capacity of proposed scheme. Finally
a conclusion is discussed in Sect. 9.

2 Mathematical preliminaries
2.1 Fractional derivative
Definition 1 The Caputo’s time fractional derivative of order α is defined as [30]

∂αu(x, t)
∂tα

=

⎧
⎨

⎩

1
Γ (n–α)

∫ t
0

∂u(x,τ )
∂τ

dξ

(t–τ )α–n+1 , n – 1 < α ≤ n, n ∈ N ,
∂nu(x,t)

∂tn , α = n ∈ N .
(3)

where Γ is the Euler Gamma function.

By using Eq. (3), we can easily derive the fractional derivative of order 2α, which will be
discussed in Sect. 3.

2.2 Basis functions
Suppose that the interval [a, b] is divided into equal partitioning by the spatial knots xi

i.e. a = x0 < x1 < · · · < xN–1 < xN = b into N subintervals [xi, xi+1] with equal length h = b–a
N ,

i = 0, 1, . . . , N . The ExCuBs basis functions at the nodal point xi over the interval [a, b] can
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Table 1 Coefficients of extended cubic basis Ei(x) and its derivatives at different knots

xi xi+1 xi+2 xi+3 xi+4 else

Ei(x) 0 4–λ
24

8+λ
12

4–λ
24 0 0

E′
i (x) 0 1

2h 0 –1
2h 0 0

E′′
i (x) 0 2+λ

2h2
– 2+λ

h2
2+λ

2h2
0 0

be presented as [31]

Ei(x,λ)

=
1

24h4

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4h(1 – λ)(x – xi)3 + 3λ(x – xi)4, x ∈ [xi, xi+1],

(4 – λ)h4 + 12h3(x – xi+1) + 6h2(2 + λ)(x – xi+1)2

– 12h(x – xi+1)3 – 3λ(x – xi+1)4, x ∈ [xi+1, xi+2],

(4 – λ)h4 + 12h3(xi+3 – x) + 6h2(2 + λ)(xi+3 – x)2

– 12h(xi+3 – x)3 – 3λ(xi+3 – x)4, x ∈ [xi+2, xi+3],

4h(1 – λ)(xi+4 – x)3 + 3λ(xi+4 – x)4, x ∈ [xi+3, xi+4],

0, otherwise,

(4)

where λ ∈ R is a free parameter and x ∈ R is a variable. For –8 ≤ λ ≤ 1, the ExCuBs
basis and cubic B-spline possess the same properties. When λ = 0 it should be stated
that the ExCuBs basis functions will be transformed into cubic B-spline basis. The spline
{E0, E0, . . . , EN+1} forms a basis over the considered domain [a, b]. Coefficients of ExCuBs
and its derivatives at different knots are given in Table 1.

3 Time discretization
The Caputo fractional derivative is employed to discretize the time of the given problem.
Suppose tn = nτ , n = 0, 1, . . . , M in which τ = T

M is the time step size. Forward finite dif-
ference technique is utilized for the discretization of Caputo fractional derivative. The
Caputo derivatives ∂αu(x,t)

∂tα , ∂2αu(x,t)
∂t2α of problem statement can be described as

∂αu(x, t)
∂tα

=
1

Γ (1 – α)

∫ t

0

∂u(x, τ )
∂τ

dτ

(t – τ )α
, (5)

∂2αu(x, t)
∂t2α

=
1

Γ (2 – 2α)

∫ t

0

∂2u(x, τ )
∂τ 2

dτ

(t – τ )2α–1 , (6)

where 0 < α < 1.
The discretized form of the Caputo derivative using a first order forward finite difference

method [32] can be written as follows:

∂α(x, tn+1)
∂tα

=
1

Γ (2 – α)

n∑

j=0

bα
j

u(x, tn–j+1) – u(x, tn–j)
τα

+ en+1
τ , (7)

where bα
j = (j + 1)1–α – j1–α . The approximation of first order truncation error en+1

τ bound
is given in [33] as

∣
∣en+1

τ

∣
∣ ≤ Cτ 2–α , (8)

where C is a constant.
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Discretization of the Caputo derivative using a second order forward finite difference
method [16] can be written as

∂2α(x, tn+1)
∂t2α

=
1

Γ (3 – 2α)

n∑

j=0

u(x, tn–j+1) – 2u(x, tn–j) + u(x, tn–j–1)
τ 2α

× (
(j + 1)2–2α – j2–2α

)
+ rn+1

τ .

The above equation can be rewritten as

∂2α(x, tn+1)
∂t2α

=
1

Γ (3 – 2α)

n∑

j=0

b2α
j

u(x, tn–j+1) – 2u(x, tn–j) + u(x, tn–j–1)
τ 2α

+ rn+1
τ , (9)

where b2α
j = (j + 1)2–2α – j2–2α . The approximation of second order truncation error rn+1

τ

bound is given in [34] as

∣
∣rn+1

τ

∣
∣ ≤ Dτ 2–α , (10)

where D is a constant. The following properties of coefficients bj can easily be verified [29]:
• b0 = 1
• b0 > b1 > b2 > · · · > bj, bj → 0 as j → ∞
• bj > 0 for j = 0, 1, . . . , n
•

∑n
j=0(bj – bj+1) + bj+1 = (1 – b1) +

∑n–1
s=1 (bj – bj+1) + bn = 1.

Substituting Eqs. (7) and (9) into Eq. (1), we obtain the following form of the time dis-
cretization:

β1

n∑

j=0

b2α
j

[
u(x, tn–j+1) – 2u(x, tn–j) + u(x, tn–j–1)

]
+ β2

n∑

j=0

[
bα

j u(x, tn–j+1)

– u(x, tn–j)
]

+ μu
(
x, tn+1) = ν

∂2u(x, tn+1)
∂x2 + f

(
x, tn+1)

where β1 = 1
τ2αΓ (3–2α) and β2 = 2λ

ταΓ (2–α) .
Suppose un+1 = u(x, tn+1) and f n+1 = f (x, tn+1), the above equation can be rewritten as

β1
(
un+1 – 2un + un–1) + β2

(
un+1 – un) + β1

n∑

j=1

b2α
j

(
un+1–j – 2un–j

+ un–j–1) + β2

n∑

j=1

bα
j
(
un+1–j – un–j) + μun+1 = ν

∂2un+1

∂x2 + f n+1 (11)

where n = 0, 1, . . . , M. It is noticed that u–1 will appear for j = 0, n. The initial velocity condi-
tion is used to calculate this term via a central difference formula. We obtain the following
result:

u–1 = u1 – 2τ f2(x). (12)
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4 Description of technique
The approximated solution U(x, t) of given model using ExCuBs to the exact solution
u(x, t) is described in the following form [35, 36]:

U(x, t) =
N+1∑

i=–1

di(t)Ei(x,λ), (13)

where di(t) are the time dependent unknown coefficients which are to be required by some
particular restrictions. Each subinterval [xi, xi+1] of basis function covers only three non-
zero elements Ei–1, Ei, Ei+1. The approximated solution un

j at the grid point (xj, tn) at the
nth time level to the exact solution is defined as

un
j =

i+1∑

j=i–1

dn
j (t)Ej(x,λ),

where i = 0, 1, . . . , N . Using the above approximation and basis functions, the values un
j and

their necessary derivatives up to second order as given below:

un
i = c1dn

i–1 + c2dn
i + c1dn

i+1,

(ux)n
i = c3dn

i+1 – c3dn
i–1,

(uxx)n
i = c4dn

i–1 – c5dn
i + c4dn

i+1,

where c1 = 4–λ
24 , c2 = 8+λ

12 , c3 = 1
2h , c4 = 2+λ

2h2 , c5 = 2+λ

h2 .
The Caputo derivatives and ExCuBs are used to discretize the model problem. Using

the approximation and its derivatives in Eq. (11) and after simplification we obtain the
recurrence relation in the following form:

(
(β1 + β2 + μ)c1 – νc4

)
dn+1

j–1 +
(
(β1 + β2 + μ)c2 – νc5

)
dn+1

j +
(
(β1 + β2 + μ)c1 – νc4

)
dn+1

j+1

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2β1 + β2)(c1dn
j–1 + c2dn

j + c1dn
j+1) – β1(c1dn–1

j–1 + c2dn–1
j + c1dn–1

j+1 )

– β1
∑n

k=1 b2α
k [c1(dn+1–k

j–1 – 2dn–k
j–1 + dn–1–k

j–1 ) + c2(dn+1–k
j – 2dn–k

j

+ dn–1–k
j ) + c1(dn+1–k

j+1 – 2dn–k
j+1 + dn–1–k

j+1 )] – β2
∑n

k=1 bα
k [c1(dn+1–k

j–1

– dn–k
j–1 ) + c2(dn+1–k

j – dn–k
j ) + c1(dn+1–k

j+1 – dn–k
j+1 )] + f n+1

j .

(14)

The above system carries (N + 1) × (N + 3) dimensions. To solve the above system for
unique solution we need two additional equations which will come from boundary con-
ditions. Thus the system has (N + 3) × (N + 3) dimensions.

5 Initial case
In order to start the iterative process, it is necessary to find the initial vector d0 =
[d0

0, d0
1, . . . , d0

N ] which can be evaluated from initial conditions. We employ the initial con-
dition with its derivatives explained below:

(i) d
dx (u0

j ) = d
dx (f1(xj)), j = 0, N ,

(ii) u0
j = f1(xj), j = 0, 1, . . . , N .
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Hence we obtain a system Au = b, where A is the matrix of dimension (N + 3) × (N + 3)
which can be written as

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–1
2h 0 1

2h 0 . . . . . . 0
4–λ
24

8+λ
12

4–λ
24 0 . . . . . . 0

0 4–λ
24

8+λ
12

4–λ
24 . . . . . . 0

... . . .
. . . . . . . . . . . .

...
... . . . . . . . . . 4–λ

24
8+λ
12

4–λ
24

0 . . . . . . . . . –1
2h 0 1

2h

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and b = [f ′
1(x0), f1(x0), f1(x1), . . . , f1(xN ), f ′

1(xN )]T .

6 Stability analysis
In this section, we use the Von Neumann stability analysis to investigate the stability of
proposed scheme. Consider the growth factor in the form of a one Fourier mode as

Un
j = ξneiwhj, (15)

with no forcing term. Here i =
√

–1, w and h are the mode number and the element size,
respectively. We have

[
(β1 + β2 + μ)c1 – νc4

]
Un+1

j–1 +
[
(β1 + β2 + μ)c2 – νc5

]
Un+1

j

+
[
(β1 + β2 + μ)c1 – νc4

]
Un+1

j+1

= (2β1 + β2)c1Un
j–1 + (2β1 + β2)c2Un

j + (2β1 + β2)c1Un
j+1 – β1

[
c1Un–1

j–1

+ c2Un–1
j + c1Un–1

j
]

– β1

n∑

k=1

b2α
k

[
c1

(
Un–k+1

j–1 – 2Un–k
j–1 + Un–k–1

j–1
)

+ c2
(
Un–k+1

j

– 2Un–k
j + Un–k–1

j
)

+ c1
(
Un–k+1

j+1 – 2Un–k
j+1 + Un–k–1

j+1
)]

– β2

n∑

k=1

bα
k
[
c1

(
Un–k+1

j–1

– Un–k
j–1

)
+ c2

(
Un–k+1

j – Un–k
j

)
+ c1

(
Un–k+1

j+1 – Un–k
j+1

)]
.

The above equation shows a round off error equation. Consider Eq. (15) to be the solution,
then the above equation becomes

[
(β1 + β2 + μ)c1 – νc4

]
ξn+1eiwh(j–1) +

[
(β1 + β2 + μ)c2 – νc5

]
ξn+1eiwhj

+
[
(β1 + β2 + μ)c1 – νc4

]
ξn+1eiwh(j+1)

= (2β1 + β2)c1ξ
neiwh(j–1) + (2β1 + β2)c2ξ

neiwhj + (2β1 + β2)c1ξ
neiwh(j+1)

– β1
[
c1ξ

n–1eiwh(j–1) + c2ξ
n–1eiwhj + c1ξ

n–1eiwh(j+1)]

– β1

n∑

k=1

b2α
k

[
c1

(
ξn–k+1 – 2ξn–k + ξn–k–1) + c2

(
ξn–k+1 – 2ξn–k + ξn–k–1)

+ c1
(
ξn–k+1 – 2ξn–k + ξn–k–1)]
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– β2

n∑

k=1

bα
k
[
c1

(
ξn–k+1 – ξn–k) + c2

(
ξn–k+1 – ξn–k)

+ c1
(
ξn–k+1 – ξn–k)].

Throughout dividing by eiwhj and rearranging the terms, we obtain

[
(β1 + β2 + μ)

(
c2 + 2c1 cos(wh)

)
– ν

(
c5 + 2c4 cos(wh)

)]
ξn+1

= (2β1 + β2)
(
c2 + 2c1 cos(wh)

)
ξn – β1

(
c2 + 2c1 cos(wh)

)
ξn–1

– β1
(
c2 + 2c1 cos(wh)

)
n∑

k=1

b2α
k [c1

(
ξn–k+1 – 2ξn–k + ξn–k–1)

– β2
(
c2 + 2c1 cos(wh)

)
n∑

k=1

bα
k
[
c1

(
ξn–k+1 – ξn–k)].

After some calculation, we get the following equality:

ξn+1 =
1
ω

[

(1 + α1)ξn – α1ξ
n–1 – α1

n∑

k=1

b2α
k

[
ξn–k+1 – 2ξn–k + ξn–k–1]

– α2

n∑

k=1

bα
k
[
ξn–k+1 – ξn–k]

]

(16)

where α1 = β1
β1+β2

, α2 = β2
β1+β2

and

ω = 1 +
μ

β1 + β2
+

12ν(2 + λ) sin2 wh/2
h2(β1 + β2 + μ)(6 + (λ – 4) sin2 wh/2)

.

Obviously ω ≥ 1, for all λ > –2.

Proposition 6.1 Let ξn, n = 0, 1, . . . , T × M, be the solution of Eq. (16), we have

∣
∣ξn∣∣ ≤ (1 + α1)

∣
∣ξ 0∣∣, n = 0, 1, . . . , T × M (17)

where α1 is a positive constant.

Proof We prove this proposition with the help of mathematical induction. For n = 0, in
Eq. (16), we get the following relation:

ξ 1 =
1
ω

(1 + α1)ξ 0 ⇒ ∣
∣ξ 1∣∣ ≤ (1 + α1)

∣
∣ξ 0∣∣; ω ≥ 1.

Suppose |ξn| ≤ (1 + α1)|ξ 0| holds for n = 0, 1, . . . , T × (M – 1), we have

∣
∣ξn+1∣∣ =

1
ω

(1 + α1)
∣
∣ξn∣∣ –

α1

ω

∣
∣ξn–1∣∣ –

α1

ω

n∑

k=1

b2α
k

[∣
∣ξn–k+1∣∣ – 2

∣
∣ξn–k∣∣

+
∣
∣ξn–k–1∣∣

]
–

α2

ω

n∑

k=1

bα
k
[∣
∣ξn–k+1∣∣ –

∣
∣ξn–k∣∣

]
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≤ 1
ω

(1 + α1)2∣∣ξ 0∣∣ –
α1(1 + α1)

ω

∣
∣ξ 0∣∣ –

α1(1 + α1)
ω

n∑

k=1

b2α
k

[∣
∣ξ 0∣∣

– 2
∣
∣ξ 0∣∣ +

∣
∣ξ 0∣∣

]
–

α2(1 + α1)
ω

n∑

k=1

bα
k
[∣
∣ξ 0∣∣ –

∣
∣ξ 0∣∣

]

≤ (1 + α1)[1 + α1 – α1]
∣
∣ξ 0∣∣,

∣
∣ξn+1∣∣ ≤ (1 + α1)

∣
∣ξ 0∣∣.

Thus |ξn+1| = |Un+1
j | ≤ (1 + α1)|ξ 0| = (1 + α1)|U0

j |, so that ‖Un+1
j ‖2 ≤ (1 + α1)‖ξ 0‖2. Thus

one concludes that the proposed numerical scheme is unconditionally stable. �

7 Convergence
In this part, we will investigate the convergence of proposed technique using the Lopez-
Marcos [37] method, which plays a significant role in the theory of convergence analysis of
fractional type equation. Here we take a few results and notations from [37]. Assume that
Ωx = {xj; 0 ≤ j ≤ N} and Ωt = {tn; 0 ≤ n ≤ M} be the equidistant partitioning of intervals
[a, b] and [0, T] with the step size h and τ , respectively. Consider un

j be the approximated
solution at the grid point (xj, tn) and V = {vj; 0 ≤ j ≤ N}, W = {wj; 0 ≤ j ≤ N} be the two
functions defined on Ωx. We define difference notation as follows:

δ2V = vj+1 – 2vj + vj–1, δV = vj+1 – vj

‖V‖2 = (V , V ), (V , W ) =
N∑

j=1

hvjwj,

(Vxx, V ) = –(Vx, Vx), (V , Wx) = –(Vx, W ).

We also suppose that utt , uxxxx are continuous over the intervals [a, b] and [0, T], and that
there is a positive constant F , such that

|utt| ≤ F , |uxxxx| ≤ F . (18)

The above values are different at different locations and independent of j, n, h, τ and for
(x, t) ∈ Ωx × Ωt .

Proposition 7.1 ([37]) Let {z0, z1, . . . , zn, . . .} be a monotonically decreasing sequence with
the properties zn ≥ 0 and zn+1 + zn–1 ≥ 2zn. Then, for any positive integer S and for each
vector (v1, v2, . . . , vS) with S real entries, we have

S–1∑

n=0

( n∑

m=0

zmVn+1–m

)

Vn+1 ≥ 0. (19)

So for the proposed scheme, we have

β1

n∑

j=0

b2α
j

(
u(x, tn–j+1) – 2u(x, tn–j) + u(x, tn–j–1)

)
+ β2

n∑

j=0

bα
j
(
u(x, tn–j+1)

– u(x, tn–j)
)

+ μu
(
x, tn+1) = ν

∂2u(x, tn+1)
∂x2 + f

(
x, tn+1) + O

(
τ 2–α + h2) (20)
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and

β1

n∑

j=0

b2α
j

(
un–j+1 – 2un–j + un–j–1) + β2

n∑

j=0

bα
j
(
un–j+1 – un–j) + μun+1

= ν
∂2un+1

∂x2 + f n+1 (21)

where un
j and u(xj, tn) are an approximated and the exact solution at point (xj, tn), respec-

tively.

Theorem 1 Suppose that u(x, t) and un
j be the solutions of given model and Eq. (20), re-

spectively, and u(x, t) satisfies the smoothness condition (18), then we have

∥
∥En+1∥∥ ≤ O

(
τ 2–α + h2), (22)

where En+1
j = u(xj, tn+1) – un+1

j , for every t ≥ 0 and suitably small h and τ .

Proof Subtract Eq. (20) from Eq. (21), we get the error equation as follows:

β1

n∑

k=0

b2α
k δ2En+1–k

j + β2

n∑

k=0

bα
k δEn+1–k

j + μEn+1
j = ν

(
En+1

j
)

+ O
(
τ 2–α + h2).

Consider pn+1
j = O(τ 2–α + h2) then multiply by hEn+1

j on both sides of the above equation
and sum up the terms for j, which varies from 1 to N , we obtain

∥
∥En+1∥∥2 = –

β1

μ

n∑

k=0

b2α
k

(
δ2En+1–k , En+1) –

β2

μ

n∑

k=0

bα
k
(
δEn+1–k , En+1)

+
1
μ

(
En+1, En+1)

xx +
1
μ

(
pn+1, En+1)

= –
β1

μ

n∑

k=0

b2α
k

(
δ2En+1–k , En+1) –

β2

μ

n∑

k=0

bα
k
(
δEn+1–k , En+1)

–
1
μ

((
En+1)

x,
(
En+1)

x

)
+

1
μ

(
pn+1, En+1),

∥
∥En+1∥∥2 = –

β1

μ

n∑

k=0

b2α
k

(
δ2En+1–k , En+1) –

β2

μ

n∑

k=0

bα
k
(
δEn+1–k , En+1)

–
1
μ

∥
∥
(
En+1)

x

∥
∥2 +

1
μ

(
pn+1, En+1).

After repositioning the terms, we obtain

∥
∥En+1∥∥2 +

β1

μ

n∑

k=0

b2α
k

(
δ2En+1–k , En+1) +

β2

μ

n∑

k=0

bα
k
(
δEn+1–k , En+1)

+
1
μ

∥
∥
(
En+1)

x

∥
∥2 =

1
μ

(
pn+1, En+1).
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Since 1
μ
‖(En+1)x‖2 ≥ 0, we get

∥
∥En+1∥∥2 +

β1

μ

n∑

k=0

b2α
k

(
δ2En+1–k , En+1) +

β2

μ

n∑

k=0

bα
k
(
δEn+1–k , En+1)

≤ 1
μ

(
pn+1, En+1).

The remaining terms are

∥
∥En∥∥2 +

β1

μ

n–1∑

k=0

b2α
k

(
δ2En–k , En) +

β2

μ

n–1∑

k=0

bα
k
(
δEn–k , En) ≤ 1

μ

(
pn, En),

∥
∥En–1∥∥2 +

β1

μ

n–2∑

k=0

b2α
k

(
δ2En–k–1, En) +

β2

μ

n–2∑

k=0

bα
k
(
δEn–k–1, En–1) ≤ 1

μ

(
pn–1, En–1),

...

∥
∥E2∥∥2 +

β1

μ

1∑

k=0

b2α
k

(
δ2E2–k , E2) +

β2

μ

1∑

k=0

bα
k
(
δE2–k , E2) ≤ 1

μ

(
p2, E2),

∥
∥E1∥∥2 +

β1

μ

0∑

k=0

b2α
k

(
δ2E1–k , E1) +

β2

μ

0∑

k=0

bα
k
(
δE1–k , E1) ≤ 1

μ

(
p1, E1).

Taking the sum of all the above inequalities, we have

n∑

k=0

∥
∥En+1∥∥2 +

β1

μ

n∑

m=0

m∑

k=0

b2α
k

(
δ2Em+1–k , Em+1) +

β2

μ

n∑

m=0

m∑

k=0

bα
k
(
δEm+1–k , Em+1)

≤ 1
μ

n∑

k=0

(
pk+1, Ek+1). (23)

By Proposition 7.1, we can deduce that

β1

μ

n∑

m=0

m∑

k=0

b2α
k

(
δ2Em+1–k , Em+1) ≥ 0

and

β2

μ

n∑

m=0

m∑

k=0

bα
k
(
δEm+1–k , Em+1) ≥ 0.

Therefore Eq. (23) can be written as

n∑

k=0

∥
∥En+1∥∥2 ≤ 1

μ

n∑

k=0

(
pk+1, Ek+1).

Hence

∥
∥En+1∥∥2 ≤ 1

μ

(
pk+1, Ek+1).
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Using the Cauchy–Schwarz inequality, we get

∥
∥En+1∥∥2 ≤ 1

μ

(
pk+1, Ek+1) ≤ 1

μ

∥
∥pk+1∥∥

∥
∥Ek+1∥∥.

From the above inequality, we can get the desired result,

∥
∥En+1∥∥ ≤ O

(
τ 2–α + h2). �

8 Numerical examples and discussions
In this section, some numerical experiments are discussed to demonstrate the feasibility
of the proposed method. The calculated error norms are established by absolute L∞ and
Euclidean L2 norms, i.e.,

L∞ =
∥
∥U(xi, t) – u(xi, t)

∥
∥∞ = max

0≤i≤N

∣
∣u(xi, t) – u(xi, t)

∣
∣,

L2 =
∥
∥U(xi, t) – u(xi, t)

∥
∥

2 =

√
√
√
√h

N∑

i=0

∣
∣u(xi, t) – u(xi, t)

∣
∣2.

The following formula can be used to calculate the order of convergence [38] numeri-
cally:

Order =
log(L∞(Ni)) – log(L∞(Ni+1))

log(Ni+1) – log(Ni)
,

where L∞(Ni) and L∞(Ni+1) are the absolute errors at number of partitioning Ni and Ni+1,
respectively.

Problem 1 Consider the TFTE of the form

∂2αu(x, t)
∂t2α

+
∂αu(x, t)

∂tα
=

∂2u(x, t)
∂x2 + f (x, t), (24)

where f (x, t) is suitable with the exact solution u(x, t) = t2+α sin(2πx) [16], for all (x, t) ∈
[0, 1] × [0, 1], where the initial and boundary conditions are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = 0,

f2(x) = 0,

g1(t) = 0,

g2(t) = 0.

(25)

In Table 2, we calculate the L2-norm for different spatial and temporal step size h = 5,
τ = 1

M , (M = 20, 40, 80). In Table 3, we determine the order of convergence [16, 29] from the
computed data and present maximum absolute errors at different space-time step sizes.
We give L2-norm and maximum errors for α = 0.6, 0.7, 0.8, 0.9. Table 4 shows the maxi-
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Table 2 A comparison of L2 norm with h = 5τ = 1
M at T = 1 for Problem 1

α L2-norm [16] L2-norm proposed method

M1 = 20 M2 = 40 M3 = 80 M1 = 20 M2 = 40 M3 = 80

0.6 4.7812E–03 1.0955E–03 2.2623E–04 1.8893E–03 9.1390E–04 1.6673E–04
0.7 4.5879E–03 1.0289E–03 2.0119E–04 8.0515E–04 2.1220E–04 5.2584E–05
0.8 4.3196E–03 9.3157E–04 1.6304E–04 6.0531E–04 5.1956E–05 3.4099E–06
0.9 3.9411E–03 7.8419E–04 2.1547E–04 2.0000E–05 3.2034E–06 2.4375E–07

Table 3 A comparison of maximum error with h = 5τ = 1
M at T = 1 for Problem 1

α L∞-norm proposed method

M1 = 20 M2 = 40 M3 = 80 Order = (M1
M2

) Order = (M2
M3

)

0.6 2.6719E–03 1.2925E–03 2.3579E–04 1.04776 2.45455
0.7 1.1387E–03 3.0010E–04 7.4366E–05 1.92380 2.01273
0.8 8.5604E–04 7.3478E–05 4.8224E–06 3.54230 3.92949
0.9 2.8285E–05 4.5303E–06 3.4471E–07 2.64239 3.71615

Table 4 Maximum absolute errors and Euclidean norm (L2) for Problem 1

N Proposed method

L∞-norm L2-norm Order of convergence CPU time

05 4.5584E–04 3.3892E–04 . . . 0.234002
10 9.1361E–05 6.7926E–05 2.31889 0.249602
20 1.5847E–05 1.1206E–05 2.52731 0.265202
40 9.2497E–07 6.5406E–07 4.09870 0.624004

mum absolute error, the Euclidean norm, the order of convergence and the CPU time for
α = 0.75 and τ = 1

100 .

Problem 2 Consider the TFTE with λ = 1
2 , μ = 0 and ν = 1

2 :

∂2αu(x, t)
∂t2α

+
∂αu(x, t)

∂tα
=

1
2

∂2u(x, t)
∂x2 + f (x, t) (26)

having the initial condition and boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = 0,

f2(x) = 0,

g1(t) = t2,

g2(t) = et2,

(27)

where f (x, t) is appropriate for the exact solution u(x, t) = t2ex [39] with 0 ≤ t ≤ 1, 0 ≤ x ≤ 1
and 0 < α < 1.

The comparisons of maximum absolute errors are demonstrated in Table 5 for α =
0.64, 0.80, 0.96. Here we choose step sizes h = 1

N and τ = 1
N2 for N = 4, 8, 12. The L2-norm

and order of convergence are summarized in Table 6. In Table 7, we choose α = 0.7, T = 1
and calculate the maximum absolute error, the Euclidean norm and the order of conver-
gence. Figure 1 shows the two dimensional comparison graph of exact and approximated
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Table 5 A comparison of maximum absolute error with h = 1
N , τ = 1

N2
at T = 1 for Problem 2

α L∞-norm [39] L∞-norm proposed method

N1 = 4 N2 = 8 N3 = 12 N1 = 4 N2 = 8 N3 = 12

0.64 1.8691E–03 2.4918E–04 7.7737E–05 7.1339E–04 4.7992E–05 2.0457E–05
0.80 2.6820E–03 5.8744E–04 5.6021E–05 9.1889E–04 2.1762E–04 8.4597E–05
0.96 2.3345E–03 4.9965E–04 2.1047E–04 3.4711E–03 9.9307E–04 4.2965E–04

Table 6 A comparison of L2-norm with h = 1
N , τ = 1

N2
at T = 1 for Problem 2

α L2-norm proposed method

N1 = 4 N2 = 8 N3 = 12 Order = ( N1N2 ) Order = ( N2N3 )

0.64 4.6716E–04 2.5236E–05 1.2218E–05 3.89381 1.23020
0.80 6.6620E–04 1.4635E–04 5.6375E–05 2.07811 1.36311
0.96 2.5837E–03 6.6449E–04 2.8156E–04 1.80541 1.20875

Table 7 Maximum absolute errors and Euclidean norm (L2) at T = 1 for Problem 2

N Proposed method

L∞-norm L2-norm Order of convergence CPU time

05 8.8698E–04 6.1072E–04 . . . 0.010000
10 8.4295E–05 5.1641E–05 3.395390 0.156001
20 1.6730E–05 9.3427E–06 2.332970 5.366430
40 2.7584E–06 1.5267E–06 2.600560 189.6500

Figure 1 Comparison plots of exact solutions and approximated solutions for Problem 1 and Problem 2,
respectively

Figure 2 Error plot at different time level for Problem 1 and Problem 2, respectively

solutions for α = 0.7, N = 40 and τ = 200. Figure 2 depicts the error plot for Problem 1
and Problem 2 at different time levels. A high accuracy of the proposed method for these



Akram et al. Advances in Difference Equations        (2019) 2019:365 Page 15 of 20

Figure 3 3D plot for the exact and approximated solution of Problem 1

Figure 4 3D plot for the exact and approximated solution of Problem 2

problems can be visualized in Fig. 2. Compatibility of exact and approximated solution for
Problem 1 and Problem 2 can be viewed in Fig. 3 and Fig. 4, respectively.

Problem 3 Consider TFTE of the form

∂2αu(x, t)
∂t2α

+ 20
∂αu(x, t)

∂tα
+ 25u(x, t) =

∂2u(x, t)
∂x2 + f (x, t) (28)

with the initial and boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = sin(x),

f2(x) = 0,

g1(t) = 0,

g2(t) = cos(t) sin(1),

(29)
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Table 8 A comparison of maximum absolute errors at T = 0.5 for Problem 3

x Collocation method [1] Proposed method

α = 0.925 α = 0.975 α = 0.925 α = 0.975

0.0 8.674E–19 1.735E–18 4.718E–16 1.296E–14
0.1 1.571E–03 5.550E–04 4.478E–05 1.213E–05
0.2 2.712E–03 9.255E–04 9.144E–05 2.431E–05
0.3 3.736E–03 1.242E–03 1.317E–04 3.601E–05
0.4 4.782E–03 1.580E–03 1.775E–04 4.694E–05
0.5 5.829E–03 1.921E–03 2.240E–04 5.926E–05
0.6 6.702E–03 2.208E–03 2.357E–04 7.234E–05
0.7 7.080E–03 2.330E–03 3.064E–04 7.153E–05
0.8 6.503E–03 2.132E–03 4.151E–04 3.442E–05
0.9 4.382E–03 1.428E–03 3.649E–05 2.507E–05
1.0 8.882E–16 2.109E–15 2.220E–16 1.110E–16

Table 9 The L∞-norm and L2-norm with h = 10τ = 1
M at T = 0.5 for Problem 3

M L∞-norm L2-norm Order of convergence CPU time

10 6.3945E–03 4.1790E–03 . . . 0.046800
20 2.8520E–03 1.7969E–03 1.16485 0.218401
40 1.4143E–03 8.1901E–04 1.01187 1.419609
80 6.6496E–04 1.2428E–04 1.08877 25.31896

where f (x, t) = –20 sin(x) sin(t) + 25 sin(x) cos(t) is relevant with the exact solution u(x, t) =
sin(x) cos(t) [1], 0 ≤ t ≤ 1, 0 ≤ x ≤ 1 and 0 < α < 1.

In Table 8, we present a comparison of maximum absolute errors at T = 0.5, for α =
0.925, 0.975 with the results given by Asgari et al. [1]. In Table 9, we select h = 10τ = 1

M
at T = 0.5 for α = 0.9 and present maximum norm, Euclidean norm and order of conver-
gence.

Problem 4 Consider TFTE of the form

∂2αu(x, t)
∂t2α

+ 40
∂αu(x, t)

∂tα
+ 100u(x, t) =

∂2u(x, t)
∂x2 + f (x, t) (30)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = sinh(x),

f2(x) = –2 sinh(x),

g1(t) = 0,

g2(t) = e–2t sinh(1),

(31)

where f (x, t) = 23e–2t sinh(x) is the appropriate forcing term with the exact solution
u(x, t) = e–2t sinh(x) [1], 0 ≤ t ≤ 1, 0 ≤ x ≤ 1 and 0 < α < 1.

Table 10 shows the maximum absolute errors of knots for time T = 0.5, α = 0.975 and
N = 10τ = 1

10 with the results given by Asgari et al. [1] for different degree polynomials.
The L∞-norm, L2-norm for different time step τ and corresponding rate of convergence
are demonstrated in Table 11. Figure 5 depicts the error plots at different time levels for
Problem 3 and Problem 4, respectively. The compatibility between the exact and the ap-
proximated solutions for the Problem 3 and Problem 4 can be seen in Fig. 6 and Fig. 7,
respectively.
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Table 10 A comparison of maximum absolute errors at T = 0.5 for Problem 4

x Collocation method [1] Proposed method

n = 3 n = 4 n = 5

0.0 4.426E–04 8.630E–05 2.150E–06 2.124E–13
0.1 7.578E–05 6.734E–05 2.965E–05 9.291E–06
0.2 2.117E–05 1.172E–04 2.082E–04 1.880E–05
0.3 5.044E–04 1.851E–05 3.804E–04 2.786E–05
0.4 3.169E–04 3.180E–04 2.702E–04 3.722E–05
0.5 1.368E–03 1.011E–03 3.151E–04 5.587E–05
0.6 2.990E–03 1.997E–03 1.499E–03 7.070E–05
0.7 2.689E–03 3.270E–03 3.168E–03 7.080E–05
0.8 3.304E–02 6.917E–03 4.472E–03 7.028E–04
0.9 1.212E–01 2.302E–02 2.676E–03 1.692E–03

Table 11 The L∞-norm and L2-norm with h = 2τ = 1
M at T = 0.5 for Problem 4

M L∞-norm L2-norm Order of convergence CPU time

05 3.6153E–02 1.7707E–02 . . . 0.000010
10 1.0277E–02 5.3252E–03 1.81466 0.000013
20 2.3389E–03 5.8122E–04 2.13554 0.015600
40 9.2184E–04 5.8122E–04 1.34324 0.078000

Figure 5 Error plot at different time level for Problem 3 and Problem 4 respectively

It is simple to notice that convergence rate obtained by the present method is compatible
with the theoretical results. The proposed method needs a small storage and less CPU
time, which shows the simplicity and strength of the proposed scheme. It is concluded that
the present scheme has a great capacity to deal with the fractional order partial differential
equations.

9 Conclusion
A finite difference scheme based on a combination of the ExCuBs method and Caputo’s
fractional derivative for the numerical solution of TFTE has been presented. The pro-
posed method is investigated and good compatibility was found with the exact solution.
The proposed scheme is convergent of order O(τ 2–α + h2) and unconditionally stable. Nu-
merical experiments have been conducted using the proposed method and graphs show
the feasibility and accuracy of the method. Studies on the order of convergence were also
carried out in a numerical way.
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Figure 6 3D plot for the exact and approximated solution of Problem 3

Figure 7 3D plot for the exact and approximated solution of Problem 4
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