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Abstract: We consider a class of linear inhomogeneous equations in a Banach space not solvable
with respect to the fractional Caputo derivative. Such equations are called degenerate. We study
the case of the existence of a resolving operators family for the respective homogeneous equation,
which is an analytic in a sector. The existence of a unique solution of the Cauchy problem and of the
Showalter—Sidorov problem to the inhomogeneous degenerate equation is proved. We also derive
the form of the solution. The approximate controllability of infinite-dimensional control systems,
described by the equations of the considered class, is researched. An approximate controllability
criterion for the degenerate fractional order control system is obtained. The criterion is illustrated by
the application to a system, which is described by an initial-boundary value problem for a partial
differential equation, not solvable with respect to the time-fractional derivative. As a corollary of
general results, an approximate controllability criterion is obtained for the degenerate fractional order
control system with a finite-dimensional input.

Keywords: approximate controllability; degenerate evolution equation; fractional Caputo derivative;
sectorial operator
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1. Introduction

Infinite-dimensional systems with distributed control, whose dynamics are described by the
fractional order equation of the form

Dα
t Lx(t) = Mx(t) + f (t), t ∈ (0, T], (1)

are studied. Here X and Y are reflexive Banach spaces, L, M : X → Y are linear closed operators,
defined on dense in X linear subspaces DL and DM respectively, m − 1 < α ≤ m ∈ N, Dα

t is
the Caputo derivative, f ∈ Cγ([0, T];Y), γ ∈ (0, 1], where Cγ([0, T];Y) is the space of Hölder
functions (see the definition before Theorem 1). Equation (1) is supposed to be degenerate, that
is, ker L 6= {0}, and the pair (L, M) generates an analytic in a sector resolving operators family of the
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homogeneous ( f ≡ 0) Equation (1). The existence of a unique solution of the Cauchy problem and of
the Showalter—Sidorov problem

(Lx)(k)(0) = yk ∈ Y , k = 0, 1, . . . , m− 1, (2)

to the inhomogeneous degenerate Equation (1) is proved and the form of the solution is also derived.
The approximate controllability is investigated for distributed systems of control of the form

Dα
t Lx(t) = Mx(t) + B(t)u(t) + g(t), t ∈ (0, T], (3)

with g ∈ Cγ([0, T];Y), γ ∈ (0, 1], B ∈ Cγ([0, T];L(U ;Y)), where U is a Banach space, u ∈ Cγ([0, T];U )
is a control function. Taking into account the obtained results on the initial problems to the degenerate
equation, the initial state is determined by the Showalter—Sidorov conditions, not by the Cauchy
conditions. The equivalence of the approximate controllability of the original degenerate system
and of two its subsystems on the degeneration subspace and its complement is proved. Based on
this result, the obtained criteria of the approximate controllability of the subsystems are used to get
a criterion for the whole degenerate control system. The criterion is illustrated by the application
to an initial-boundary value problem for a partial differential equation with a degenerate spatial
differential operator at the Caputo time derivative. As a corollary of the general result, an approximate
controllability criterion is obtained for the degenerate fractional order control system (3) with a
finite-dimensional input, that is, when U = Rn.

In the case of X = Y , L = I, α = 1 controllability and approximate controllability issues have
been studied in classical papers [1–5], and in many other works (see the surveys in References [6,7]).
For fractional α see References [8,9] and others.

For various classes of degenerate (ker L 6= {0}) systems (3) of the order α = 1 the controllability
and the approximate controllability were researched in References [10–14]. In References [15–17] the
approximate controllability issues are studied for system (3) of fractional order α under the condition
of (L, p)-boundedness of the operator M, it is a more restrictive condition on the pair of operators L,
M than in this work.

The solvability of various optimal control problems for systems, described by Equation (3) with
(L, p)-bounded operator M and respective semilinear equations, is studied in References [18,19]
and others.

2. Nondegenerate System Solvability

To study the approximate controllability of fractional order control systems, we formulate the
existence and uniqueness theorems for the equations, which describe their dynamics. Firstly, we
consider the equation, which is resolved with respect to the fractional derivative.

Denote gβ(t) = tβ−1/Γ(β) at t > 0, β > 0, where Γ(·) is the Euler Gamma function,

Jβ
t h(t) := (gβ ∗ h)(t) :=

1
Γ(β)

t∫
0

(t− s)β−1h(s)ds.

Let m− 1 < α ≤ m ∈ N, Dα
t is the fractional Caputo derivative, that is,

Dα
t h(t) := Dm

t Jm−α
t

(
h(t)−

m−1

∑
k=0

h(k)(0)gk+1(t)

)
.

Let R+ = R+ ∪ {0}, Z be a Banach space, L(Z) be the Banach space of all linear bounded
operators on Z , C l(Z) be the set of all linear closed operators, densely defined in Z , acting into Z .
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We shall write A ∈ Aα(θ0, a0) for some α > 0, θ0 ∈ (π/2, π), a0 ≥ 0, if an operator A ∈ C l(Z)
satisfies the following conditions:

(i) for every λ ∈ Sθ0,a0 := {µ ∈ C : | arg(µ− a0)| < θ0, µ 6= a0} we have λα ∈ ρ(A) := {µ ∈ C :
(µI − A)−1 ∈ L(Z)};

(ii) for any a > a0, θ ∈ (π/2, θ0) there exists K = K(θ, a) > 0, such that at all λ ∈ Sθ,a

‖(λα I − A)−1‖L(Z) ≤
K(θ, a)

|λα−1(λ− a)| .

Remark 1. It is known that at α ∈ (0, 2) an operator A ∈ C l(Z) satisfies conditions (i) and (ii), if and
only if there exists a resolving family of operators for the linear homogeneous equation Dα

t z(t) = Az(t)
(see Theorem 2.14 [20], and more general Theorem I.2.1 [21]). Moreover, A ∈ A1(θ0, a0), if and only if it
generates an analytic in a sector operator semigroup. In this case it is often called a sectorial operator.

Denote by ∂Sa,θ the boundary of Sa,θ := {µ ∈ C : | arg(µ− a)| < θ, µ 6= a} at some θ ∈ (π/2, θ0),
a > a0.

Lemma 1 ([22]). Let α > 0, A ∈ Aα(θ0, a0), θ ∈ (π/2, θ0), a > a0. Then the families of operatorsZβ(t) =
1

2πi

∫
∂Sa,θ

µα−1−β(µα I − A)−1eµtdµ ∈ L(Z) : t ∈ R+

 , β ∈ R,

admit analytic extensions to Σθ0 := {τ ∈ C : | arg τ| < θ0 − π/2, τ 6= 0}.

Remark 2. It can be shown that for a bounded operator A ∈ L(Z) we have Zβ(t) = tβEα,β+1(tα A), where
Eα,β+1 is the Mittag-Leffler function.

Consider the Cauchy problem

z(k)(0) = zk, k = 0, 1, . . . , m− 1, (4)

for the inhomogeneous equation

Dα
t z(t) = Az(t) + f (t), t ∈ (0, T], (5)

where A ∈ Aα(θ0, a0), T > 0, f : [0, T] → Z . A solution of problem (4) and (5) is a function
z ∈ C((0, T];DA) ∩ Cm−1([0, T];Z), such that

gm−α ∗
(

z−
m−1

∑
k=0

z(k)(0)gk+1

)
∈ Cm((0, T];Z)

and Equalities (4) and (5) for all t ∈ (0, T] are satisfied.

Remark 3. It is known [20] that the resolving operators family for the homogeneous ( f ≡ 0) Equation (5) is
{Z0(t) : t ∈ R+}, where Z0(0) = I.

A mapping f ∈ C([0, T];Z) is called Hölder function with a power γ ∈ (0, 1], if there exists a
constant C > 0, such that for all t, s ∈ [0, T] we have ‖ f (t)− f (s)‖Z ≤ C|t− s|γ. Denote the linear
space of such functions with a fixed γ by Cγ([0, T];Z).
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Theorem 1 ([23]). Let α > 0, A ∈ Aα(θ0, a0), f ∈ Cγ([0, T];Z) for some γ ∈ (0, 1]. Then for any zk ∈ DA,
k = 0, 1, . . . , m− 1, there exists a unique solution of problem (4) and (5). It has the form

z(t) =
m−1

∑
k=0

Zk(t)zk +

t∫
0

Zα−1(t− s) f (s)ds.

Remark 4. Analogous result with f ∈ C([0, T];DA) is obtained in [24]. The case of a bounded operator A and
f ∈ C([0, T];Z) is studied in [25].

3. Degenerate System Solvability

We now obtain an existence and uniqueness theorem for the degenerate equation, which describes
the dynamics of fractional order degenerate systems.

Let X , Y be Banach spaces, L(X ;Y) be the Banach space of all linear bounded operators from X
into Y , C l(X ;Y) be the set of all linear closed densely defined in X operators, acting into the space
Y . Let L, M ∈ C l(X ;Y), ker L 6= {0}. The set of points µ ∈ C, such that the operator µL − M :
DL ∩DM → Y is injective, and (µL−M)−1L ∈ L(X ), L(µL−M)−1 ∈ L(Y), is called L-resolvent set
ρL(M) of the operator M. Introduce denotations RL

µ(M) := (µL−M)−1L, LL
µ(M) := L(µL−M)−1.

Definition 1. Let α > 0, L, M ∈ C l(X ;Y). We say that a pair of operators (L, M) belongs to the class
Hα(θ0, a0), if

(i) there exist θ0 ∈ (π/2, π) and a0 ≥ 0, such that for all λ ∈ Sθ0,a0 inclusion λα ∈ ρL(M) is valid;
(ii) for any θ ∈ (π/2, θ0), a > a0 there exists a constant K = K(θ, a) > 0, such that for all λ ∈ Sθ,a

max
{
‖RL

λα(M)‖L(X ), ‖LL
λα(M)‖L(Y)

}
≤ K(θ, a)
|λα−1(λ− a)| .

Remark 5. If there exists an inverse operator L−1 ∈ L(Y ;X ), then (L, M) ∈ Hα(θ0, a0), if and only if
L−1M ∈ Aα(θ0, a0) and ML−1 ∈ Aα(θ0, a0).

It is not difficult to show that the subspaces ker RL
µ(M) = ker L, imRL

µ(M), ker LL
µ(M), imLL

µ(M)

do not depend on µ ∈ ρL(M). Introduce the denotations ker RL
µ(M) := X 0, ker LL

µ(M) := Y0. By X 1

(Y1) we denote the closure of imRL
µ(M) (imLL

µ(M)) in the norm of the space X (Y). By Lk (Mk) the
restriction of the operator L (M) on DLk := DL ∩ X k (DMk := DM ∩ X k) is denoted, k = 0, 1.

Theorem 2 ([22]). Let Banach spaces X and Y be reflexive, (L, M) ∈ Hα(θ0, a0). Then

(i) X = X 0 ⊕X 1, Y = Y0 ⊕Y1;
(ii) the projector P (Q) on the subspace X 1 (Y1) along X 0 (Y0) has the form P = s- lim

n→∞
nRL

n(M) (Q =

s- lim
n→∞

nLL
n(M));

(iii) L0 = 0, M0 ∈ C l(X 0;Y0), L1, M1 ∈ C l(X 1;Y1);
(iv) there exist inverse operators L−1

1 ∈ C l(Y1;X 1), M−1
0 ∈ L(Y0;X 0);

(v) ∀x ∈ DL Px ∈ DL and LPx = QLx;
(vi) ∀x ∈ DM Px ∈ DM and MPx = QMx;
(vii) let S := L−1

1 M1 : DS → X 1, then DS := {x ∈ DM1 : M1x ∈ imL1} is dense in X ;
(viii) let V := M1L−1

1 : DV → Y1, then DV := {y ∈ imL1 : L−1
1 y ∈ DM1} is dense in Y ;

(ix) if L1 ∈ L(X 1;Y1), or M1 ∈ L(X 1;Y1), then S ∈ Aα(θ0, a0);
(x) if L−1

1 ∈ L(Y1;X 1), or M−1
1 ∈ L(Y1;X 1), then V ∈ Aα(θ0, a0);
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(xi) the families of operatorsXβ(t) =
1

2πi

∫
∂Sa,θ

µα−1−βRL
µα(M)eµtdµ ∈ L(X ) : t ∈ R+

 , β ∈ R,

Yβ(t) =
1

2πi

∫
∂Sa,θ

µα−1−βLL
µα(M)eµtdµ ∈ L(Y) : t ∈ R+

 , β ∈ R,

admit analytic extensions to Σθ0 := {t ∈ C : | arg t| < θ0 − π/2, t 6= 0}. For any θ ∈ (π/2, θ0),
a > a0 there exists such Cβ = Cβ(θ, a), that for each t ∈ Σθ

max{‖Xβ(t)‖L(X ), ‖Yβ(t)‖L(Y)} ≤ Cβ(θ, a)eaRet(|t|−1 + a)−β, β ≤ 0, (6)

max{‖Xβ(t)‖L(X ), ‖Yβ(t)‖L(Y)} ≤ Cβ(θ, a)eaRet|t|β, β > 0. (7)

Consider the degenerate (ker L 6= {0}) inhomogeneous equation

Dα
t Lx(t) = Mx(t) + f (t), t ∈ (0, T], (8)

with a given f : [0, T]→ Y . Its solution is a function x ∈ C((0, T];DM), such that Lx ∈ Cm−1([0, T];Y),

gm−α ∗
(

Lx−
m−1
∑

k=0
(Lx)(k)(0)gk+1

)
∈ Cm((0, T];Y), and for all t ∈ (0, T] equality (8) is fulfilled.

A solution of the Cauchy problem

x(k)(0) = xk, k = 0, 1, . . . , m− 1, (9)

for Equation (8) is a solution of the equation, such that x ∈ Cm−1([0, T];X ) and conditions (9)
are satisfied.

Theorem 3. Let α > 0, Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L1 ∈ L(X 1;Y1) or
M1 ∈ L(X 1;Y1), f : [0, T] → Y0+̇imL1, at some γ ∈ (0, 1] L−1

1 Q f ∈ Cγ([0, T];X ), (I − Q) f ∈
Cm−1([0, T];Y), xk ∈ DM, Pxk ∈ DS, k = 0, 1, . . . , m− 1, equalities

Dk
t
∣∣
t=0 M−1

0 (I −Q) f (t) = −(I − P)xk, k = 0, 1, . . . , m− 1, (10)

are valid. Then there exists a unique solution of problem (8) and (9), moreover, it has the form

x(t) =
m−1

∑
k=0

Xk(t)xk +

t∫
0

Xα−1(t− s)L−1
1 Q f (s)ds−M−1

0 (I −Q) f (t). (11)

Proof. Put x0(t) := (I − P)x(t), x1(t) := Px(t). By virtue of Theorem 2 Equation (8) can be reduced
to the system of the two equations

0 = x0(t) + M−1
0 (I −Q) f (t),

Dα
t x1(t) = Sx1(t) + g(t), S := L−1

1 M1, g(t) := L−1
1 Q f (t). (12)

Therefore, x0(t) = −M−1
0 (I − Q) f (t), and for the satisfying of Cauchy conditions (9) it is

necessarry the fulfillment of (10). Due to Theorem 2 S ∈ Aα(θ0, a0), hence Theorem 1 implies
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the existence of a unique solution of the Cauchy problem x1(k)(0) = Pxk, k = 0, 1, . . . , m − 1,
to Equation (12). Besides,

x1(t) =
1

2πi

m−1

∑
k=0

∫
∂Sa,θ

µα−k−1(µα I − S)−1eµtdµPxk+
1

2πi

t∫
0

∫
∂Sa,θ

(µα I − S)−1eµ(t−s)dµg(s)ds =

=
1

2πi

m−1

∑
k=0

∫
∂Sa,θ

µα−k−1(µαL−M)−1Leµtdµxk+
1

2πi

t∫
0

∫
∂Sa,θ

(µαL−M)−1Leµ(t−s)dµg(s)ds,

since L(I − P) = 0, the operator (λL0 −M0)
−1 = −M−1

0 exists for every λ ∈ C.

Theorem 4. Let α > 0, Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1) or

M−1
1 ∈ L(Y1;X 1), f ∈ C([0, T];Y), Q f ∈ Cγ([0, T];Y) at some γ ∈ (0, 1], (I −Q) f ∈ Cm−1([0, T];Y),

xk ∈ DM, Pxk ∈ DL, k = 0, 1, . . . , m− 1, equalities (10) are valid. Then there exists a unique solution of
problem (8) and (9), and it has form (11).

Proof. In this case, instead of Equation (12) we obtain the equation

Dα
t y(t) = Vy(t) + h(t), V := M1L−1

1 , h(t) := Q f (t), (13)

where y(t) := L1x1(t) = L1Px(t). Theorem 2 implies, that V ∈ Aα(θ0, a0), and due to Theorem 1
there exists a unique solution of the Cauchy problem y(k)(0) = L1Pxk ∈ DV , k = 0, 1, . . . , m − 1,
for Equation (13). The solution has the form

y(t) =
1

2πi

m−1

∑
k=0

∫
∂Sa,θ

µα−k−1(µα I −V)−1eµtdµL1Pxk+
1

2πi

t∫
0

∫
∂Sa,θ

(µα I −V)−1eµ(t−s)dµh(s)ds =

=
1

2πi

m−1

∑
k=0

Yk(t)L1Pxk +

t∫
0

Yα−1(t− s)Q f (s)ds,

(14)

therefore, x1(t) = L−1
1 y(t) has form (11). The function x0(t) is the same as in the previous proof.

So, the Cauchy problem for degenerate Equation (8) is overdetermined due to the necessity of
conditions (10). Consider the so-called Showalter—Sidorov problem

(Lx)(k)(0) = yk, k = 0, 1, . . . , m− 1, (15)

which is natural for weakly degenerate evolution equations, when the degeneration subspace X 0

coincides with ker L. A solution of this problem to Equation (8) is a solution of the equation, such that
conditions (15) are satisfied.

Reasoning as before, we can prove the next assertions.

Theorem 5. Let α > 0, Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L1 ∈ L(X 1;Y1) or
M1 ∈ L(X 1;Y1), f ∈ C([0, T];Y), Q f (t) ∈ imL for all t ∈ [0, T], L−1

1 Q f ∈ Cγ([0, T];X ) at some
γ ∈ (0, 1], yk ∈ L[DL ∩ DM], L−1

1 yk ∈ DS, k = 0, 1, . . . , m − 1. Then there exists a unique solution of
problem (8) and (15), and it has form

x(t) =
m−1

∑
k=0

Xk(t)L−1
1 yk +

t∫
0

Xα−1(t− s)L−1
1 Q f (s)ds−M−1

0 (I −Q) f (t). (16)
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Theorem 6. Let α > 0, Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1) or

M−1
1 ∈ L(Y1;X 1), f ∈ C([0, T];Y), Q f ∈ Cγ([0, T];Y) for some γ ∈ (0, 1], yk ∈ L[DL ∩ DM], k =

0, 1, . . . , m− 1. Then there exists a unique solution of problem (8) and (15), and it has form (16).

Here, in contrast to the proofs of Theorems 3 and 4 we have no initial conditions for (I −Q)x(t)
and there is not condition (I −Q) f ∈ Cm−1([0, T];Y) nor condition (10) of the matching of initial data
with the right-hand side of Equation (8).

Remark 6. Note that, due to Theorem 2 L = L1P + 0(I − P) = L1P, therefore, imL = imL1 ⊂ Y1.
Thus, yk ∈ L[DL ∩DM] = L1[DL1 ∩DM1 ], if and only if yk ∈ DV . So, under the conditions of Theorem 6 the
set L[DL ∩DM] = DV is dense in Y1.

Remark 7. Study of the degenerate system controllability will be carried out in the next sections on the basis of
Theorem 6, since its conditions on f and yk are less restrictive than those in Theorem 5.

Remark 8. It can be shown that in the case of reflexive Banach spaces X and Y for (L, M) ∈ Hα(θ0, a0)

conditions (15) are equivalent to the conditions (Px)(k)(0) = L−1
1 yk, k = 0, 1, . . . , m − 1. Recall that

imL ⊂ X 1.

4. Approximate Controllability of Subsystems

Here, we reduce the degenerate control system to two subsystems on mutually
complement subspaces.

Let X , Y be reflexive Banach spaces, U be a Banach space, L, M ∈ C l(X ;Y), (L, M) ∈ Hα(θ0, a0).
Denote by Cγ

Q([0, T];L(U ;Y)) for some γ ∈ (0, 1] the linear space of all operator-valued functions
B ∈ C([0, T];L(U ;Y)), such that QB ∈ Cγ([0, T];L(U ;Y)). Analogously, Cγ

Q([0, T];Y) is the set of all
vector-valued functions g ∈ C([0, T];Y), such that Qg ∈ Cγ([0, T];Y).

Further, we shall assume that B ∈ Cγ
Q([0, T];L(U ;Y)), g ∈ Cγ

Q([0, T];Y) for some γ ∈ (0, 1].
Control functions u(·) for the system, which is described by the Showalter—Sidorov problem

(Lx)(k)(0) = yk, k = 0, 1, . . . , m− 1, (17)

Dα
t Lx(t) = Mx(t) + B(t)u(t) + g(t), (18)

will be choosen from the space Cγ([0, T];U ), hence Bu ∈ Cγ
Q([0, T];Y). By means of Theorem 2

problem (17) and (18) can be reduced to the initial value problem

y(k)(0) = yk, k = 0, 1, . . . , m− 1, (19)

for the system of equations

Dα
t y(t) = Vy(t) + QB(t)u(t) + Qg(t), (20)

x0(t) = −M−1
0 (I −Q)(B(t)u(t) + g(t)) (21)

on the subspaces Y1 and X 0, respectively. Here V = M1L−1
1 ∈ C l(Y1), y(t) = L1Px(t), x0(t) =

(I − P)x(t). Note that due to Theorem 1 the solution of problem (19) and (20) has the form

y(t) =
m−1

∑
k=0

Yk(t)yk +

t∫
0

Yα−1(t− s)Q(B(s)u(s) + g(s))ds. (22)

Denoted by x(T; y; u), the value at the time moment T of the solution to problem (17) and (18)
with the initial data y = (y0, y1, . . . , ym−1) in (17) and with a control function u. Denoted by y(T; y; u),
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the value at the time T of the solution for the subsystem, described by (19), (20). And by x0(T; u)
denotes the value at t = T of function (21).

System (18) is called approximately controllable in time T > 0, if, for every ε > 0, x̂ ∈ X ,
y = (y0, y1, . . . , ym−1) ∈ (L[DL ∩DM])m in (17) there exists a control function u ∈ Cγ([0, T];U ), such
that ‖x(T; y; u)− x̂‖X ≤ ε.

System (20) is called approximately controllable in time T > 0, if for all ε > 0, ŷ ∈ Y1,
y = (y0, y1, . . . , ym−1) ∈ (DV)

m in (19) there exists a control function u ∈ Cγ([0, T];U ), such that
‖y(T; y; u)− ŷ‖Y1 ≤ ε.

System (21) is called approximately controllable in time T > 0, if for every ε > 0, x̂0 ∈ X 0 there
exists u ∈ C([0, T];U ), such that ‖x0(T; u)− x̂0‖X 0 ≤ ε.

Remark 9. We take u not from Cγ([0, T];U ) in the last definition, since due to the definition of
problem (8) and (15) solution, the continuity of u is sufficient for the existence of the subsystem (21) solution,
since x0(t) ∈ ker L for all t.

The following result shows that, while controlling two systems (20) and (21) by the same
function u(·), we can, nevertheless, simultaneously lead the trajectories of the both systems into
the ε-neighborhood of respective given points ŷ ∈ Y1, x̂0 ∈ X 0.

Theorem 7. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), B ∈

Cγ
Q([0, T];L(U ;Y)), g ∈ Cγ

Q([0, T];Y) for some γ ∈ (0, 1]. Then system (18) is approximately controllable in
time T, if and only if its subsystems (20) and (21) are approximately controllable in time T.

Proof. The direct assertion of Theorem 7 is obvious, since system (18) splits into two mutually
complementary subsystems (20) and (21). Consider the inverse assertion of Theorem 7. Let for
all x̂0 ∈ X 0, ε > 0 there exists a function u0 ∈ C([0, T];U ), such that∥∥∥−M−1

0 (I −Q)(B(T)u0(T) + g(T))− x̂0
∥∥∥
X
≤ ε/3,

and

∀y ∈ (DT)
m ∀ŷ ∈ Y1 ∀ε > 0 ∃u1 ∈ Cγ([0, T];U )

∥∥y(T; y; u1)− ŷ
∥∥
Y ≤ ε/

(
3‖L−1

1 ‖L(Y1;X 1)

)
.

Then choose the new control function u, such that u(t) = u1(t) at t ∈ [0, δ] for some δ ∈ (T/2, T),
and u(t) = u1(δ) + γ(t− δ) + b(t− δ)2 at t ∈ (δ, T] with

γ =
du1

dt
(δ), b =

u0(T)− u1(δ)− γ(T − δ)

(T − δ)2 .

Then

u(t) = u1(δ) + γ(t− δ) +
(t− δ)2

(T − δ)2

(
u0(T)− u1(δ)− γ(T − δ)

)
∈ Cγ([0, T];U ), u(T) = u0(T).

Note that for any δ ∈ (T/2, T)

‖u(t)‖U ≤ C := 2 max
t∈[0,T]

‖u1(t)‖U + ‖γ‖UT + ‖u0(T)‖U , t ∈ [0, T],

where C is independent of δ.
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For arbitrary x̂ ∈ X take the control function, constructed as it was explained before with
x̂0 = (I − P)x̂ and ŷ = Lx̂, then for sufficiently small T − δ > 0,

‖x(T; y; u)− x̂‖X ≤ ‖x0(T; u0)− (I − P)x̂‖X + ‖L−1
1 y(T; y; u1)− L−1

1 Lx̂‖X+

+‖L−1
1 y(T; y; u)− L−1

1 y(T; y; u1)‖X ≤ 2ε/3 + 2C‖L−1
1 ‖L(Y1;X 1)

T∫
δ

‖Yα−1(T − s)QB(s)‖L(U ;Y)ds ≤ ε.

Here, we take into account estimate (7) for α > 1. At α ∈ (0, 1] due to (6) we also have

T∫
δ

‖Yα−1(T − s)QB(s)‖L(U ;Y)ds ≤ C1(1 + aT)1−α(T − δ)α → 0 as δ→ T − .

Analogously, the notion of the approximate controllability in free time can be defined. For example,
system (18) is called approximately controllable in free time, if for every ε > 0, x̂ ∈ X , y =

(y0, y1, . . . , ym−1) ∈ (L[DL ∩DM])m in (17) there exists T > 0 and a control function u ∈ Cγ([0, T];U ),
γ ∈ (0, 1], such that ‖x(T; y; u)− x̂‖X ≤ ε.

Theorem 8. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), for every

T > 0 B ∈ Cγ(T)
Q ([0, T];L(U ;Y)), g ∈ Cγ(T)

Q ([0, T];Y), γ(T) ∈ (0, 1]. Then system (18) is approximately
controllable in free time, if and only if its subsystems (20) and (21) are approximately controllable in free time.

Proof. This statement can be proved as Theorem 7. Let us prove the inverse assertion. Let ε > 0, x̂ ∈ X ,
y = (y0, y1, . . . , ym−1) ∈ (L[DL ∩ DM])m and there exist T1 > 0, u1 ∈ Cγ(T1)([0, T1];U ), such that
‖y(T1; y; u1)− Lx̂‖Y1 ≤ ε/3, and T0 > 0, u0 ∈ C([0, T0];U ), such that ‖x0(T0; u0)− (I− P)x̂‖X 0 ≤ ε/3.
Take the control function u as in the proof of Theorem 7 with T = T1, then ‖x(T1; y; u)− x̂‖Y1 ≤ ε.

5. Criterion of Approximate Controllability

Now let us obtain a criterion of the fractional order degenerate control system approximate
controllability in terms of the operators from the respective equation.

Let Z be a Banach space, A be some set of indices, α ∈ A, Dα ⊂ Z . By span{Dα : α ∈ A} we
denote the linear span of the sets Dα union, α ∈ A, and by span{Dα : α ∈ A} its closure in the space
Z is denoted. We denote by imA the closure of the image imA of an operator A : DA → Z .

Lemma 2. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), QB ∈

Cγ([0, T];L(U ;Y)), Qg ∈ Cγ([0, T];Y) for some γ ∈ (0, 1]. Then system (20) is approximately controllable
in time T, if and only if

span{imYα−1(T − s)QB(s) : 0 < s < T} = Y1. (23)

Proof. Form (22) of the Cauchy problem solution implies that it is sufficient to consider only the
approximate controllability of system (20) from zero (y = 0). Suppose that the system is not
approximately controllable from zero. Then the set of vectors of the form

T∫
0

Yα−1(T − s)QB(s)u(s)ds, u ∈ Cγ([0, T];U ),
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is not dense in the space Y1. By the Hahn—Banach Theorem, in this case there exists f ∈ Y1∗ \ {0},
such that

f

 T∫
0

Yα−1(T − s)QB(s)u(s)ds

 =

T∫
0

f (Yα−1(T − s)QB(s)u(s)) ds = 0 (24)

for all u ∈ Cγ([0, T];U ).
For every v from the Lebesgue—Bochner space Lp(0, T;U ), max{1, 1/α} < p < ∞, there exists a

sequence {un} ⊂ Cγ([0, T];U ), such that lim
n→∞

un = v in Lp(0, T;U ). Therefore, using reasoning as in

the end of Theorem 7 proof, i.e., applying inequalities (6) and (7), obtain∣∣∣∣∣∣
T∫

0

f (Yα−1(T − s)QB(s)(un(s)− v(s)))ds

∣∣∣∣∣∣ ≤ C‖ f ‖Y1∗

T∫
0

s(α−1)p′ds
T∫

0

‖un(s)− v(s)‖p
Uds→ 0

as n→ ∞. Here we take into account, that inequality p > 1/α implies that (α− 1)p′ + 1 > 0, where
p′ = p/(p− 1). Consequently, equality (24) is valid for all u ∈ Lp(0, T;U ).

Take t0 ∈ (0, T) and small δ > 0, uδ(t) = w ∈ U at t ∈ [t0 − δ, t0 + δ], uδ(t) = 0 for t ∈
[0, T] \ [t0 − δ, t0 + δ]. Then uδ ∈ Lp(0, T;U ), and by the continuity of the integrand

0 =
1
2δ

t0+δ∫
t0−δ

f (Yα−1(T − s)QB(s)w) ds = f (Yα−1(T − ξ)QB(ξ)w)

for some ξ ∈ (t0 − δ, t0 + δ). We pass to the limit as δ → 0+ and obtain the equality
f (Yα−1(T − t0)QB(t0)w) = 0 for all t0 ∈ (0, T), w ∈ U . Hence condition (23) is not satisfied.

The inverse statement is obvious due to the integral form (22) of the solution of Equation (20)
with zero initial data.

This assertion can be formulated in terms of Section 2 in the next form.

Theorem 9. Let A ∈ Aα(θ0, a0), B ∈ Cγ([0, T];L(U ;Z)), g ∈ Cγ([0, T];Z) for some γ ∈ (0, 1]. Then the
system Dα

t z(t) = Az(t) + B(t)u(t) + g(t) is approximately controllable in time T, if and only if

span{imZα−1(T − s)B(s) : 0 < s < T} = Z .

Remark 10. If QB(t) does not depend on t, then the approximate controllability of system (20) in time T
implies its approximate controllability in any time T1 > T, since

span{imYα−1(s)QB : 0 < s < T} ⊂ span{imYα−1(s)QB : 0 < s < T1}.

The criterion of system (21) approximate controllability is obvious.

Lemma 3. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), moreover, (I − Q)B ∈
C([0, T];L(U ;Y)) and (I − Q)g ∈ C([0, T];Y). Then system (21) is approximately controllable in time
T, if and only if imM−1

0 (I −Q)B(T) = X 0.

Remark 11. If (I −Q)B(t) does not depend on t, then the approximate controllability of system (21) in time T
implies its approximate controllability at any time T1 > 0.

Theorem 10. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), B ∈

Cγ
Q([0, T];L(U ;Y)), g ∈ Cγ

Q([0, T];Y) for some γ ∈ (0, 1]. Then system (18) is approximately controllable in
time T, if and only if imM−1

0 (I −Q)B(T) = X 0, span{imYα−1(T − s)QB(s) : 0 < s < T} = Y1.
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Proof. The required result follows from Theorem 7, Lemmas 2 and 3.

Remark 12. By Remarks 10, 11 and Theorem 10, if B(t) does not depend on t, then the approximate
controllability of system (18) in time T implies its approximate controllability in any greater time T1 > T.

Similar result for the controllability in free time can be obtained analogously.

Theorem 11. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), for all T > 0

B ∈ Cγ(T)
Q ([0, T];L(U ;Y)), g ∈ Cγ(T)

Q ([0, T];Y), γ(T) ∈ (0, 1]. Then system (18) is approximately
controllable in free time, if and only if span{imM−1

0 (I −Q)B(T) : T ∈ R+} = X 0,

span{imYα−1(T − s)QB(s) : 0 < s < T, T ∈ R+} = Y1.

6. Application to an Initial-Boundary Value Problem

We shall apply the obtained criterion to the control system, which is described by an
initial-boundary value problem for a partial differential equation, not solvable with respect to the time
fractional derivative.

Let α ∈ (1, 2), ak ∈ C([0, T];R), k ∈ N, sup
k∈N
|ak(t)| < ∞ for every t ∈ [0, T], v0, v1 ∈ H2

0(0, π) :={
x ∈ H2(0, π) : x(0) = x(π) = 0

}
. Consider the initial-boundary value problem

v(0, t) = v(π, t) = vξξ(0, t) = vξξ(π, t) = 0, t ∈ (0, T], (25)

v(ξ, 0) + vξξ(ξ, 0) = v0(ξ), ξ ∈ (0, π), (26)

vt(ξ, 0) + vξξt(ξ, 0) = v1(ξ), ξ ∈ (0, π), (27)

to the equation

Dα
t
(
v + vξξ

)
= vξξ + 2vξξξξ +

∞

∑
k=1

ak(t)〈u(η, t), sin kη〉L2(0,π) sin kξ, (ξ, t) ∈ (0, π)× (0, T]. (28)

Choose X = H2
0(0, π), Y = U = L2(0, π), L = 1 + ∂2

∂ξ2 ∈ L(X ;Y),

DM = H4
0(0, π) :=

{
x ∈ H4(0, π) : x(0) = x(π) = x′′(0) = x′′(π) = 0

}
,

M =
∂2

∂ξ2 + 2
∂4

∂ξ4 ∈ C l(X ;Y), B(t) =
∞

∑
k=1

ak(t)〈·, sin kη〉L2(0,π) sin kξ ∈ L(U ;Y), t ∈ [0, T].

Thus, problem (25)–(28) has form (17) and (18) with g ≡ 0. Here we have ker L = span{sin ξ} 6=
{0}, hence Equation (28) is degenerate.

It is known that the set {
√

2/π sin kξ : k ∈ N} is the orthonormal basis in L2(0, π) of
eigenfunctions of the operator ∂2

∂ξ2 with domain H2
0(0, π), which correspond to the eigenvalues

{−k2 : k ∈ N}. Since the polynomials 1 + λ and λ + 2λ2 have no common roots, by Theorem 7 [22] the
operator L1 : X 1 → Y1 is a homeomorphism and for α ∈ [1, 2) there exist θ0 ∈ (π/2, π), a0 ≥ 0, such
that (L, M) ∈ Hα(θ0, a0). Besides, from Theorem 7 [22] it follows, that X 0 = Y0 = span{sin ξ}, Y1 is
the closure of span{sin kξ : k = 2, 3, . . . } in L2(0, π), X 1 is the closure of the same set in H2

0(0, π).
By Lemma 3 subsystem (21) is controllable in time T, if and only if a1(T) 6= 0. Besides, it is

controllable in free time if and only if a1 6≡ 0 on R+. In the both cases we can say about the exact
controllability on the one-dimensional space X 0.
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For y ∈ L2(0, π) we have

Yα−1(t)y =
∞

∑
k=2

yk sin kξ
1

2πi

∫
Γ

eµtdµ

µα − µk
=

∞

∑
k=2

yk sin kξ
1

2πi

∫
tΓ

tα−1eλdλ

λα − tαµk
=

=
∞

∑
k=2

yk sin kξ
∞

∑
n=0

tα(n+1)−1µn
k

1
2πi

∫
tΓ

eλλ−α(n+1)dλ =

=
∞

∑
k=2

yk sin kξ
∞

∑
n=0

tα(n+1)−1µn
k

Γ(α(n + 1))
=

∞

∑
k=2

tα−1Eα,α(µktα)yk sin kξ,

where

yk = 〈y(η), sin kη〉L2(0,π), µk =
2k4 − k2

1− k2 , Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)

is the Mittag-Leffler function. So,

Yα−1(T − s)QB(s) =
∞

∑
k=2

ak(s)(T − s)α−1Eα,α(µk(T − s)α)〈·, sin kη〉L2(0,π) sin kξ,

therefore, subsystem (20) is approximately controllable in time T, if and only if for every k ∈ N \ {1}
there exists sk ∈ (0, T), such that

ak(sk)Eα,α

(
2k4 − k2

1− k2 (T − sk)
α

)
6= 0.

Since Eα,α is the entire function and has isolated zeros only, such a condition is equivalent to the
condition: ak 6≡ 0 on [0, T] for every k ∈ N \ {1}.

Analogously, subsystem (20) is approximately controllable in free time if and only if ak 6≡ 0 on R+

for all k ∈ N \ {1}.
Moreover, it is easy to check that

sup
k=2,3,...

2k4 − k2

1− k2 ≤ 0,

therefore, (L, M) ∈ Hα(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0 in the case α ∈ (0, 1] (see Theorem 7 [22]).
Hence we can study problem (25), (26) and (28) with α ∈ (0, 1] analogously.

Proposition 1. Let α ∈ (0, 2). System (25) and (28) is approximately controllable in time T if and only if
a1(T) 6= 0 and for every k ∈ N \ {1} ak 6≡ 0 on [0, T].

Analogously, we can obtain the next assertion by the obvious way.

Proposition 2. Let α ∈ (0, 2). System (25) and (28) is approximately controllable in free time, if and only if
ak 6≡ 0 on R+ for all k ∈ N.

7. Approximate Controllability of Systems with Finite-Dimensional Input

Let g : [0, T]→ Y , bi ∈ Y , i = 1, 2, . . . , n, be given. Consider the control system

Dα
t Lx(t) = Mx(t) +

n

∑
i=1

biui(t) + g(t), (29)
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where ui : [0, T] → R, i = 1, 2, . . . , n. It is a partial case of system (18). Indeed, we can take

U = Rn, u = (u1, u2, . . . , un), Bu(t) =
n
∑

i=1
biui(t). Such a control system is called a system with

finite-dimensional input. It is evident that B ∈ L(Rn;Y). Control function u = (u1, . . . , un) will be
chosen from the space Cγ([0, T];Rn). Theorem 10 and Theorem 11 implies the next assertion.

Corollary 1. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), bi ∈ Y ,

i = 1, 2, . . . , n, g ∈ Cγ
Q([0, T];Y) for some γ ∈ (0, 1]. Then

(i) system (29) is approximately controllable in time T if and only if

span {(I −Q)bi, i = 1, 2, . . . , n} = Y0, span{Yα−1(s)Qbi, 0 < s < T, i = 1, 2, . . . , n} = Y1.

(ii) system (29) is approximately controllable in free time if and only if

span {(I −Q)bi, i = 1, 2, . . . , n} = Y0, span{Yα−1(s)Qbi, s ∈ R+, i = 1, 2, . . . , n} = Y1.

Proof. By Theorem 10 the condition X 0 = imM−1
0 (I−Q)B = span

{
M−1

0 (I −Q)bi, i = 1, 2, . . . , n
}

is
necessary and sufficient for the approximate controllability in time T of the subsystem on the subspace
X 0. This set is finite-dimensional, and the operator M0 is densely defined, therefore

X 0 = span
{

M−1
0 (I −Q)bi, i = 1, 2, . . . , n

}
= DM0 ,

it is equivalent to the equality Y0 = M[DM0 ] = span {(I −Q)bi, i = 1, 2, . . . , n} . Other equalities
follow from Theorems 10 and 11 in an obvious way.

Remark 13. So, we see that under the conditions of Corollary 1 from the approximate controllability of
system (29) it follows that dimX 0 = dimY0 ≤ n.

Remark 14. In the conditions of Corollary 1 from the approximate controllability of system (29) it follows that
M0 ∈ L(X 0;Y0), since DM0 = X 0 and the operator M0 is closed.

Let 4 be the Laplace operator and the system with one-dimensional input be described by
the equation

Dα
t (5v +4v) = 4v + 242v + b(ξ, η)u(t), (ξ, η, t) ∈ (0, π)× (0, π)× (0, T], (30)

with initial conditions of form (26) at α ∈ (0, 1], or of form (26), (27) at α ∈ (1, 2), defined on
(0, π)× (0, π) and with boundary conditions of the form

v(0, η, t) = v(π, η, t) = v(ξ, 0, t) = v(ξ, π, t) = 0, ξ, η ∈ (0, π), t ∈ (0, T], (31)

4v(0, η, t) = 4v(π, η, t) = 4v(ξ, 0, t) = 4v(ξ, π, t) = 0, ξ, η ∈ (0, π), t ∈ (0, T]. (32)

Here b ∈ L2((0, π) × (0, π)). Reasoning as in Section 6, we see that system (30)–(32) is
not controllable in free time even, since the subspace Y0 = span{sin ξ sin 2η, sin 2ξ sin η} is
two-dimensional, and the condition span {(I −Q)b} = Y0 can not be satisfied.

8. Conclusions

Thus, the work obtained the necessary and sufficient conditions for approximate controllability
for a class of degenerate fractional order evolution equations in terms of operators from the equation.
The cases of infinite-dimensional and finite-dimensional input were studied. Using the concrete
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control systems described by the initial-boundary value problems for the partial differential equations,
the applications of the obtained abstract results were demonstrated.
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