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Abstract: The primary objective of this manuscript is to obtain the approximate analytical solution
of Camassa–Holm (CH), modified Camassa–Holm (mCH), and Degasperis–Procesi (DP) equations
with time-fractional derivatives labeled in the Caputo sense with the help of an iterative approach
called fractional reduced differential transform method (FRDTM). The main benefits of using this
technique are that linearization is not required for this method and therefore it reduces complex
numerical computations significantly compared to the other existing methods such as the perturbation
technique, differential transform method (DTM), and Adomian decomposition method (ADM). Small
size computations over other techniques are the main advantages of the proposed method. Obtained
results are compared with the solutions carried out by other technique which demonstrates that
the proposed method is easy to implement and takes small size computation compared to other
numerical techniques while dealing with complex physical problems of fractional order arising in
science and engineering.

Keywords: shallow water wave; Caputo derivative; Camassa–Holm equation; differential transform
method

1. Introduction

Nonlinear phenomena are of significant importance in natural sciences and engineering. Most of our
real-life problems are modeled through the use of nonlinear phenomena. In the present years, fractional
calculus has become widespread because of its applications in mathematical biology, electrochemistry,
and physics [1–8]. For example, the earthquake model [9] and traffic model [10] with fractional derivatives
have been demonstrated. However, sometimes, it is challenging to find the exact and numerical solutions
of these models. During the last few decades, several analytical and numerical approaches have been
established for the solution of such types of models such as homotopy perturbation method (HPM) [10,11],
homotopy perturbation transform method [12,13], homotopy analysis method (HAM) [14,15], Adomian
decomposition method (ADM) [16,17], sine-cosine method [18] and transform method [19]. Recently,
multi-dimensional diffusion equation of fractional order has been solved by Kumar et al. [20] by modified
HPM (m-HPM). In this approach, parameter p has been presented to extend the solution in series form,
whereas the nonlinear terms can be extended by using He’s polynomial [21]. It has been observed that
the computation of He’s polynomial is complicated, and the main disadvantage of this approach is its
complexity in that regard and enormous calculations.

Among all the listed method, FRDTM plays a vital role because it takes small size computation, easy
to implement as compared to other techniques. It was first introduced and developed by Keskin and
Oturanc [22]. It is a beneficial and powerful semi-analytical approach. By implementation of the FRDTM,
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many physical nonlinear problems can be solved easily. In this article, the nonlinear time-fractional
Camassa–Holm (CH) equation is taken as [23,24]

∂αψ
∂tα + 2c∂ψ∂x −

∂3ψ
∂x2∂t + 3ψ∂ψ∂x = 2∂ψ∂x

∂2ψ
∂x2 +ψ

∂3ψ
∂x3 ,

for t > 0, x ∈ <, 0 < α ≤ 1,
(1)

with initial condition (IC)
ψ(x, 0) = g(x), (1a)

The modified Camassa–Holm (mCH) and Degasperis–Procesi (DP) equations are derived from
modified b-equation [25] which is

∂ψ

∂t
−
∂3ψ

∂x2∂t
+ (b + 1)ψ2 ∂ψ

∂x
= b

∂ψ

∂x
∂2ψ

∂x2 +ψ
∂3ψ

∂x3 (1b)

where b is a positive integer.
The time-fractional mCH and time-fractional DP are derived from fractional modified b-equation

which may be written as

∂αψ

∂tα
−
∂3ψ

∂x2∂t
+ (b + 1)ψ2 ∂ψ

∂x
= b

∂ψ

∂x
∂2ψ

∂x2 +ψ
∂3ψ

∂x3 (1c)

By substituting b = 2, b = 3 into Equation (1c), we obtain the time-fractional mCH equation and
time-fractional DP equation, respectively. So, the nonlinear time-fractional mCH equation is written
as [11,24,25]

∂αψ

∂tα
−
∂3ψ

∂x2∂t
+ 3ψ2 ∂ψ

∂x
= 2

∂ψ

∂x
∂2ψ

∂x2 +ψ
∂3ψ

∂x3 , for t > 0, x ∈ <, 0 < α ≤ 1 (2)

with IC
ψ(x, 0) = p(x), (2a)

and the nonlinear time-fractional DP equation is given as [11,24,25]

∂αψ

∂tα
−
∂3ψ

∂x2∂t
+ 4ψ2 ∂ψ

∂x
= 3

∂ψ

∂x
∂2ψ

∂x2 +ψ
∂3ψ

∂x3 , for t > 0, x ∈ <, 0 < α ≤ 1 (3)

with IC
ψ(x, 0) = f (x), (3a)

These three models are the unidirectional shallow water waves propagation over a flat bottom.
Equation (1) is a shallow water wave equation and was initially determined as an estimation to the
incompressible Euler equation and observed to be integrable with a Lax pair [26]. Equation (3) is the
shallow-water dynamics model and found to be completely integrable. All the equations possess
not only the peakon solutions but also the multi-peakon solutions [26]. Recently, Degasperis and
Gaeta [27] have been examined the behavior of the DP equation with the help of the bifurcation theory
of dynamical system. To the best of authors’ knowledge, for the first time, the fractional-order three
relevant wave equations have been studied by the present authors analytically using FRDTM.

This article is prepared as follows: In Section 2, the essential features of fractional calculus
related to the titled problem are included. Fundamental theories of FRDTM are described in Section 3.
In Sections 4–6, implementations of FRDTM on CH, mCH, and DP equation are incorporated respectively.
Numerical results and discussion are discussed in Section 7. Lastly, a conclusion is given in Section 8.
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2. Preliminaries

Definition 1. The operator Dα
x of u(x) in Riemann-Liouville (R-L) sense is

written as

Dαu(x) =


dm

dxm u(x), α = m

1
Γ(m−α)

dm

dxm

x∫
0

u(t)
(x−t)α−m+1 dt, m− 1 < α < m

(4)

where m ∈ Z+, α ∈ R+.

Definition 2. The operator Jαx of u(x) in R-L sense is described as

Jαu(x) =
1

Γ(α)

x∫
0

(x− t)α−1u(t) dt,t > 0, α > 0. (5)

Following Podlubny [1] we may have

Jαtn =
Γ(n + 1)

Γ(n + α+ 1)
tn+α. (6)

Dαtn =
Γ(n + 1)

Γ(n− α+ 1)
tn−α (7)

Definition 3. The operator Dα
x of u(x) in the Caputo sense is defined as

Dαu(x) =


1

Γ(m−α)

x∫
0

um(t)
(x−t)α−m+1 dt, m− 1 < α < m,

dm

dtm u(x), α = m
(8)

Definition 4.
(a) Dα

t Jαt f (t) = f (t), (9)

(b) Jαt Dα
t f (t) = f (t) −

m∑
k=0

f (k)
(
0+

) tk

k!
, for t > 0 and m− 1 < α ≤ m , (10)

3. FRDTM

Definition 5. Fractional reduced differential transform of an analytic and continuously differentiable function
u(x, t) is defined by

Uk(x) =
1

Γ(α k + 1)

[
Dα k

t u(x, t)
]
t=t0

for k = 0, 1, 2, . . . (11)

Taking the inverse transform of Uk(x) is defined as

u(x, t) =
∞∑

k=0

Uk(x)(t− t0)
αk (12)

From Equations (11) and (12), we have

u (x, t) =
∞∑

k=0

1
Γ(α k + 1)

[
Dαk

t u(x, t)
]
t=t0

(t− t0)
α k (13)
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In particular, at t0 = 0, we get

u(x, t) =
∞∑

k=0

Uk(x)tαk =
∞∑

k=0

(
1

Γ(αk + 1)

){
Dαk

t u(x, t)
}
t=0

tαk (14)

As such Table 1 incorporates fractional reduced differential transform of few standard functions.

Table 1. The major operation of fractional reduced differential transform method (FRDTM) [22].

Functional Form Transformed Form

g(x, t) Gk(x) = 1
k!

[
∂k

∂tk g(x, t)
]

w(x, t) = g (x, t) + h (x, t) Wk(x) = Gk(x) + Hk(x)
w(x, t) = α g(x, t) Wk(x) = α Gk(x)

w(x, t) = g(x, t)h(x, t) Wk(x) =
k∑

r=0
Gk−r(x)Hr(x)

w(x, t) = ∂r

∂tr g(x, t) Wk(x) =
(k+r)!

k! Gk+r(x)
w(x, t) = ∂

∂x g(x, t) Wk(x) = ∂
∂x Gk(x)

w(x, t) = Dpα
t (g(x, t)) Wk(x) =

Γ(1+(k+p)α)
Γ(1+kα) Gk+p

In order to explain the concept of FRDTM, let us consider the following equation in the operator
form as

Lψ(x, t) + Rψ(x, t) + Nψ(x, t) = h(x, t), (15)

with IC
ψ(x, 0) = g(x), (16)

where L = ∂α

∂tα , R, N are linear, nonlinear operators and h(x, t) is an inhomogeneous source term.
Using Table 1 and Equation (11), Equation (15) reduces to

Γ(1 + α k + α)

Γ(1 + α k)
ψk+1(x) = Hk(x) −Rψk(x) −Nψk(x), for k = 0, 1, 2 . . . (17)

where ψk(x) and Hk(x) are the transformed forms of ψ(x, t) and h(x, t), respectively.
Appling FRDTM on IC, we obtain

ψ0(x) = g(x), (18)

Using Equations (17) and (18), ψk(x) for k = 1, 2, 3, . . . can be determined.
Then by taking the inverse transformation of

{
ψk(x)

}n
k=0 gives n-term approximate solution as

ψn(x, t) =
n∑

k=0

ψk(x) tαk, (19)

So, the analytical result of Equation (15) is written as ψ(x, t) = lim
n→∞

ψn(x, t).

4. Implementation of FRDTM on the CH Equation

The time-fractional CH Equation (1) in an operator form as

Dα
t ψ+ 2c Dxψ−Dxxtψ+ 3ψDxψ = 2DxψDxxψ+ψDxxxψ, 0 < α ≤ 1, (20)

with IC
ψ(x, 0) = g(x) (21)
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Applying FRDTM on Equations (20) and (21), the following recurrence relation is obtained as
Γ(1+αk+α)

Γ(1+αk) ψk+1(x) = 2
k∑

i=0

(
∂ψi(x)
∂x

∂2ψk−i(x)
∂x2

)
+

k∑
i=0

(
ψi(x)

∂3ψk−i(x)
∂x3

)
− 2c∂ψk(x)

∂x +
∂3ψk(x)
∂x2∂t

−3
k∑

i=0

(
ψi(x)

∂ψk−i(x)
∂x

)
ψ0(x) = g(x)

(22)

Solving Equation (22) we obtain

ψ1(x) =
1

Γ(1 + α)

(
g(x)g(3)(x) − 2

(
c +

3
2

g(x) − g(2)(x)
)
g(1)(x)

)
. (23)

ψ2(x) =
1

Γ(1 + 2α)



(g(x))2g(6)(x) + 7g(1)(x)g(x)g(5)(x) + g(4)(x)(
−4cg(x) − 6g(x)2 + 13g(x)g(2)(x) + 8

(
g(1)(x)

)2
)
+ 8g(x)

(
g(3)(x)

)2

−12g(1)(x)
(
g(3)(x)

)2(
c + 11

4 g(x) − 11
6 g(2)(x)

)
+ 4

(
g(2)(x)

)3
+

(−21g(x) − 8c)
(
g(2)(x)

)2
− 30

(
g(1)(x)

)2
g(2)(x) + 4g(2)(x)

(
c + 3

2 g(x)
)2

+12
(
g(1)(x)

)2(
c + 3

2 g(x)
)


. (24)

Continuing the procedure, likewise, the rest of the components can be evaluated. So the
approximate analytical solution of Equation (20) is

ψ(x, t) =
∞∑

n=0

ψn(x)tnα. (25)

5. Implementation of FRDTM on the mCH Equation

Consider Equation (2) in an operator form as

Dα
t ψ−Dxxtψ+ 3ψ2Dxψ = 2DxψDxxψ+ψDxxxψ (26)

with IC
ψ(x, 0) = p(x), (27)

Using FRDTM on Equations (26) and (27), the following recurrence relation is obtained as
Γ(1+α k+α)

Γ(1+α k) ψk+1(x) = 2
k∑

i=0

(
∂ψi(x)
∂ x

∂2ψk−i(x)
∂ x2

)
+

k∑
i=0

(
ψi

∂3ψk−i(x)
∂ x3

)
+

∂3ψk(x)
∂x2∂t

−3
k∑

i=0

i∑
j=0

(
ψ jψi− j

∂ψk−i(x)
∂x

)
ψ0(x) = p(x)

(28)

Solving the recurrence relation Equation (28), we get

ψ1(x) =
1

Γ(1 + α)

[
p(x)p(3)(x) − 3(p(x))2p(1)(x) + 2p(2)(x)p(1)(x)

]
. (29)

ψ2(x) =
1

Γ(1 + 2α)



(p(x))2p(6)(x) + 7p(1)(x)p(x)p(5)(x) + p(4)(x)(
−6(p(x))3 + 13p(x)p(2)(x) + 8

(
p(1)(x)

)2
)
+ 8p(x)

(
p(3)(x)

)2

−48p(1)(x)
(
p(3)(x)

)2(
(p(x))2

−
11
24 p(2)(x)

)
+ 4

(
p(2)(x)

)3
+

(−30p(x))
(
p(2)(x)

)2
+ 9(p(x))2p(2)(x) − 96p(x)

(
p(1)(x)

)2
p(2)(x)

+36(p(x))3
(
p(1)(x)

)2
− 12

(
p(1)(x)

)4


(30)
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Similarly, the rest of the components ψ3,ψ4, . . . can be evaluated. So the approximate analytical
solution of Equation (26) is

ψ(x, t) =
∞∑

n=0

ψn(x)tnα, (31)

6. Implementation of FRDTM on the DP Equation

Considering Equation (3) in operator form, we get

Dα
t ψ−Dxxtψ+ 4ψ2Dxψ = 3DxψDxxψ+ψDxxxψ, (32)

with IC
ψ(x, 0) = f (x) (33)

Applying FRDTM to Equation (32), we obtain
Γ(1+α k+α)

Γ(1+α k) ψk+1(x) = 3
k∑

i=0

(
∂ψi(x)
∂ x

∂2ψk−i(x)
∂ x2

)
+

k∑
i=0

(
ψi

∂3ψk−i(x)
∂ x3

)
+

∂3ψk(x)
∂ x2∂ t

−4
k∑

i=0

i∑
j=0

(
ψ jψi− j

∂ψk−i(x)
∂ x

) (34)

Applying FRDTM to Equation (33), we get

ψ0(x) = f (x). (35)

Substituting Equation (35) in Equation (34), the following recursive values of (ψn)
∞

n=1 are obtained

ψ1(x) =
1

Γ(1 + α)

[
f (x) f (3)(x) − 4(p(x))2p(1)(x) + 3p(2)(x)p(1)(x)

]
. (36)

ψ2(x) =
1

Γ(1 + 2α)



( f (x))2 f (6)(x) + 9 f (1)(x) f (x) f (5)(x) + f (4)(x)(
−8( f (x))3 + 18 f (x) f (2)(x) + 15

(
f (1)(x)

)2
)
+ 11 f (x)

(
f (3)(x)

)2

−72 f (1)(x)
(

f (3)(x)
)(
( f (x))2

−
5
8 f (2)(x)

)
+ 9

(
f (2)(x)

)3

−48( f (x))2
(

f (2)(x)
)2
+ 16( f (x))4 f (2)(x) − 168 f (x)

(
f (1)(x)

)2
f (2)(x)

+64( f (x))3
(

f (1)(x)
)2
− 24

(
f (1)(x)

)4


. (37)

Continuing in this manner ψ3,ψ4, . . . can be evaluated. So the approximate analytical solution of
Equation (32) is

ψ(x, t) =
∞∑

n=0

ψn(x)tnα (38)

7. Results and Discussion

In this section, approximate solutions of displacementψ(x, t) for different values ofα are calculated
for different values of t and x at fixed c = 0.005 and k = 0.5. In Section 4, IC [24,28] is considered
as ψ(x, 0) = g(x) = (k + c)e−|x| − c for showing the nature of the displacements of CH Equation (1).
The solutions ψ(x, t) for different values of t, x and α are depicted in Figure 1a–d for the CH equation.
In Section 5, we considered the IC [11] as ψ(x, 0) = p(x) = −2sech2

(
x
2

)
, a particular case for viewing

the behavior of the displacements. The numerical results of ψ(x, t) for various values of t, x and α are
portrayed in Figure 2a–d for the mCH Equation (2). Similarly, in Section 6, the IC [11] is assumed as
ψ(x, 0) = f (x) = − 15

8 sech2
(

x
2

)
for presenting the nature of the displacements. The numerical solutions

ψ(x, t) for various values of t, x and α are illustrated in Figure 3a–d for the DP Equation (3). Also,
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comparison tests have been included among the existing solution and the results of Zhang et al. [11]
and Zhang et al. [28] in Figures 4–9. One may see from Tables 2–4 that approximate solutions solved
by FRDTM are quite close to the solutions solved by Zhang et al. [11,28].
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Table 2. The two term FRDTM approximation results of CH equation with HPM [28] for α = 1.

(x,t) ψHPM [28] FRDTM
(n = 0)

FRDTM
(n = 1)

FRDTM
(n = 2)

FRDTM
(n = 3)

(0.1, 0.05) 0.47479025 0.45194289 0.45194289 0.45194289 0.45194289
(0.2, 0.05) 0.42913217 0.40845903 0.40845903 0.40845903 0.40845903
(0.4, 0.05) 0.35043736 0.33351162 0.33351162 0.33351162 0.33351162
(0.8, 0.05) 0.23325678 0.22191112 0.22191112 0.22191112 0.22191112

(−0.2, 0.05) 0.42913217 0.40845903 0.40845903 0.40845903 0.40845903
(−0.4, 0.05) 0.35043736 0.33351162 0.33351162 0.33351162 0.33351162

CPU time 0.053s 0.063s 0.078s 0.124s

Table 3. The two term FRDTM approximation results of mCH equation with HPM [11] for α = 1

(x,t) ψHPM [11] FRDTM
(n = 0)

FRDTM
(n = 1)

FRDTM
(n = 2)

FRDTM
(n = 3)

(8, 0.05) −0.00268298 −0.00268190 −0.00268297 −0.00268298 −0.00268298
(9, 0.05) −0.00098718 −0.00098703 −0.00098718 −0.00098718 −0.00098718
(10, 0.05) −0.00036318 −0.00036316 −0.00036318 −0.00036318 −0.00036318
(8, 0.1) −0.00268406 −0.00268105 −0.00268405 −0.00268406 −0.00268406
(9, 0.1) −0.00098732 −0.00098703 −0.00098732 −0.00098732 −0.00098732

(10, 0.1) −0.00036320 −0.00036316 −0.00036320 −0.00036320 −0.00036320
CPU time 0.063 s 0.093 s 0.078 s 0.094 s

Table 4. The two term FRDTM approximation results of DP equation with HPM [11] for α = 1

(x,t) ψHPM [11] FRDTM
(n = 0)

FRDTM
(n = 1)

FRDTM
(n = 2)

FRDTM
(n = 3)

(0, 0) −1.875 −1.8750 −1.875 −1.875 −1.875
(0.2, 0.2) −2.1311490 −1.8563742 −2.1311490 −2.1311490 −2.1311490
(0.4, 0.4) −2.8273737 −1.8019555 −2.8273737 −2.8273737 −2.8273737
(0.8, 0.8) −4.7337056 −4.7337056 −4.7337056 −4.7337056 −4.7337056

(−0.2, 0.2) −1.5815995 −1.8563742 −1.5815995 −1.5815995 −1.5815995
(−0.4, 0.4) −0.7765374 −1.8019555 −0.7765374 −0.7765374 −0.7765374

CPU time 0.01 s 0.016 s 0.062 s 0.078 s

8. Conclusions

In this article, FRDTM is successfully implemented for solving time-fractional CH, mCH, and
DP equations with suitable initial conditions. Solutions are obtained without any transformation and
perturbation. Three test problems were performed to validate the precision and efficacy of the current
method. Also, it was seen that the obtained results are a good agreement with the solution obtained
by Zhang et al. [11,28]. The main benefit of this approach is that linearization is not required for this
method and therefore it reduces complex numerical computations significantly compared to the other
existing methods such as the perturbation technique, DTM, and ADM. Small size computations over
other techniques are the main advantages of the proposed method.
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