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Abstract
The Mathieu series appeared in the study of elasticity of solid bodies in the work of
Émile Leonard Mathieu. Since then numerous authors have studied various problems
arising from the Mathieu series in several diverse ways. In this line, our aim is to study
the solution of fractional kinetic equations involving generalized Mathieu-type series.
The generality of this series will help us to deduce results related to a fractional kinetic
equation involving another form of Mathieu series. To obtain the solution, we use the
Laplace transform technique. Besides, a graphical representation is given to observe
the behavior of the obtained solutions.
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1 Introduction and preliminaries
Fractional calculus (FC) is a useful mathematical tool to study fractional order integrals
and derivatives. The fractional calculus has been developed and used in different areas
of science and engineering. The concept of fractional differential equations and their ap-
plications have played a significant role in many diverse fields such as applied science,
physics, biology, chemistry, and engineering. The kinetic equations designate a system of
differential equations, which describe the rate of change of the chemical composition of a
star for each order in terms of the reaction rates for production and destruction. During
the last several decades, fractional kinetic equations in various forms have been broadly
and usefully employed when describing and solving several important problems of physics
and astrophysics (see, e.g., [2, 7–11, 13–16, 20, 24–29, 31] and the references therein). The
special functions and their applications appear in the solutions of fractional integral and
differential equations and are related to comprehensive problems in the several areas of
mathematics and mathematical physics. In view of the effectiveness and great importance
of the fractional kinetic equations in certain astrophysical problems, the authors develop
a generalized form of the fractional kinetic equations along with Mathieu-type series. The
broad generality of Mathieu-type series will allow us to deduce many special cases of the
main results.
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In [14], Haubold and Mathai explored the kinetic equation describing the rate of change
of detraction, production, and reaction, which is given as

dN
dt

= p(Nt) – d(Nt), (1)

where d = d(N) is the rate of destruction, p = p(N) the rate of production, N = N(t) the
rate of reaction, and Nt denotes the function given by Nt(t∗) = N(t – t∗), t > 0. A particular
case of (1), when special fluctuations or inhomogeneities in quantity N(t) are decayed, is
given by the equation

dN
dt

= –ciNi(t) (2)

with basic condition Ni(t = 0) = N0 describing the variety of density of species i at time
t = 0 and ci > 0. Neglecting index i and integrating, (2) becomes

N(t) – N0 = –c00D–1
t N(t), (3)

where 0D–1
t is the standard integral operator.

Further, a fractional generalization of (3) was given by Haubold and Mathai [14] in the
following form:

N(t) – N0 = –cν
0D–ν

t N(t), (4)

where 0D–ν
t represents the Riemann–Liouville integral operator defined as

0D–ν
t =

1
Γ (ν)

∫ t

0
(–s + t)ν–1f (s) ds

(�(ν) > 0, t > 0
)
. (5)

Saxena et al. [26] investigated solutions of three generalized forms of (4) in terms of the
following generalized Mittag-Leffler function (see, e.g., [40]):

Eν,μ(z) =
∞∑

r=0

zr

Γ (νr + μ)
(�(ν) > 0,μ ∈C

)
. (6)

We here recall just one of them (see [26, Theorem 2]). The equation

N(t) – N0tμ–1Eν,μ
(
–dνtν

)
= –cν

0D–ν
t N(t) (7)

is solved by

N(t) = N0
tμ–ν–1

cν – dν

[
Eν,μ–ν

(
–dνtν

)
– Eν,μ–ν

(
–dνtν

)]
, (8)

where μ,ν, c, d ∈R+; c �= d.
Sexena et al. [28] investigated the following generalized fractional kinetic equation:

N(t) – N0tμ–1Eγ
ν,μ

(
–dνtν

)
= –cν

0D–ν
t N(t)

(
μ,ν,γ , c ∈ R

+)
, (9)
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and its solution is

N(t) = N0tμ–1Eγ +1
ν,μ

(
–cνtν

)
, (10)

where Eγ
ν,μ(z) is an extension of the generalized Mittag-Leffler function (6) (see [23]):

Eγ
ν,μ(z) =

∞∑
r=0

(γ )rzr

Γ (νr + μ)
(�(ν) > 0;μ,γ ∈C

)
(11)

and (η)ε denotes the Pochhammer symbol which is defined (for η, ε ∈ C) in terms of the
gamma function Γ as

(η)ε :=
Γ (η + ε)

Γ (η)
=

⎧⎨
⎩

1
(
ε = 0;η ∈C \ {0}),

η(η + 1) · · · (η + n – 1) (ε = n ∈N;η ∈C).
(12)

Saxena and Kalla [25] investigated the following fractional kinetic equation:

N(t) – N0f (t) = –cν
0D–ν

t N(t)
(
ν, c ∈R

+)
, (13)

where f ∈ L(0,∞). Applying the Laplace transform (LT) to (13), we have

L
[
N(t) : s

]
= N0

F(s)
cνs–ν + 1

= N0F(s)
(∑

n≥0

(
–cν

)ns–nν

) (
n ∈ N0,

∣∣∣∣c
s

∣∣∣∣
)

. (14)

Suppose that f (t) is a real- (or complex-) valued function of the (time) variable t > 0 and
s is real or complex parameter. The Laplace transform of the function f (t) is defined by

F(s) = L
{

N(t); s
}

=
∫ ∞

0
e–stf (t) dt

(�(s) > 0
)

(15)

= lim
ε→∞

∫ ε

0
e–stf (t) dt,

whenever the limit exits (as a finite number). The convolution of two functions f (t) and
g(t), which are defined for t > 0, plays an important role in a number of different physical
applications. The Laplace convolution of functions f (t) and g(t) is given by the following
integral:

(f ∗ g)(t) =
∫ t

0
f (u)g(1 – u) du = (g ∗ f )(t), (16)

which exists if the functions f and g are at least piecewise continuous. One of the most
significant properties possessed by the convolution in connection with the Laplace trans-
form is that the Laplace transform of the convolution of two functions is the product of
their transforms (see, e.g., [20, 30, 32, 33]).

The Laplace Convolution Theorem If f and g are piecewise continuous on [0,∞) and of
exponential order α when t → ∞, then

L
{

(f ∗ g)(t) : s
}

= L
{

f (t) : s
} · L

{
g(t) : s

} (�(s) > 0
)
. (17)
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We find

L
{

0D–ν
t f (t) : s

}
=

1
Γ (ν)

L
{

tν–1 ∗ f (t) : s
}

=
1

Γ (ν)
L
{

tν–1 : s
}

L
{

f (t) : s
}

=
1
sν

L
{

f (t) : s
}

, (18)

by using the following well-known identity:

L
{

tν : s
}

=
Γ (ν + 1)

sν+1 (19)

⇐⇒ L–1
(

1
sν+1

)
=

tν

Γ (ν + 1)
, (20)

in which L–1 denotes the inverse Laplace transform.

Recently, many papers investigated the solution of generalized fractional kinetic equa-
tions involving a variety of special functions by using Laplace and Sumudu transforma-
tions. For instance, for generalized fractional kinetic equations with f (t) in (13) replaced
by certain forms of generalized Mittag-Leffler function (11), Saxena et al. [29] presented
their corresponding solutions. Moreover, Chaurasia and Kumar [7] investigated the solu-
tion of generalized fractional kinetic equations involving M-series, and Choi and Kumar
[9] gave their corresponding solutions involving Aleph function. Furthermore, Agarwal
et al. [1, 2] investigated solutions of fractional kinetic equations with f (t) in (13) replaced
by certain forms of k-Mittag-Leffler function and k-Bessel function. Subsequently, Nisar
and Qi [22] presented solution of fractional kinetic equations with f (t) in (13) replaced by
certain forms of generalized k-Bessel function.

The following familiar infinite series was introduced by Mathieu [21]:

S(l) =
∞∑

k=1

2k
(k2 + l2)

(
l ∈ R

+)
. (21)

An integral representation of (21) is given by (see [12])

S(l) =
1
l

∫ ∞

0

t sin(lt)
et – 1

dt. (22)

Numerous interesting problems and solutions handling integral representations and re-
lated to the following generalization of the Mathieu series with fractional power

Sμ(l) =
∞∑

k=1

2k
(k2 + l2)μ

(
l ∈R

+;μ ≤ 1
)

(23)

can be found in the works by Cerone and Lenard [6] as well as Tomovski and Trencevski
[37]. Extending the work of Cerone and Lenard [6], Srivastava and Tomovski [34] defined
a family of generalized Mathieu series

S(ρ,σ )
μ (l, d) = S(ρ,σ )

μ

(
l, {dk}∞k=1

)
=

∞∑
k=1

2dσ
k

(dρ

k + l2)μ
(
l, d,ρ,σ ,μ ∈R

+)
, (24)
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where the positive sequence d = {dk}∞k=1 = {d1, d2, . . . } (limk→∞ dk = ∞) is such that the
infinite series

∑∞
k=1

1
dμρ–σ

k
is convergent.

In the sequel, Tomovski and Mehrez [35] proposed a generalization of definition (24) in
the following power series:

S(ρ,σ )
μ,τ (l, d; u) = S(ρ,σ )

μ,τ
(
l, {dk}∞k=1; u

)

=
∞∑

k=1

2dσ
k (τ )k

(dρ

k + l2)μ
uk

k!
(
l, d,ρ,σ ,μ ∈R

+; |u| ≤ 1
)
. (25)

Evidently, the case dk = k, ρ = 2, σ = 1 = τ and μ replaced with μ + 1 corresponds to the
Mathieu series defined by Tomovski and Pogány [36]:

S(2,1)
μ+1,1(l, k; u) = Sμ(l; u) =

∞∑
k=1

2kuk

(k2 + l2)μ+1

(
l,μ ∈ R

+; |u| ≤ 1
)
. (26)

Due to the great importance of fractional kinetic equations involving special functions,
in this paper, we aim to investigate solution of generalized fractional kinetic equations (13)
with f (t) replaced by several generalized Mathieu-type series, by mainly using the Laplace
and Sumudu transforms. The results presented here, being general, are also shown to re-
duce to fractional kinetic equations involving simpler special functions. The manuscript
is organized as follows. In Sect. 2, the solution of fractional kinetic equations involving
Mathieu-type series is established, and in Sect. 3, a graphical interpretation and nature of
the solution are discussed. Section 4 is focused on some examples, and in Sect. 5 conclud-
ing remarks are given.

2 Solution of fractional kinetic equations
In this section, we obtain the solution of generalized fractional kinetic equation (13) in-
volving generalized Mathieu-type series (25) by applying the Laplace transform technique.

Theorem 2.1 For all ν, c, h > 0; c �= h, if μ,ρ,σ , τ , l ∈R
+, |ht| ≤ 1, then equation

N(t) – N0S(ρ,σ )
μ,τ

(
l, {dk}∞k=1; ht

)
= –cν

0D–ν
t N(t) (27)

has the solution

N(t) = N0

∞∑
k=1

2dσ
k (τ )k

(dρ

k + l2)μ
(ht)kEν,k+1

(
–cνtν

)
. (28)

Proof Applying the Laplace transform to (27) and using (25) and (18) gives

N∗(s) = N0

(∫ ∞

0
e–st

∞∑
k=1

2dσ
k (τ )k

(dρ

k + l2)μ
(ht)k

k!

)
dt – cνs–νN∗(s), (29)

where N∗(s) = L{N(t); s}.
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Under the given assumptions, computing the integral in (29) term by term and using
L{tλ; s} = Γ (λ+1)

sλ+1 , we have

(
1 +

(
c
s

)ν)
N∗(s) = N0

∞∑
k=1

2dσ
k (τ )k

(dρ

k + l2)μ
hk

k!
Γ (1 + k)

s1+k .

Employing the geometric series expansion of (1 + ( c
s )ν)–1 for c < |s|, we have

N∗(s) = N0

∞∑
k=1

2dσ
k (τ )k

(dρ

k + l2)μ
hk

s1+k

×
∞∑

r=0

(–1)r
(

c
s

)νr

. (30)

Taking the inverse Laplace transform and applying the relation L–1{s–ν ; t} = tν–1

Γ (ν) , �(ν) > 0,
we get

N(t) = L–1{N∗(s); t
}

= N0

∞∑
k=1

2dσ
k (τ )k

(dρ

k + l2)μ
(ht)k

{ ∞∑
r=0

(–1)r(ct)νr

Γ (νr + 1 + k)

}

= N0

∞∑
k=1

2dσ
k (τ )k

(dρ

k + l2)μ
(ht)kEν,k+1

(
–cνtν

)
. �

In view of relation (26), we state the following consequence of Theorem 2.1.

Corollary For all ν, c, h > 0; c �= h, if μ, l ∈R+, |ht| ≤ 1, then equation

N(t) – N0Sμ,τ (l, k; ht) = –cν
0D–ν

t N(t) (31)

has the solution

N(t) = N0

∞∑
k=1

2k
(k2 + l2)μ+1 (ht)kEν,k+1

(
–cνtν

)
. (32)

Theorem 2.2 Assume that ν, c, w > 0 and μ,ρ,σ , τ , l ∈R+, |wt| ≤ 1, then equation

N(t) – N0S(ρ,σ )
μ,τ

(
l, {dk}∞k=1; wtν

)
= –

[ n∑
r=1

(
n
r

)
cνr

0D–νr
t

]
N(t) (33)

has the solution

N(t) = N0tα–1
∞∑

k=1

2dσ
k (τ )kΓ (νk + 1)

(dρ

k + l2)μ
(wtν)k

k!
En

ν,1+νk
(
–cνtν

)
. (34)

Proof Applying LT to both sides of (33) and then using (25) and (15), we get

L
{

N(t); s
}

= N0L
{

S(ρ,σ )
μ,τ

(
l, {dk}∞k=1; wtν

)
; s

}
– L

{[ n∑
r=1

(
n
r

)
cνr

0D–νr
t

]
N(t); s

}
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which, upon solving for N∗(s), yields

N∗(s) – N0

∞∑
k=1

2dσ
k (τ )k

(dρ

k + l2)μ
wk

k!
Γ (1 + νk)

s1+νk

= –
[n

C1

(
c
s

)ν

+ nC2

(
c
s

)2ν

+ · · · + nCn

(
c
s

)nν]
N∗(s) = –

(
c
s

)nν

N∗(s),

N∗(s) = N0

∞∑
k=1

2dσ
k (τ )k

(dρ

k + l2)μ
wk

k!
Γ (1 + νk)

s1+νk

(
1 +

(
c
s

)ν)–n

.

Employing the binomial formula

(1 – u)–λ =
∞∑

r=0

(λ)r

r!
ur ,

which obviously converges for all |u| < 1, we have

N∗(s) = N0

∞∑
k=1

2dσ
k (τ )k

(dρ

k + l2)μ
wk

k!
Γ (1 + νk)

s1+νk

{ ∞∑
j=0

(–1)j (n)j

j!
(
–cνs–ν

)j
}

. (35)

If we now take the inverse LT of (35) and use (11), after easy simplification, the result (34)
readily follows. �

In view of relation (26), we establish the following consequence of Theorem 2.2.

Corollary Assume that ν,α, c, w > 0, and let μ, l ∈R
+, |wt| ≤ 1, then equation

N(t) – N0tα–1Sμ

(
l; wtν

)
= –

[ n∑
r=1

(
n
r

)
cνr

0D–νr
t

]
N(t) (36)

has the solution

N(t) = N0

∞∑
k=1

2kΓ (νk + 1)
(k2 + l2)μ+1

(wtν)k

k!
En

ν,1+νk
(
–cνtν

)
. (37)

Theorem 2.3 For all ν > 0, c > 0, μ,ρ,σ , τ , l ∈R
+, |t| ≤ 1, the equation

N(t) – N0S(ρ,σ )
μ,τ

(
l, {dk}∞k=1; cνtν

)
= –cν

0D–ν
t N(t) (38)

has the solution

N(t) = N0

∞∑
k=1

2dσ
k (τ )kΓ (νk + 1)

(dρ

k + l2)μ
(cνtν)k

k!
Eν,νk+1

(
–cνtν

)
. (39)

Proof This can be proved by the same procedure as in the proof of Theorem 2.1. So we
omit all details. �

Using relation (26), we state the following consequence of Theorem 2.3.
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Corollary For all ν > 0, c > 0, μ, l ∈R
+, |t| ≤ 1, the equation

N(t) – N0Sμ

(
l; cνtν

)
= –cν

0D–ν
t N(t) (40)

has the solution

N(t) = N0

∞∑
k=1

2kΓ (νk + 1)
(k2 + l2)μ+1

(cνtν)k

k!
Eν,νk+1

(
–cνtν

)
. (41)

3 Graphical representations
Figures 1–5 represents the graph of solution (28) by considering some fractional values,
and observe that, by choosing small values for ν , the graph is increasing in nature, and if
we choose larger values for ν , then it is gradually decreasing. The graphical results confirm
that the region of convergence of solutions depends continuously on the fractional param-
eter ν . Hence, by observing the nature of the solutions for various parameters and time
interval, it is concluded that N(t) can be negative as well as positive. A similar observation
can be obtained for the solutions (34) and (39).

Figure 1 Solution (13) for N(t) and t

Figure 2 Solution (13) for N(t) and t
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Figure 3 Solution (13) for N(t) and t

Figure 4 Solution (13) for N(t) and t

Figure 5 Solution (13) for N(t) and t
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4 Example
A detailed account of Mathieu-type series and their applications can be found in the
monographs by various authors [21, 35–37]. An integral transform, called the Sumudu
transform, was defined and studied by Watugala [38] to facilitate the process of solving
differential and integral equations in the time domain, and for the use in various applica-
tions of system control engineering and applied mathematics. In [3, 4], some fundamental
properties of the Sumudu transform are investigated. It turns out that the Sumudu trans-
form has very special and useful properties, and it is useful in solving problems of science
and control engineering governing kinetic equations. The Sumudu transform is defined
on the set of functions

A =
{

f (t)|∃M, δ1, δ2,
∣∣f (t)

∣∣ < Me|t|/δj if t ∈ (–1)j × [0,∞)
}

,

by

G(u) = S
(
f (t); u

)
=

∫ ∞

0
e–t f (ut) dt, u ∈ (–δ1, δ2),

where M is a real finite number and δ1 and δ2 can be finite or infinite. For more details,
see [38, 39].

By using the convolution theorem for the Sumudu transform [3–5], (5) can be written
in the following form:

S
{

0D–ν
t f (t)

}
= S

{
tν–1

Γ (ν)

}
· S

{
f (t)

}
= uνG(u). (42)

It is easy to see that the Sumudu transform of the function f (t) = tε is given by

S
[
f (t)

]
=

∫ ∞

0
(ty)εe–t dt = uεΓ (ε + 1)

(�(ε) > –1
)
. (43)

The Laplace transform is a very potent mathematical tool which is used to solve diverse
engineering and science problems. The Sumudu transform (which is not so well-known as
the Laplace transform) was proposed in the early 1990s, and it has some interesting advan-
tages over other integral transforms, especially regarding the “unity” feature which could
become convenient when solving differential equations. As a comparison, the Sumudu
transform is a simple variant of the Laplace transform. This paper focuses on the effec-
tiveness of both transforms to obtain the solutions of fractional kinetic equations. The
Sumudu transform is essentially identical with the Laplace transform. Given an initial f (t),
its Laplace transform F(s) can be translated into the Sumudu transform Fs(u) of f by means
of the relation

S(u) =
F( 1

u )
u

,

and its inverse is

F(s) =
S( 1

s )
s

.
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For more details about the Sumudu transform and its properties in comparison to the
Laplace transform, the interested readers can check [17–19].

Due to the importance of the above observation, in this section, we first define the
Sumudu transform of Mathieu-type series (25) and further determine the solution of frac-
tional kinetic equations by applying Sumudu transform technique as given in the following
Examples 4.1, 4.2, and 4.3.

The following integral gives the Sumudu transform of Mathieu-type series (25):

∫ ∞

0
e–t(ut)ε–1S(ρ,σ )

μ,τ
(
l, {dk}∞k=1; w(ut)ν

)
dt = uε–1

∞∑
k=1

2dσ
k (τ )k

(dρ

k + l2)μ
Γ (ε + νk)

k!
(uw)k , (44)

where �(u) > |w|–1/�(ν), �(ε) > 0, u ∈ (–δ1, δ2), |f (t)| < Me|t|/δj and l, d,ρ,σ ,μ ∈R
+.

Using the same procedure of analysis as in Theorems 2.1, 2.2, and 2.3, we can find the
solutions of generalized fractional kinetic equations involving Mathieu-type series, which
are given in the following three examples.

Example 4.1 If ε,ν, c, h > 0, �(s) > 0 with |s| < c–1, c �= h and μ,ρ,σ , τ , l ∈ R
+, then the

solution of the generalized fractional kinetic equation

N(t) – N0tε–1S(ρ,σ )
μ,τ

(
l, {dk}∞k=1; htν

)
= –cν

0D–ν
t N(t) (45)

is given by

N(t) = N0tε–2
∞∑

k=1

2dσ
k (τ )kΓ (νk + ε)

(dρ

k + l2)μ
(cνtν)k

k!
Eν,ε+νk–1

(
–cνtν

)
. (46)

Example 4.2 If ν, c, w > 0 and μ,ρ,σ , τ , l ∈ R
+; |s| < c–1, c �= w, then the solution of the

generalized fractional kinetic equation

N(t) – N0tε–1S(ρ,σ )
μ,τ

(
l, {dk}∞k=1; wtν

)
= –

[ n∑
r=1

(
n
r

)
cνr

0D–νr
t

]
N(t) (47)

is given by

N(t) = N0tε–2
∞∑

k=1

2dσ
k (τ )kΓ (νk + ε)

(dρ

k + l2)μ
(wtν)k

k!
En

ν,νk+ε–1
(
–cνtν

)
. (48)

Example 4.3 If ν > 0, c > 0, μ,ρ,σ , τ , l ∈ R
+ and |s| < c–1, then the solution of the general-

ized fractional kinetic equation

N(t) – N0tε–1S(ρ,σ )
μ,τ

(
l, {dk}∞k=1; cνtν

)
= –cν

0D–ν
t N(t) (49)

is given by

N(t) = N0tε–2
∞∑

k=1

2dσ
k (τ )kΓ (νk + ε)

(dρ

k + l2)μ
(cνtν)k

k!
Eν,νk+ε–1

(
–cνtν

)
. (50)
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5 Conclusion
In the current study, we have obtained the solution of generalized fractional kinetic equa-
tions involving generalized Mathieu-type series with the help of Laplace and Sumudu
transform techniques. The results of Sect. 2 are general in character and are likely to find
certain applications in the theory of fractional calculus and special functions. From the
graphical analysis, we conclude that N(t) > 0 or N(t) < 0 for distinct values of the param-
eters. By suitably specializing the values of the parameters of generalized Mathieu-type
series (25), our main results can yield several new solutions of generalized fractional ki-
netic equations corresponding to the Mathieu series given by various authors [6, 21, 34,
37]. Therefore, the investigated results in this paper would at once give many results in-
volving diverse special functions occurring in the problems of astrophysics, mathematical
physics, and engineering.
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