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Abstract: In this work, we establish the exact solutions of some mathematical physics models.
The first integral method (FIM) is extended to find the explicit exact solutions of high-dimensional
nonlinear partial differential equations (PDEs). The considered models are: the space-time
modified regularized long wave (mRLW) equation, the (1+2) dimensional space-time potential
Kadomtsev Petviashvili (pKP) equation and the (1+2) dimensional space-time coupled dispersive
long wave (DLW) system. FIM is a powerful mathematical tool that can be used to obtain the
exact solutions of many non-linear PDEs.

Keywords: first integral method; conformable derivative; modified regularized long wave;
potential Kadomtsev Petviashvili equation; coupled dispersive long wave (DLW) system

1. Introduction

Almost all physical systems in nature are nonlinear. Nonlinear partial differential equations
(PDEs) have wide applications in many fields, for example, in chemistry, fluid dynamics, image
and signal processing, acoustics, polymeric compounds, biology and physics [1–3]. In order to
explore natural phenomena, many researchers are working on physical models of non-linear
PDEs and on their exact solutions [4,5]. Many reliable and effective methods are available in
the literature with which to construct their exact and numerical solutions, such as the homotopy
perturbation technique [6], the homotopy analysis method [7], the hyperbolic function method [8],
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the extended hyperbolic tangent method [9,10], the exponential rational function method [11] and
the sub-equation method [12].

Feng first developed the integral method (FIM) to construct the exact solutions of an explicit
form for PDEs [13]. The proposed technique is based on commutative algebra and ring theory and
can solve only integrable PDEs. The FIM method uses a division theorem to find the first integral
of explicit form that has polynomial coefficients. FIM provides explicit exact solutions without
complex and lengthy calculations and became the interest of many scientists [14,15].

This paper provides the exact solutions of conformable physical models. The considered
models are mRLW, (1+2) dimensional pKP and the (1+2) dimensional dispersive long wave (DLW)
system. The mRLW presents a long surface gravity wave of small amplitude and high wave
number [16,17]. The pKP equation explains water waves that have a long wave length, especially
water waves that have frequency dispersion and weak non-linear restoring forces [18] and the
DLW system describes how waves with different lengths move at different velocities. This work is
novel, as conformable models have not been solved using the FIM method in the literature.

This paper is comprised of the following sections: Section 2 consists of an introduction to the
conformable derivative and its properties; Section 3 describes the First Integral Method; Section 4
describes the applications of FIM for conformable mRLW, pKP and the DLW system; and Section 5
presents conclusions and recommendations.

2. Preliminaries

Conformable Derivative

Khalil et. al. presented the Conformable derivative [19,20].
Definition: If j : [0, ∞)→ R is a function, then the conformable derivative of the γth order is

given as,

Dγ(j)(y) = lim
ε→0

j(y + εy1−γ)− j(y)
ε

, (1)

where γ ∈ (0, 1) and holds for y > 0. Let function j is γ-differentiable in (0, q), where q > 0
and limy→0+ j(γ)(y) exists, in that case at 0, the conformable derivative will be represented by
j(γ)(0) = limy→0+ j(γ)(y).

For function j, the conformable integral is defined below:

Iq
γ(j)(y) =

∫ y

q

j(t)
t1−γ

dt, (2)

where q ≥ 0, and γ ∈ (0, 1].
The disadvantage of the conformable derivative is that it becomes zero at origin. Despite

this disadvantage, it explains many properties like power rule, sequential differentiation and
integration, higher order integration, property of linearity, relation between integration and
differentiation, product rule, differentiation of constant function, chain rule and quotient rule [21–
24]. Consequently, in solving many real world problems, researchers apply the conformable
derivative, such as by obtaining the solutions to the conformable perturbed non linear Schrodinger
equation [20], for the Boussinesq and combined Kdv-mKdv equation using the jacobi elliptic
function expansion method [25], in solving the space-time (2+1) dimensional dispersive long wave
equation [19] and in solving the conformable heat equation [26] and so forth.
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3. Feng’s First Integral Method (FIM)

This section describes FIM.
Step 1: Consider a nonlinear conformable PDE of the given form:

M

(
∂γw
∂yγ

,
∂γw
∂yγ

1
,

∂γw
∂yγ

2
, ...,

∂γw
∂yγ

r
,

∂2γw
∂t2γ

,
∂2γw

∂yγ
1 ∂yγ

1
,

∂2γw
∂yγ

2 ∂yγ
2

...

)
= 0. (3)

Step 2: The following transformation is used:

w(y1, y2, ..., yr, t) = W(ϕ). (4)

For conformable operator, transformation is given as:

ϕ =
p1yγ

1 + p2yγ
2 + ... + pryγ

r ± qtγ

γ
. (5)

We convert the conformable PDE into a nonlinear ODE with the help of the transformation
discussed in Equation (5) :

M(W(ϕ), W
′
(ϕ), W

′′
(ϕ), ...) = 0, (6)

where W
′
(ϕ) = dW(ϕ)

dϕ and ϕ is the transformed variable.
Step 3: Now new independent variables will be introduced as:

W(ϕ) = Z(ϕ),

Wϕ(ϕ) = Y(ϕ).
(7)

A system of non-linear ODE is obtained as:

∂Z
∂ϕ

= Y(ϕ),

∂Y
∂ϕ

= G(Z(ϕ), Y(ϕ)).
(8)

Step 4: In this step, the first integrals of the plane independent (autonomous) system (c.f.
Equation (8)) are obtained, these first integrals ultimately provide general solutions. The first
integral of such systems is extremely challenging to get, as there is no precise or sound method for
finding them. FIM uses the division theorem on (c.f. Equation (8)) to find the first integral. Now,
the division theorem converts a non-linear ODE into an integrable first order ODE. Ultimately, we
can find exact solutions to the problem.

The division theorem for the two variables and in the complex domain C is defined below:
Division Theorem: Consider a complex domain C with two polynomials H(z, x) and G(z, x),
where in C(z, x) an irreducible polynomial H(z, x) exists. If the polynomial G(z, x) vanishes, at
all the zero points of H(z, x), then there exists a polynomial T(z, x) in C(z, x) and an equality will
be held as follows:

G(z, y) = H(z, y)T(z, y). (9)

4. Exact Solutions of Conformable mRLW Equation, (1+2) Dimensional Conformable pKP
Equation and (1+2) Dimensional Conformable DLW System

In this section, the exact solutions of mRLW, pKP and DLW system are presented.
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4.1. Exact Solutions of Conformable Space-Time mRLW Equation

The regularized long wave equation appears in 1966, introduced by Peregrine for the study
of undular bores, later as an improved equation for modeling long surface gravity waves of
small amplitude, propagating unidirectionally in (1+1) dimensions, showing the stability and
uniqueness of solution in its high wave number.

Consider the conformable space-time mRLW equation which is given as [16,17]:

∂γw
∂tγ

+ ν
∂γw
∂xγ

+ µw2 ∂γw
∂xγ
− τ

∂γ

∂tγ
(

∂2γ

∂x2γ
) = 0, (10)

where γ ∈ (0, 1), ν, µ, τ are constants.
Firstly, we apply the conformable derivative as:

ϕ =
mxγ

γ
+

ptγ

γ
,

w(ϕ) = w(x, t),
(11)

Here, the transformation is given in Equation (11) and the transformation variable is ϕ. The
following conversions will be obtained from the transformation given in Equation (11):

∂γ(.)
∂tγ

= p
d(.)
dϕ

,
∂γ(.)
∂xγ

= m
d(.)
dϕ

,
∂γ

∂tγ
(

∂2γ(.)
∂x2γ

) = pm2 d3(.)
dϕ3 , . (12)

Here p, m are constants and the transformation variable is ϕ. Thus, we obtain the following
ODE by putting Equation (12) in Equation (10):

p
dw
dϕ

+ νm
dw
dϕ

+ µmw2 dw
dϕ
− τm2 p

d3w
dϕ3 = 0. (13)

Afterwards, we attain a 2-D autonomous system by applying Equation (7) as.

dX
dϕ

= Z, (14a)

dZ
dϕ

=
µ

3τmp
X3 +

( p + mν

τm2 p
)
X. (14b)

Now we apply the division theorem to obtain the first integral. As stated in FIM, it is
supposed that X and Z are non-trivial solutions for the above system (c.f. Equation (14)). Hence,

by the division theorem in C[X, Z], there exists an irreducible polynomial S(X, Z) =
n

∑
q=0

aq(X)Zq

such that

S(X(ϕ), Z(ϕ)) =
n

∑
q=0

aq(Z(ϕ))Z(ϕ)q = 0, (15)

where aq(X) 6= 0 for q = 0, 1, ..., n. Now there exists in C[X, Z] a polynomial u(X) + r(X)Z
such that

∂S
∂ϕ

=
∂S
∂X

∂X
∂ϕ

+
∂S
∂Z

∂Z
∂ϕ

=
(
u(X) + q(X)Z

)( n

∑
q=0

aq(X)Zq). (16)
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Now put n = 1 in Equation (16) and equating coefficients of Zq(q = 0, 1) we have:

a
′
1(X) = a1(X)r(X), (17)

a
′
0(X) = u(Z)a1(X) + r(X)a0(X), (18)

u(X)a0(X) =
µ

3τmp
X3 +

( p + mν

τm2 p
)
X. (19)

Here aq(X) represent polynomials in X; it is implied by Equation (17) that polynomial a1(X)

is of a constant nature, so r(X) = 0. For convenience, we consider a1(X) = 1. We inferred the
deg(u(X)) can only be 0 or 1 by substituting values of a1(X) and r(X) in Equations (18) and (19)
and balancing the degrees of the functions u(X) and a0(X). Let us consider u(X) = A1X + A0,
therefore Equation (18) takes the following form:

a0(X) =
1
2

A1X2 + A0X + A2, (20)

where the integration constant is denoted by A2.
After substituting the values of a0(X), u(X) in Equation (19) and equating coefficients of the

power of X, we get a nonlinear system of algebraic equations. Afterwards, we obtain different
combinations of constants as given below:
Case 1: we have,

A1 =

√
2µ

3τmp
, A0 = 0, A2 =

√
3τmp

2µ

( p + mν

τpm2

)
. (21)

Substituting Equations (20) and (21) in Equation (15), we get

Y1(ϕ) = −1
2

√
2µ

3τmp
X2 −

√
3τmp

2µ

( p + mν

τpm2

)
. (22)

The first solution of the conformable mRLW equation is attained (c.f. Equations (22) and (14a)).

w1(x, t) = −
√

3p + 3mν

µm
tan
(√2

2

√
p + mν

τm2 p
(

mxγ

γ
+

ptγ

γ
+ β)

)
. (23)

Case 2: We get,

A1 = −
√

2µ

3τmp
, A0 = 0, A2 = −

√
3τmp

2µ

( p + mν

τpm2

)
. (24)

Substituting Equations (20) and (24) in Equation (15), we obtain

Y2(ϕ) =
1
2

√
2µ

3τmp
X2 +

√
3τmp

2µ

( p + mν

τpm2

)
. (25)

The second solution of the conformable mRLW equation is attained (c.f. Equations (25)
and (14a)).

w2(x, t) =

√
3p + 3mν

µm
tan
(√2

2

√
p + mν

τm2 p
(

mxγ

Γ(1 + γ)
+

ptγ

Γ(1 + γ)
+ β)

)
. (26)
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The solutions w1, w2 are presented in Figure 1. In Figure 2 the solutions are presented for
different values of γ.
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Figure 1. Exact solutions of conformable mRLW equation Case 1 and Case 2 using γ = 0.8, β = 1,
p = 0.01, m = 1, ν = 1, τ = 1, µ = 1.
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4.2. Exact Solutions of Conformable Space-Time pKP Equation

The pKP equation is a universal integrable system in two spatial dimensions, which was
first proposed by Vladimir l. Petviashvili (1936–1993) and Boris B. Kadomtsev (1928–1998).
They explain water waves with a long wave length, especially water waves that have frequency
dispersion and weak non-linear restoring forces.
Consider the conformable space-time pKP Equation [18] as:

1
4

∂4γw
∂x4γ

+
3
2

∂γ

∂xγ

(∂2γw
∂x2γ

)
+

3
4

∂2γw
∂y2γ

+
∂γ

∂tγ

(∂γw
∂xγ

)
= 0, (27)

where γ ∈ (0, 1). Firstly, we apply the conformable derivative as:

ϕ =
mxγ

γ
+

lyγ

γ
+

ptγ

γ
,

w(ϕ) = w(x, t),
(28)

Here the transformation is given in Equation (28) and the transformation variable is ϕ. The
following conversions will be obtained from the transformation given in Equation (28):

∂4γ(.)
∂x4γ = m4 d4(.)

dϕ4 , ∂γ

∂xγ

( ∂2γ(.)
∂x2γ

)
= m3 d

dϕ

( d2(.)
dϕ2

)
, ∂2γ(.)

∂y2γ = l2 d2(.)
dϕ2 , ∂γ

∂tγ

( ∂γ(.)
∂xγ

)
= pm d

dϕ

( d(.)
dϕ

)
, (29)

Here p, m and l are constants and the transformation variable is ϕ. Then, we obtain the
following ODE by putting Equation (29) in Equation (27):

1
4

m4 d4w
dϕ4 +

3
2

m3 d3w
dϕ3 +

3
4

l2 d2w
dϕ2 + pm

d2w
dϕ2

= 0. (30)

Afterwards, we attain a 2-D autonomous system by applying Equation (7) as:

dX
dϕ

= Z, (31a)

dZ
dϕ

= − 6
m

Z− 3l2

m4 X− 4p
m3 X. (31b)

Now we apply the division theorem to obtain the first integrals. As stated in FIM, it is
supposed that X and Z are non-trivial solutions for the above system (c.f. Equation (31)). Hence,

by the division theorem in C[X, Z], there exists an irreducible polynomial S(X, Z) =
n

∑
q=0

aq(X)Zq

such that

S(X(ϕ), Z(ϕ)) =
n

∑
q=0

aq(X(ϕ))Z(ϕ)q = 0, (32)

where aq(X) 6= 0 for q = 0, 1, ..., n. Now there exists in C[X, Z] a polynomial u(X) + r(X)Z
such that

∂S
∂ϕ

=
∂S
∂X

∂X
∂ϕ

+
∂S
∂Z

∂Z
∂ϕ

=
(
u(X) + r(X)Z

)( n

∑
q=0

aq(X)Zq). (33)

Now put n = 1 in Equation (33) and equating coefficients of Zq(q = 0, 1) we have

a
′
1(X) = a1(X)r(X), (34)
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a
′
0(X) = u(X)a1(X) + r(X)a0(X) +

6
m

a1(X), (35)

u(X)a0(X) =
(
− a1(X)

3l2

m4 − a1(X)
4p
m3

)
X. (36)

Here aq(X) represent polynomials in X, it is implied by Equation (34) that polynomial a1(X)

is of a constant nature, so r(X) = 0. For convenience, we consider a1(X) = 1. We inferred that
deg(u(X)) can only be 0 or 1, by substituting values of a1(X) and r(X) in Equations (35) and (36)
and balancing the degrees of the functions u(X) and a0(X). Let us consider u(X) = A1X + A0,
therefore Equation (35) takes the following form:

a0(X) =
( 6

m
+ A

)
X + B, (37)

where the integration constant is denoted by B.
After substituting the values of a0(X), u(X) in Equation (36) and equating all coefficients

for some power of X, we get a nonlinear system of algebraic equations. Afterwards, we obtain
different combinations of constants as given below:
Case 1: we have,

A = − 3
m

+
1

m2

√
9m2 − 3l2 − 4pm, B = 0. (38)

Substituting Equations (37) and (38) in Equation (32), we get

Y1(ϕ) = − 3
m

X− 1
m2

√
9m2 − 3l2 − 4pmX. (39)

The first solution of the conformable pKP equation is attained (c.f. Equation (39) with
Equation (31a)).

w1(x, t) = βe−
( 3m+
√

9m2−3l2−4pm

m2 (mxγ

γ +
lyγ

γ +
ptγ
γ )
)

. (40)

Case 2: We get,

A = − 3
m
− 1

m2

√
9m2 − 3l2 − 4pm, B = 0. (41)

Substituting Equations (37) and (41) in Equation (32), we obtain

Y2(ϕ) = − 3
m

X +
1

m2

√
9m2 − 3l2 − 4pmX. (42)

The second solution of the conformable pKP equation is attained (c.f. Equation (42) with
Equation (31a)).

w2(x, t) = βe
(−3m+

√
9m2−3l2−4pm

m2 (mxγ

γ +
lyγ

γ +
ptγ
γ )
)

. (43)

The solutions w1, w2 are presented in Figure 3. In Figure 4 the solutions are presented for
different values of γ.
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Figure 3. Exact solutions of conformable pKP equation Case 1 and Case 2 using γ = 0.8, β =

1, p = 1, m = 1, l = 1.
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Figure 4. Exact solutions of conformable pKP equation Case 1 using β = 1, p = 1, m = 1, l = 1.,
γ = 1, γ = 0.6, and γ = 0.3.

4.3. Exact Solutions of Conformable Space-Time DLW System

The Dispersive long wave system in two spatial directions is now discussed.
Consider the conformable space-time DLW system as [27,28]:

∂2γu
∂yγ∂tγ

+
∂2γv
∂x2γ

+
∂γ

∂yγ

(
u

∂γu
∂xγ

)
= 0, (44a)

∂γv
∂tγ

+
∂γu
∂xγ

+
∂γuv
∂xγ

+
∂3γu

∂x2γ∂yγ
= 0, x > 0, t > 0, y > 0. (44b)

where γ represents the order of Equation (44) and γ ∈ (0, 1).
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Firstly, we apply the conformable derivative as:

ϕ =
mxγ

γ
+

lyγ

γ
+

ptγ

γ
,

u(ϕ) = u(x, t),

v(ϕ) = v(x, t),

(45)

where the transformation is given in Equation (45) and the transformation variable is ϕ. The
following conversions will be obtained from the transformation given in Equation (45):

∂2γ(.)
∂yγ∂tγ

= pl
d2(.)
dϕ2 ,

∂2γ(.)
∂x2γ

= m2 d2(.)
dϕ2 ,

∂(.)
∂tγ

= p
d(.)
dϕ

,
∂γ(.)

∂xγ
= m

d(.)
dϕ

,
∂3γ(.)

∂x2γ∂yγ
= lm2 d3(.)

dγ3 . (46)

Here p, m and l are constants and the transformation variable is ϕ. Then, we obtain the
following ODE by putting Equation (46) in Equation (44):

pl
d2u
dϕ2 + m2 d2v

dϕ2 + l
d

dϕ

(
um

du
dϕ

)
= 0, (47a)

p
dv
dϕ

+ m
du
dϕ

+ m
duv
dϕ

+ m2l
d3u
dϕ3 = 0. (47b)

Now consider Equation (47a) and taking the integration constant as zero, we have:

v = − lpu
m2 −

lu2

2m
. (48)

Integrating Equation (47b) w.r.t ϕ and taking the integrating constant as zero we have:

pv + mu + muv + m2l
d2u
dϕ2 = 0. (49)

Embedding Equation (48) into Equation (49), we get a nonlinear ODE as:

m2l
d2u
dϕ2 −

lp2u
m2 + mu− 3pl

2m
u2 − l

2
u3 = 0. (50)

Afterwards, we attain a 2-D autonomous system by applying Equation (7) as:

dX
dϕ

= Z, (51a)

dZ
dϕ

=
1

2m2 X3 +
3p

2m3 X2 +
p2

m4 X− 1
lm

X. (51b)

Now we apply the division theorem to obtain the first integral. As stated in FIM, it is
supposed that X and Z are non-trivial solutions for the above system (c.f. Equation (51)). Hence

by the division theorem in C[X, Z] there exists irreducible polynomial S(X, Z) =
n

∑
q=0

aq(X)Zq

such that

S(X(ϕ), Z(ϕ)) =
n

∑
q=0

aq(X(ϕ))Z(ϕ)q = 0, (52)
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where aq(X) 6= 0 for q = 0, 1, ..., n. Now there exists in C[X, Z] a polynomial w(X) + r(X)Z
such that

∂S
∂ϕ

=
∂S
∂X

∂X
∂ϕ

+
∂S
∂Z

∂Z
∂ϕ

=
(
w(X) + r(X)Z

)( n

∑
q=0

aq(X)Zq). (53)

Now put n = 1 in Equation (53) and equating coefficients of Zq(q = 0, 1) we have:

a
′
1(X) = a1(X)r(X), (54)

a
′
0(X) = w(X)a1(X) + r(X)a0(X), (55)

w(X)a0(X) = a1(X)

(
3p

2m3 X2 +
p2

m4 X− 1
ml

X +
1

2m2 X3
)

. (56)

Here aq(X) represent polynomials in X, it is implied by Equation (54) that polynomial a1(X)

is of a constant nature, so r(X) = 0. For convenience, we consider a1(X) = 1. We inferred the
deg(w(X)) can only be 0 or 1 by substituting values of a1(X) and r(X) in Equations (55) and (56)
and balancing the degrees of the functions w(X) and a0(X). Let us consider w(X) = A1X + A0,
therefore Equation (55) takes the form:

a0(X) =
1
2

A1X2 + A0X + A2, (57)

where the integration constant is denoted by A2.
After substituting the values of a0(X), w(X) in Equation (56) and equating all coefficients,

for some power of X, we get a nonlinear system of algebraic equations. Afterwards, we obtain
different combinations of constants as given below:
Case 1: we have,

A0 = 0, A1 =
1
m

, A2 = −1
l

, p = 0, (58)

Substituting Equations (57) and (58) in Equation (52), we get

Y1(ϕ) = − 1
2m

X2 +
1
l

. (59)

The first solution of the conformable DLW system is attained (c.f. Equation (59) with
Equation (51a)).

u1(x, t) =

√
2m
l

tanh
( mxγ

γ + lyγ

γ + ptγ

γ + β
√

2ml

)
. (60)

v1(x, t) = − p
m

√
2l
m

tanh
( mxγ

γ + lyγ

γ + ptγ

γ + β
√

2ml

)
− tanh2( mxγ

γ + lyγ

γ + ptγ

γ + β
√

2ml

)
(61)

Case 2: we get,

A0 = 0, A1 = − 1
m

, A2 =
1
l

, p = 0, (62)

Substituting Equations (57) and (62) in Equation (52), we get

Y1(ϕ) =
1

2m
X2 − 1

l
. (63)
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The second solution of the conformable DLW system is attained (c.f. Equation (63) with
Equation (51a)).

u2(x, t) = −
√

2m
l

tanh
( mxγ

γ + lyγ

γ + ptγ

γ + β
√

2ml

)
. (64)

v2(x, t) =
p
m

√
2l
m

tanh
( mxγ

γ + lyγ

γ + ptγ

γ + β
√

2ml

)
− tanh2( mxγ

γ + lyγ

γ + ptγ

γ + β
√

2ml

)
(65)

The solutions u1, v1, u2, v2 are presented in Figure 5. In Figure 6 the solutions are presented
for different values of γ.
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Figure 5. Exact solutions of the conformable DLW equation Case 1 and Case 2 using p = 0, m =

0.3, l = 0.09, β = 1, γ = 0.8.
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Figure 6. Exact solutions of the conformable DLW equation (Case 1) using p = 0, m = 0.3, l =
0.09, β = 1, γ = 1, γ = 0.8, γ = 0.4 and γ = 0.1.

5. Conclusions

In this paper, we presented the exact solutions of mathematical physics models. FIM was
applied to attain the solutions of conformable mRLW, pKP and DLW systems. FIM was proved
as an effective technique to construct new exact solutions of non-linear PDEs that appear in
engineering, physics and biology.
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