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Abstract: Coefficient of variation (CV) is a simple but useful statistical tool to make comparisons
about the independent populations in many research areas. In this study, firstly, we proposed the
asymptotic distribution for the ratio of the CVs of two separate symmetric or asymmetric populations.
Then, we derived the asymptotic confidence interval and test statistic for hypothesis testing about
the ratio of the CVs of these populations. Finally, the performance of the introduced approach was
studied through simulation study.
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1. Introduction

Based on the literature, to describe a dataset (random variable), three main characteristics
containing central tendencies, dispersion tendencies and shape tendencies, are used. A central
tendency (or measure of central tendency) is a central or typical value for a random variable that
describes the way in which the random variable is clustered around a central value. It may also be
called a center or location of the distribution of the random variable. The most common measures
of central tendency are the mean, the median and the mode. Measures of dispersion like the range,
variance and standard deviation tell us about the spread of the values of a random variable. It may also
be called a scale of the distribution of the random variable. The shape tendencies such as skewness
and kurtosis describe the distribution (or pattern) of the random variable.

The division of the standard deviation to the mean of population, CV = σ
µ , is called as coefficient

of variation (CV) which is an applicable statistic to evaluate the relative variability. This free dimension
parameter can be widely used as an index of reliability or variability in many applied sciences such
as agriculture, biology, engineering, finance, medicine, and many others [1–3]. Since it is often
necessary to relate the standard deviation to the level of the measurements, the CV is a widely used
measure of dispersion. The CVs are often calculated on samples from several independent populations,
and questions about how to compare them naturally arise, especially when the distributions of the
populations are skewed. In real world applications, the researchers may intend to compare the
CVs of two separate populations to understand the structure of the data. ANOVA and Levene tests
can be used to investigate the equality of CVs of populations in case the means or variances of the
populations are equal. It is obvious that in many situations two populations with different means
and variances may have an equal CV. For the normal case, the problems of interval estimating the
CV or comparison of two or several CVs have been well addressed in the literature. Due to possible
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small differences of two small CVs and no strong interpretation, the ratio of CVs is more accurate
than the difference of CVs. Bennett [4] proposed a likelihood ratio test. Doornbos and Dijkstra [5]
and Hedges and Olkin [6] presented two tests based on the non-central t test. A modification of
Bennett’s method was provided by Shafer and Sullivan [7]. Wald tests have been introduced by [8–10].
Based on Renyi’s divergence, Pardo and Pardo [11] proposed a new method. Nairy and Rao [12]
applied the likelihood ratio, score test and Wald test to check that the inverse CVs are equal. Verrill
and Johnson [13] applied one-step Newton estimators to establish a likelihood ratio test. Jafari and
Kazemi [14] developed a parametric bootstrap (PB) approach. Some statisticians improved these
tests for symmetric distributions [15–23]. The problem of comparing two or more CVs arises in
many practical situations [24–26]. Nam and Kwon [25] developed approximate interval estimation of
the ratio of two CVs for lognormal distributions by using the Wald-type, Fieller-type, log methods,
and the method of variance estimates recovery (MOVER). Wong and Jiang [26] proposed a simulated
Bartlett corrected likelihood ratio approach to obtain inference concerning the ratio of two CVs for
lognormal distribution.

In applications, it is usually assumed that the data follows symmetric distributions. For this
reason, most previous works have focused on the comparison of CVs in symmetric distributions,
especially normal distributions. In this paper, we propose a method to compare the CVs of two separate
symmetric or asymmetric populations. Firstly, we propose the asymptotic distribution for the ratio of
the CVs. Then, we derive the asymptotic confidence interval and test statistic for hypothesis testing
about the ratio of the CVs. Finally, the performance of the introduced approach is studied through
simulation study. The introduced approach seems to have many advantages. First, it is powerful.
Second, it is not too computational. Third, it can be applied to compare the CVs of two separate
symmetric or asymmetric populations. We apply a methodology similar to that which has been used
in [27–33]. The comparison between the parameters of two datasets or models has been considered in
several works [34–40]

2. Asymptotic Results

Assume that X and Y are uncorrelated variables with non-zero means µX and µY, and the finite ith

central moments:
µiX = E(X − µX)

i, µiY = E(Y − µY)
i, i ∈ {2, 3, 4},

respectively. Also assume two samples X1, . . . , Xm, and Y1, . . . , Yn, distributed from X and Y, respectively.
From the motivation given in the introduction, the parameter:

γ =
CVY
CVX

,

is interesting to inference, where CVY and CVX are the CVs corresponding to Y and X, respectively.
Assume miX = 1

m
∑m

k=1 (xk − x)i , miY = 1
n
∑n

k=1 (yk − y)i, i ∈ {2, 3, 4}. CVX and CVY,

are consistently estimated [41] by ĈVX =
√

m2X

X
and ĈVY =

√
m2Y

Y
, respectively. So, it is obvious that

γ̂ =
ĈVY

ĈVX

can reasonably estimate the parameter γ. For simplicity, let m = n. When n = m, let n∗ = min(m, n)
instead of m and n in the following discussions.

Lemma 1. If the above assumptions are satisfied, then:

√
n
(
ĈVX −CVX

) L
→ N

(
0, δ2

X

)
, as n→∞,
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where:

δ2
X =

µ4X − µ2
2X

4µ2
Xµ2X

−
µ3X

µ3
X

+
µ2

2X
µ4X

,
is the asymptotic variance.

Proof. The outline of proof can be found in [41]. �

The next theorem corresponds to the asymptotic distribution of γ̂. This theorem will be applied to
construct the confidence interval and perform hypothesis testing for the parameter γ.

Theorem 1. If the previous assumptions are satisfied, then:

√
n(γ̂− γ) L

→ N
(
0,λ2

)
, as n→∞,

where:
λ2 =

1
CV2

X

(
γ2δ2

X + δ2
Y

)
,

and:

δ2
Y =

µ4Y − µ
2
2Y

4µ2
Yµ2Y

−
µ3Y

µ3
Y

+
µ2

2Y
µ4Y

.
Proof. By using Lemma 1, we have:

√
n
(
ĈVX −CVX

) L
→ N

(
0, δ2

X

)
, as n→∞,

and:
√

n
(
ĈVY −CVY

) L
→ N

(
0, δ2

Y

)
, as n→∞.

Slutsky’s Theorem gives:

√
n
[(

ĈVX

ĈVY

)
−

(
CVX

CVY

)]
L
→ N

(
0,

(
δ2

X 0
0 δ2

Y

))
,

for independent samples [41].
Now define f : R2

→ R as f (x, y) = y
x . Then we have:

∇ f (x, y) =
(
−

y
x2 ,

1
x

)
,

where ∇ f (x, y) is the gradient function. Consequently, we have ∇ f (CVX, CVY)
∑
(∇ f (CVX, CVY))

T =

λ2. Because of continuity of ∇ f in the neighbourhood of (CVX, CVY), by using Cramer’s Rule:

√
n
(

f
(
ĈVX, ĈVY

)
− f (CVX, CVY)

)
=
√

n(γ̂− γ) L
→ N

(
0,λ2

)
, n→∞,

the proof ends. �

Thus, the asymptotic distribution can be constructed as:

Tn =
√

n
(
γ̂− γ

λ

)
L
→ N(0, 1), as n→∞. (1)
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2.1. Constructing the Confidence Interval

As can be seen, the parameter λ depends on CVX, δ2
X, δ2

Y and γ which are unknown parameters
in practice. The result of the next theorem can be applied to construct the confidence interval and to
perform the hypothesis testing for the parameter γ.

Theorem 2. If the previous assumptions are satisfied, then:

T∗n =
√

n
(
γ̂− γ

λ̂

)
L
→ N(0, 1), as→∞, (2)

where:
λ̂2 =

1
ĈV2

X

(
γ̂2δ̂2

X + δ̂2
Y

)
,

δ̂2
X =

m4X −m2
2X

4X
2
m2X

−
m3X

X
3 +

m2
2X

m4X

,
and:

δ̂2
Y =

m4Y −m2
2Y

4Y
2
m2Y

−
m3Y

Y
3 +

m2
2Y

m4Y

.
Proof. From the Weak Law of Large Numbers, it is known that:

X
p
→ µX, Y

p
→ µY, miX

p
→ µiX, miY

p
→ µiY, i ∈ {2, 3, 4},

as n→∞.
Consequently, by applying Slutsky’s Theorem, we have λ̂

p
→ λ, as n→∞ . Appliying Theorem 1

the proof is completed. �

Now, T∗n is a pivotal quantity for γ. In the following, this pivotal quantity is used to construct
asymptotic confidence interval for γ. (

γ̂−
λ̂
√

n
Z α

2
, γ̂+

λ̂
√

n
Z α

2

)
. (3)

2.2. Hypothesis Testing

In real word applications, researchers are interested in testing about the parameter γ. For example,
the null hypothesis H0 : γ = 1 means that the CVs of two populations are equal. To perform the
hypothesis test H0 : γ = γ0, the test statistic:

T0 =
√

n
(
γ̂− γ0

λ∗

)
, (4)

is generally applied, such that:

λ∗2 =
1

ĈV2
X

(
γ2

0δ̂
2
X + δ̂2

Y

)
.

If the null hypothesis H0 : γ = γ0 is satisfied, then the asymptotic distribution of T0 is standard normal.

2.3. Normal Populations

Naturally, many phenomena follow normal distribution. This distribution is very important in
natural and social sciences. Many researchers focused on the comparison between the CVs of two
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independent normal distributions. Nairy and Rao [12] reviewed and studied several methods such as
likelihood ratio test, score test and Wald test that could be used to compare the CVs of two independent
normal distributions. If the parent distributions X and Y are normal, then:

µ3X = µ3Y = 0, µ4X = 3µ2
2X, µ4Y = 3µ2

2Y.

Consequently, for normal distributions, δ2
X and δ̂2

X can be rewritten as:

δ2
X =

µ2Xµ2
X + 2µ2

2X

2µ4
X

,

and:

δ̂2
X =

m2XX
2
+ 2m2

2X

2X
4

,

respectively.

3. Simulation Study

In this section, the accuracy of the given theoretical results is studied and analyzed by different
simulated datasets. For the populations X and Y, we respectively simulated different samples from
symmetric distribution (normal) and asymmetric distributions (gamma and beta) with different CV
values, (CVX, CVY) ∈

{
(1, 1), (1, 2), (2, 3), (2, 5)

}
, which are equivalent to γ ∈ {1, 2, 1.5, 2.5}. Figures 1–3

show the plots of probability density function (PDF) for the considered distributions.
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Figure 2. PDF of gamma (𝛼, 𝜆) distribution with different CV values. Black: 𝛼 = 1, 𝜆 = 0.001, CV = 1; 
red: 𝛼 = 0.25, 𝜆 = 0.001, CV = 2; green: 𝛼 = 0.11, 𝜆 = 0.001, CV = 3; blue: 𝛼 = 0.04, 𝜆 = 0.001, CV = 5. 

Figure 1. Probability density function (PDF) of normal (µ, σ2) distribution with different coefficient of
variation (CV) values. Black: µ = 1, σ = 1, CV = 1; red: µ = 1, σ = 2, CV = 2; green: µ = 1, σ = 3, CV
= 3; blue: µ = 1, σ = 5, CV = 5.
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Figure 2. PDF of gamma (α,λ) distribution with different CV values. Black: α = 1,λ = 0.001, CV = 1;
red: α = 0.25,λ = 0.001, CV = 2; green: α = 0.11,λ = 0.001, CV = 3; blue: α = 0.04, λ = 0.001, CV = 5.
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Figure 3. PDF of beta (α, β) distribution with different CV values. Black: α = 0.94, β = 30.39, CV = 1;
red: α = 0.21, β = 6.87, CV = 2; green: α = 0.08, β = 2.51, CV = 3; blue: α = 0.009, β = 0.285, CV = 5.

The simulations are accomplished after 1000 runs using the R 3.3.2 software (R Development Core
Team, 2017) on a PC (Processor: Intel(R) CoreTM(2) Duo CPU T7100 @ 1.80GHz 1.80GHz, RAM: 2.00GB,
System Type: 32-bit).
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To check the accuracy of Equations (3) and (4), we estimated the coverage probability,

CP =
number of runs that Equation ( 3 ) contained true γ

1000
,

for each parameter setting. We also computed the value of the test statistic in Equation (4), for each run.
Then we considered the Shapiro–Wilk’s normality test and the Q–Q plots to verify normality assumption for
the proposed test statistic. Table 1 summarizes the CP values for different parameter settings.

Table 1. The CP values for different parameter settings.

(m,n)

Distribution (CVX,CVY) (50,100) (75,100) (100,200) (200,300) (500,700) (700,1000)

Normal

(1, 1) 0.945 0.947 0.951 0.953 0.959 0.960

(1, 2) 0.945 0.948 0.952 0.953 0.958 0.959

(2, 3) 0.944 0.948 0.953 0.953 0.959 0.961

(2, 5) 0.946 0.950 0.950 0.955 0.956 0.960

Gamma

(1, 1) 0.946 0.948 0.952 0.956 0.958 0.961

(1, 2) 0.947 0.949 0.951 0.954 0.958 0.961

(2, 3) 0.947 0.950 0.952 0.953 0.959 0.961

(2, 5) 0.945 0.949 0.952 0.956 0.958 0.962

Beta

(1, 1) 0.944 0.950 0.950 0.954 0.958 0.961

(1, 2) 0.946 0.948 0.952 0.954 0.957 0.960

(2, 3) 0.945 0.947 0.952 0.954 0.958 0.959

(2, 5) 0.945 0.948 0.951 0.954 0.956 0.960

As Table 1 indicates, the CP are very close to the considered level (1 − α = 0.95), especially
when sample size was increased, and consequently the proposed method controlled the type I error.
In other words, about 95% of simulated confidence intervals contained true γ and consequently it
can be accepted that Equation (3) is asymptotically confidence interval for γ. The values of CPU
times (in seconds) for different parameter settings given in Table 2, verify that this approach is not
too time consuming. Furthermore, Figure 4 and Table 3 illustrate the Q-Q plots and the p-values of
Shapiro–Wilk’s test, respectively, to study the normality of the introduced test statistic.

First column:

Up : (CVX , CVY) = (1, 1) and (m, n) = (50, 100); down : (CVX , CVY) = (1, 2) and (m, n) = (75, 100).

Second column:

Up : (CVX , CVY) = (1, 2) and (m, n) = (100, 200); down : (CVX , CVY) = (2, 3) and (m, n) = (200, 300).

Third column:

Up : (CVX , CVY) = (2, 3) and (m, n) = (500, 700); down : (CVX , CVY) = (3, 5) and (m, n) = (700, 1000).

Table 3 indicates that all p-values are more than 0.05 and consequently the Shapiro–Wilk’s test
verified the normality of the proposed test statistic. This result could also be derived from Q-Q plots.
Since the points form almost a straight line, the observed quantiles are very similar to the quantiles of
theoretical distribution (normal). Therefore, the simulation results verify that the asymptotic theoretical
results seem to be quite satisfying for all parameter settings. Consequently our proposed approach is a
good choice to perform hypothesis testing and to establish a confidence interval for the ratio of the
CVs in two separate populations.
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Table 2. The CPU times for running the introduced approach.

(m,n)

Distribution (CVX,CVY) (50,100) (75,100) (100,200) (200,300) (500,700) (700,1000)

Normal

(1, 1) 8.64 10.08 14.08 23.09 51.92 68.67

(1, 2) 8.72 10.29 16.41 21.85 52.19 74.17

(2, 3) 9.52 9.50 15.42 21.10 51.05 65.87

(2, 5) 9.35 10.90 15.25 24.31 49.97 74.90

Gamma

(1, 1) 9.45 9.02 15.16 22.13 47.05 74.92

(1, 2) 8.00 9.58 14.65 24.87 49.96 66.20

(2, 3) 9.63 9.29 14.47 21.91 52.52 66.84

(2, 5) 8.69 9.83 16.29 24.27 50.68 66.11

Beta

(1, 1) 9.53 10.57 14.19 21.47 53.26 66.58

(1, 2) 9.20 9.50 14.15 24.85 48.67 75.00

(2, 3) 9.02 9.63 14.25 23.52 50.29 69.67

(2, 5) 8.75 9.17 15.73 22.89 50.79 73.95
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Table 3. P-values for studying the normality of the introduced test statistic.

(m,n)

Distribution (CVX,CVY) (50,100) (75,100) (100,200) (200,300) (500,700) (700,1000)

Normal

(1, 1) 0.444 0.551 0.662 0.701 0.899 0.977

(1, 2) 0.432 0.580 0.656 0.795 0.860 0.982

(2, 3) 0.408 0.600 0.602 0.718 0.859 0.943

(2, 5) 0.481 0.569 0.681 0.740 0.848 0.955

Gamma

(1, 1) 0.428 0.545 0.677 0.760 0.851 0.905

(1, 2) 0.407 0.544 0.612 0.775 0.880 0, 909

(2, 3) 0.484 0.508 0.611 0.708 0.855 0.940

(2, 5) 0.494 0.556 0.647 0.754 0.800 0.978

Beta

(1, 1) 0.411 0.599 0.657 0.709 0.870 0.946

(1, 2) 0.489 0.585 0.652 0.763 0.841 0.978

(2, 3) 0.411 0.505 0.606 0.724 0.874 0.908

(2, 5) 0.461 0.527 0.671 0.757 0.847 0.933

4. Conclusions

Coefficient of variation is a simple but useful statistical tool to make comparisons about
independent populations. In many situations two populations with different means and variances may
have equal CVs. In real world applications, researchers may intend to study the similarity of the CVs in
two separate populations to understand the structure of the data. Due to possible small differences of
two small CVs and no strong interpretation, the ratio of CVs is more accurate than the difference of the
CVs. In this study, we proposed the asymptotic distribution, derived the asymptotic confidence interval
and established hypothesis testing for the ratio of the CVs in two separate populations. The results
indicated that the coverage probabilities are very close to the considered level, especially when sample
sizes were increased, and consequently the proposed method controlled the type I error. The values
of CPU times also verified that this approach is not too time consuming. Shapiro–Wilk’s normality
test and Q-Q plots also verified the normality of the proposed test statistic. The results verified that
the asymptotic approximations were satisfied for all simulated datasets and the introduced technique
acted well in constructing CI and performing tests of hypothesis.
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