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Abstract: We investigated existence and uniqueness conditions of solutions of a nonlinear differential
equation containing the Caputo–Fabrizio operator in Banach spaces. The mentioned derivative
has been proposed by using the exponential decay law and hence it removed the computational
complexities arising from the singular kernel functions inherit in the conventional fractional
derivatives. The method used in this study is based on the Banach contraction mapping principle.
Moreover, we gave a numerical example which shows the applicability of the obtained results.

Keywords: existence-uniqueness conditions; nonlocal Cauchy problem; Caputo–Fabrizio fractional
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1. Introduction and Some Preliminaries

Modeling real-life problems with fractional differential equations (FDE) has a significant role in
recent years. Some significant definitions that deal with fractional derivatives have been developed by
Coimbra, Davison–Essex, Riesz, Riemann–Liouville, Hadamard, Grunwald–Letnikov, and Caputo [1,2].
Novel solution methods of such problems have been investigated by using these fractional derivative
operators [3–9]. Moreover, in the last decades, new fractional derivative operators have been defined
by using an exponential kernel called Caputo–Fabrizio (CF) [10] and the Mittag–Leffler kernel called
Atangana–Baleanu (AB) [11]. These operators are very efficient for modeling complex nonlinear
fractional dynamical systems and solving them. Caputo and Fabrizio have given a different perspective
to fractional operators by introducing a new fractional operator without a singular kernel. Actually,
if the CF operator was compared with the classical Caputo derivative, it can be seen that the new
derivative with an exponential kernel has rapid stabilization in accordance with the memory effect.
This definition comes naturally from the constitutive equation relating to the flux and gradient by
exponential damping functions. In addition to being a very useful mathematical definition, it is an
operator that is highly preferred in terms of physical meaning [12,13].

Some illustrative applications of the CF operator in various fields where the nonlocality appears
in real world phenomena and more information about CF operator can be found in [14–18]. On the
other hand, the AB fractional operator is defined with Mittag–Leffler function (MLF) and since the
MLF is considered a nonlocal function, the kernel of AB derivative is nonlocal. Some researchers have
studied this operator by applying it to a physical problem [19], a model of groundwater [20], initial
and boundary value problems [21], and comparing it with the Liouville–Caputo fractional operator in
terms of the solutions of nonlinear fractional equations [22] and comparing it with the CF derivative
operator [23] as well as many others [24–34].
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It is well known that the Cauchy problem (CP) consists of a differential equation with initial
conditions. Starting with the work of Peano in the 1890s, analysis have had a continuing interest in
the Cauchy problem. One of the crucial problems in the theory of Cauchy problems was finding the
conditions that guarantee the existence of solutions of CPs.

We considered the following Cauchy problem:

x′(ξ) = f (ξ, x), x(ξ0) = x0, (1)

where f : [ξ0, ξ0 + a]× E → E , a > 0 and E is a Banach space. A survey of the research history of
this problem shows that a solution of Equation (1) (a continuous function x(ξ) : [ξ0, ξ0 + L]→ E such
that it satisfies Equation (1)) always exists if dimE < ∞, L is small enough, and f (ξ, x) is a continuous
function (this result is also known as Peano’s theorem), where dimE is the dimension of the Banach
space E . On the other hand, Cauchy problems in infinite dimensional spaces may have no solutions.
That is, there is no guarantee of the validity of Peano’s theorem in infinite-dimensional Banach spaces.
Dieudonne [35] provided the first example of a continuous map from an infinitely dimensional Banach
space c0 for which there is no solution to the related Cauchy problem in Equation (1). Afterwards,
Godunov [36] proved that Peano’s theorem is false in every infinite-dimensional Banach space. More
precisely, for every infinite-dimensional Banach space E , ξ0 ∈ R, u0 ∈ E , there exists a continuous
mapping f : R× E → E , such that there exists no solution of Equation (1). Therefore, determining
existence and uniqueness conditions (EUC) of solutions of a DE in Banach spaces is important. It
is possible to find a few different approaches to EUC of real-life problems defined with non-integer
order derivative in the literature. Among them, Balachandran and Trujillo [37] studied the existence
of nonlinear FDEs solutions in the Caputo sense in Banach spaces. Lakshmikantham and Devi [38]
discussed the general theory of FDEs in Banach spaces. Benchohra and Seba [39] studied the existence
of solutions in Banach spaces for a class of initial value problems. In these mentioned studies, the
Caputo derivative is considered. Wang et al. [40] developed two sufficient conditions for nonlocal
controllability for fractional evolution systems. Lv et al. [41] employed about a new existence and
uniqueness theorem for solutions of a special equation by using a Caputo fractional derivative in a
Banach space.

In this study, after giving preliminary material, we obtained EUC of solutions of the following
Cauchy problem with nonlocal initial conditions (nonlocal Cauchy problem) which includes the
Caputo–Fabrizio operator in a Banach space E . Let us consider:

CFDα
µω(µ) = Tω(µ) + h(µ, ω(µ)), 0 ≤ µ ≤ 1, (2)

ω(0) =
∫ 1

0
g(ξ)ω(ξ)dξ, (3)

where CFDα
µ is the Caputo–Fabrizio derivative of order α ∈ (0, 1), g : [0, 1] → [0, 1) is a continuous

function, and h : [0, 1]× E → E is a given function, T : E → E is a given operator satisfying some
assumptions that will be specified in Section 3.

2. Preliminaries

We begin by introducing some notations and basic terminology. E will always represent real
Banach spaces. We will denote with the notation L(E , E ) the Banach space of all linear bounded
operators from E to E . We also show with C(J, E ), the complete space of all continuous functions from
J = [0, 1] to E , with the norm ‖ω‖ = max

ξ∈J
‖ω(ξ)‖. Let c0 be the Banach space of all null sequences

with norm ‖ω‖ = sup
n∈N
|ωn|. Let L1([0, 1], E ) be the Banach space of measurable functions x : [0, 1]→ E

which are Lebesgue integrable, equipped with norm ‖x‖ =
∫ 1

0 ‖x(s)‖ds. Let β =
∫ 1

0 g(ξ)dξ and
R+ = [0,+∞). A function w ∈ C(J, E ) which satisfies Equations (2) and (3) is called as a solution of
these equations .
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Definition 1. Let α ∈ (0, 1), b > 0, and ω ∈ C1(0, b). The Caputo–Fabrizio fractional derivative CFDα
µω(µ)

of order α is defined by:

CFDα
µω(µ) =

(2− α)M(α)

2(1− α)

∫ µ

0
e(−

α
1−α (µ−ξ))ω′(ξ)dξ, µ ≥ 0, (4)

where M(α) is a normalization constant depending on α [10,14].

Definition 2. Let α ∈ (0, 1). The The Caputo–Fabrizio fractional integral CF Iα
µω(µ) of order α, is given

by [14]:

CF Iα
µω(µ) =

2(1− α)

(2− α)M(α)
ω(µ) +

2α

(2− α)M(α)

∫ µ

0
ω(ξ)dξ, µ ≥ 0. (5)

Remark 1. Imposing [14]:

2(1− α)

(2− α)M(α)
+

2α

(2− α)M(α)
= 1, (6)

it is obtained an explicit formula for M(α),

M(α) =
2

2− α
. (7)

Remark 2. Let α ∈ (0, 1). Then we have [14,42]:

CFDα
µ(

CF Iα
µω(µ)) = ω(µ) and CF Iα

µ(
CFDα

µω(µ)) = ω(µ)−ω(0). (8)

3. Main Results

Now, we are ready to prove the uniqueness and existence of the solutions for Equations (2) and
(3) under the following hypotheses:

(I) T ∈ L(E , E ).
(II) h ∈ C(J× E , E ) and there exist a ph ∈ L1([0, 1], R+) such that ‖h(µ, v)‖ ≤ ph(µ)‖v‖ for µ ∈ J and

each v ∈ E .
(III) H : J → E , H(.) = h(., ω(.)) is a differentiable function, for any ω ∈ C1(J, E ).
(IV) There exists a constant L such that ‖T‖+ L < 1− β and:

‖h(ξ, v)− h(ξ, v̄)‖ ≤ L‖v− v̄‖ for every v, v̄ ∈ E .

Lemma 1. If the conditions (I), (I I), and (I I I) are satisfied then Equations (2) and (3) are equivalent to the
following equation:

ω(µ) = aα[Tω(µ) + h(µ, ω(µ))] + bα

∫ µ

0
[Tω($) + h($, ω($))]d$ (9)

+
aα

1− β

∫ 1

0
g(ξ) [Tω(ξ) + h(ξ, ω(ξ))] dξ +

bα

1− β

∫ 1

0
[Tω($) + h($, ω($))] G($)d$,

where G($) =
∫ 1

$ g(ξ)dξ, aα = 2(1−α)
(2−α)M(α)

and bα = 2α
(2−α)M(α)

.

Proof. By considering Remark 1 and Equations (2) and (3), we get:

ω(µ) = aα[Tω(µ) + h(µ, ω(µ))] + bα

∫ µ

0
[Tω($) + h($, ω($))]d$ + ω(0). (10)
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So, by using the initial condition in Equation (3) we get:

ω(0) =
∫ 1

0
g(ξ)ω(ξ)dξ

=
∫ 1

0
g(ξ)

[
aα[Tω(ξ) + g(ξ, ω(ξ))] + bα

∫ ξ

0
[Tω($) + h($, ω($))]d$ + ω(0)

]
dξ

= ω(0)
∫ 1

0
g(ξ)dξ +

∫ 1

0
g(ξ)

[
aα[Tω(ξ) + h(ξ, ω(t))] + bα

∫ ξ

0
[Tω($) + h($, ω($))]d$

]
dξ

=
aα

1− β

∫ 1

0
g(ξ)[Tω(ξ) + h(ξ, ω(ξ))]dξ +

bα

1− β

∫ 1

0
g(ξ)

∫ ξ

0
[Tω($) + h($, ω($))] d$dξ.

Therefore,

ω(0) =
aα

1− β

∫ 1

0
g(ξ)[Tω(ξ) + h(ξ, ω(ξ))]dξ +

bα

1− β

∫ 1

0
[Tω($) + h($, ω($))]

[∫ 1

$
g(ξ)dξ

]
d$

=
aα

1− β

∫ 1

0
g(ξ)[Tω(ξ) + h(ξ, ω(ξ))]dξ +

bα

1− β

∫ 1

0
[Tω($) + h($, ω($))] G($)d$.

So, substituting ω(0) in Equation (10) we obtain:

ω(µ) = aα[Tω(µ) + h(µ, ω(µ))] + bα

∫ µ

0
[Tω(τ) + h(τ, ω(τ))]dτ

+
aα

1− β

∫ 1

0
g(ξ)[Tω(ξ) + h(ξ, ω(ξ))]dξ +

bα

1− β

∫ 1

0
[Tω($) + h($, ω($))] G($)d$.

Conversely if ω is a solution of Equation (10), then for every µ ∈ J, according to Remark 2,
we have:

CFDα
µω(µ) = CFDα

µ(aα[Tω(µ) + h(µ, ω(µ))] + bα

∫ µ

0
[Tω($) + h($, ω($))]d$

+
aα

1− β

∫ 1

0
g(ξ)[Tω(ξ) + h(ξ, ω(ξ))]dξ +

bα

1− β

∫ 1

0
[Tω($) + h($, ω($))] G($)d$)

= CFDα
µ(aα[Tω(µ) + h(µ, ω(µ))] + bα

∫ µ

0
[Tω($) + h($, ω($))]d$)

+ CFDα
µ(

aα

1− β

∫ 1

0
g(ξ)[Tω(ξ) + h(ξ, ω(ξ))]dξ +

bα

1− β

∫ 1

0
[Tω($) + h($, ω($))] G($)d$).

= CFDα
µ(aα[Tω(µ) + h(µ, ω(µ))] + bα

∫ µ

0
[Tω($) + h($, ω($))]d$) + θ

= CFDα
µ

CF Iα
µ(Tω(µ) + h(µ, ω(µ))) + θ

= Tω(µ) + h(µ, ω(µ)).

It is obvious that ω(0) =
∫ 1

0 g(ξ)ω(ξ)dξ. Therefore, the proof is completed.

Theorem 1. If the conditions (I), (II), (III), and (IV) are satisfied then the nonlocal Cauchy
problem in Equations (2) and (3) has a unique solution on C(J, E ).

Proof. We now consider the operator:

ψ : C(J, E )→ C(J, E )
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defined by:

(ψω)(µ) = aα[Tω(µ) + h(µ, ω(µ))] + bα

∫ µ

0
[Tω($) + h($, ω($))]d$

+
aα

1− β

∫ 1

0
g(ξ)[Tω(ξ) + h(ξ, ω(ξ))]dξ +

bα

1− β

∫ 1

0
[Tω($) + h($, ω($))] G($)d$.

We will show that the operator ψ is well defined via assumptions. For this aim, we must prove
that ψ(ω) ∈ C(J, E ) for every ω ∈ C(J, E ).

Let µ1, µ2 ∈ J, µ1 < µ2. We deduce that:

‖(ψω)µ1 − (ψω)µ2‖ = ‖aα[T(ω(µ1)−ω(µ2)) + h(µ1, ω(µ1))− h(µ2, ω(µ2))]

+ bα

∫ µ2

µ1

[Tω($) + h($, ω($))]d$‖

≤ aα‖T‖‖ω(µ1)−ω(µ2)‖+ aα‖h(µ1, ω(µ1))− h(µ2, ω(µ2))‖

+ bα

∫ µ2

µ1

‖Tω($) + h($, ω($))− h($, 0) + h($, 0)‖d$

≤ aα‖T‖‖ω(µ1)−ω(µ2)‖+ aα‖h(µ1, ω(µ1))− h(µ2, ω(µ1))‖
+ aαL‖ω(µ1)−ω(µ2)‖+ bα[‖T‖‖ω‖+ L‖ω‖+ max

$∈J
‖h($, 0)‖](µ2 − µ1)

≤ aα(1− β)‖ω(µ1)−ω(µ2)‖+ aα‖h(µ1, ω(µ1))− h(µ2, ω(µ1))‖
+ bα[(1− β)‖ω‖+ max

$∈J
‖h($, 0)‖](µ2 − µ1).

As µ1 → µ2, the right-hand side of the above inequality tends to zero. Thus, ψ is well defined.
We must show that ψ is a contracting mapping. For this, let ω1, ω2 ∈ C(J, E ), and µ ∈ J. Then,

we have:

‖(ψω1)µ− (ψω2)µ‖ 6 aα‖T‖‖ω1(µ)−ω2(µ)‖+ aα‖h(µ, ω1(µ))− h(µ, ω2(µ))‖

+ bα

(
‖T‖‖ω1 −ω2‖+

∫ µ

0
‖h($, ω1($))− h($, ω2($))‖d$

)
+

aα

1− β

(
‖T‖‖ω1 −ω2‖β +

∫ 1

0
g(ξ)‖h(ξ, ω1(ξ))− h(ξ, ω2(ξ))‖dξ

)
+

bα

1− β

(
‖T‖‖ω1 −ω2‖β +

∫ 1

0
G($)‖h($, ω1($))− h($, ω2($))‖d$

)
≤ aα (‖T‖+ L) ‖ω1(µ)−ω2(µ)‖+ bα(‖T‖+ L)‖ω1 −ω2‖

+
aα

1− β
(‖T‖+ L) ‖ω1 −ω2‖+

bα

1− β
(‖T‖+ L) ‖ω1 −ω2‖

≤ ‖T‖+ L
1− β

‖ω1 −ω2‖.

Since 0 < ‖T‖+L
1−β < 1, then ψ is a contraction mapping and therefore there exists a unique

fixed point ω ∈ C(J, E ) such that ψ(ω(µ)) = ω(µ). Any fixed point of ψ is the solution of
Equations (2) and (3).

Example 1. Let us consider the infinite system of scalar fractional functional differential equations:

CFDα
µωn(µ) =

ωn(µ)

50.2n +
µsinωn(µ)−ωn(µ)

eµ − 1 + 50.2n , µ ∈ J, α ∈ (0, 1),

ωn(0) =
∫ 1

0

1
4

ωn(µ)dµ, n = 1, 2, 3, ... (11)
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Let E be the Banach space c0. Then the infinite system Equation (11) can be regarded as a problem of for
Equations (2) and (3) in E . In this case:

ω = (ω1, ω2, ω3, ...), T(ω) := (
ωn

50.2n )
∞
n=1,

h(µ, ω) := (h1(µ, ω), h2(µ, ω), h3(µ, ω), ...) in which hn(µ, ω) =
µsinωn −ωn

eµ − 1 + 50.2n

and g(µ) =
1
4

.

Therefore, it is obvious that T ∈ L(E , E ) and h ∈ C(J × E , E ). On the other hand, for every µ ∈ J and
ω ∈ E , we have:

‖h(µ, ω)‖ = sup
n∈N
‖hn(µ, ω)‖ = sup

n∈N
| µsinωn −ωn

eµ − 1 + 50.2n |

≤ sup
n∈N

µ|sinωn|+ |ωn|
eµ − 1 + 50.2n

=
1
eµ 2‖ω‖,

ph(µ) = 2e−µ ∈ L1([0, 1], R+). Moreover, for every µ ∈ J, H(µ) = h(µ, ω(µ)) is a differentiable
function and:

‖h(µ, ω)− h(µ, v)‖| = sup
n∈N
| µsinωn −ωn

eµ − 1 + 50.2n −
µsinvn −vn

eµ − 1 + 50.2n |

≤ 1
100

sup
n∈N
|µsinωn −ωn − µsinvn + vn|

≤ 2
100
‖ω−v‖ for all ω, v ∈ E .

Since L = 2
100 , β = 1

4 then we obtain that:

‖T‖+ L ≤ 3
100

< 1− β =
3
4

.

Thus, by Theorem 1, we can show that the infinite system in Equation (11) has a unique solution.

4. Conclusions

In the present study, the existence and uniqueness conditions of the special type nonlinear
fractional differential equations were obtained in the Caputo–Fabrizio fractional derivative sense.
These conditions were constructed in Banach spaces via the Banach contraction principle mapping.
Moreover, the applicability and the effectiveness of the results were confirmed with an illustrative
numerical example.
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8. Yavuz, M.; Yaşkıran, B. Approximate-analytical solutions of cable equation using conformable fractional
operator. New Trends Math. Sci. 2017, 5, 209–219. [CrossRef]

9. Evirgen, F.; Özdemir, N. A fractional order dynamical trajectory approach for optimization roblem with HPM.
In Fractional Dynamics and Control; Baleanu, D., Machado, J.A.T., Luo, A.C.J., Eds.; Springer: New York, NY,
USA, 2012; pp. 145–155.

10. Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract.
Differ. Appl. 2015, 1, 1–13.

11. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and
application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [CrossRef]

12. Hristov, J. Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: Appraising
analysis with emphasis on diffusion models. Front. Fract. Calc. 2018, 1, 270–342.

13. Hristov, J. Space-fractional diffusion with a potential power-law coefficient: Transient approximate solution.
Prog. Fract. Differ. Appl. 2017, 3, 19–39. [CrossRef]

14. Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl.
2015, 1, 87–92.

15. Yavuz, M.; Özdemir, N. A different approach to the European option pricing model with new fractional
operator. Math. Model. Nat. Phenom. 2018, 13, 12. [CrossRef]

16. Hristov, J. Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of
Caputo–Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Therm. Sci. 2017,
21, 827–839. [CrossRef]

17. Atangana, A.; Alkahtani, B.S.T. New Model of Groundwater Flowing within a Confine Aquifer: Application
of Caputo–Fabrizio Derivative. Arab. J. Geosci. 2016, 9, 8. [CrossRef]

18. Abdeljawad, T.; Baleanu, D. On fractional derivatives with exponential kernel and their discrete versions.
Rep. Math. Phys. 2017, 80, 11–27. [CrossRef]

19. Gómez-Aguilar, J.F.; Escobar-Jiménez, R.F.; López-López, M.G.; Alvarado-Martínez, V.M. Atangana-Baleanu
fractional derivative applied to electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 2016,
30, 1937–1952. [CrossRef]

20. Alqahtani, R.T. Atangana-Baleanu derivative with fractional order applied to the model of groundwater
within an unconfined aquifer. J. Nonlinear Sci. Appl. 2016, 9, 3647–3654. [CrossRef]

21. Al-Salti, F.A.-M.N.; Karimov, E. Initial and boundary value problems for fractional differential equations
involving Atangana-Baleanu derivative. arXiv 2017, arXiv:1706.00740.

22. Yavuz, M.; Ozdemir, N.; Baskonus, H.M. Solutions of partial differential equations using fractional operator
involving Mittag-Leffler kernel. Eur. Phys. J. Plus 2018, 133, 215. [CrossRef]

23. Sheikh, N.A.; Ali, F.; Saqib, M.; Khan, I.; Jan, S.A.A.; Alshomrani, A.S.; Alghamdi, M.S. Comparison and
analysis of the Atangana-Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid
model with heat generation and chemical reaction. Results Phys. 2017, 7, 789–800. [CrossRef]

http://dx.doi.org/10.11121/ijocta.01.2018.00540
http://dx.doi.org/10.2298/TSCI170804285Y
http://dx.doi.org/10.2298/TSCI160427302A
http://dx.doi.org/10.12693/APhysPolA.132.1050
http://dx.doi.org/10.3390/e17085771
http://dx.doi.org/10.20852/ntmsci.2017.232
http://dx.doi.org/10.2298/TSCI160111018A
http://dx.doi.org/10.18576/pfda/030103
http://dx.doi.org/10.1051/mmnp/2018009
http://dx.doi.org/10.2298/TSCI160229115H
http://dx.doi.org/10.1007/s12517-015-2060-8
http://dx.doi.org/10.1016/S0034-4877(17)30059-9
http://dx.doi.org/10.1080/09205071.2016.1225521
http://dx.doi.org/10.22436/jnsa.009.06.17
http://dx.doi.org/10.1140/epjp/i2018-12051-9
http://dx.doi.org/10.1016/j.rinp.2017.01.025


Fractal Fract. 2019, 3, 27 8 of 8

24. Hristov, J. On the Atangana-Baleanu Derivative and Its Relation to the Fading Memory Concept: The Diffusion
Equation Formulation. In Fractional Derivatives with Mittag-Leffler Kernel; Springer: Cham, Switzerland, 2019;
pp. 175–193.

25. Hristov, J. Response functions in linear viscoelastic constitutive equations and related fractional operators.
Math. Model. Nat. Phenom. 2019, 14, 305. [CrossRef]

26. Dos Santos, M. Non-Gaussian Distributions to Random Walk in the Context of Memory Kernels. Fractal Fract.
2018, 2, 20. [CrossRef]

27. Dos Santos, M. Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting.
Physics 2019, 1, 40–58. [CrossRef]

28. Yavuz, M.; Özdemir, N. European vanilla option pricing model of fractional order without singular kernel.
Fractal Fract. 2018, 2, 3. [CrossRef]

29. Argub, O.A.; Al-Smadi, M. Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and
Painlevé equations in Hilbert space. Chaos Solitons Fractals 2018, 117, 161–167.

30. Argub, O.A.; Maayah, B. Numerical solutions of integrodifferential equations of Fredholm operator type in
the sense of the Atangana–Baleanu fractional operator. Chaos Solitons Fractals 2018, 117, 117–124. [CrossRef]

31. Argub, O.A. Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert
space. Numer. Methods Part. Differ. Equ. 2018, 34, 1759–1780.

32. Yavuz, M. Characterizations of two different fractional operators without singular kernel. Math. Model.
Nat. Phenom. 2019, 14, 302. [CrossRef]

33. Argub, O.A. Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid
flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 828–856.

34. Argub, O.A. Fitted reproducing kernel Hilbert space method for the solutions of some certain classes
of time-fractional partial differential equations subject to initial and Neumann boundary conditions.
Comput. Math. Appl. 2017, 73, 1243–1261.

35. Dieudonne, J. Deux examples singuliers equations differentielles. Acta. Sci. Math. (Szeged) 1950, 12, 38–40.
36. Godunov, A.N. Peano’s theorem in Banach spaces. Funct. Anal. Appl. 1975, 9, 53–55. [CrossRef]
37. Balachandran, K.; Trujillo, J.J. The nonlocal Cauchy problem for nonlinear fractional integrodifferential

equations in Banach spaces. Nonlinear Anal. Theory Methods Appl. 2010, 72, 4587–4593. [CrossRef]
38. Lakshmikantham, V.; Devi, J.V. Theory of fractional differential equations in a Banach space. Eur. J. Pure

Appl. Math. 2008, 1, 38–45.
39. Benchohra, M.; Seba, D. Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory

Differ. Equ. 2009, 8, 1–14. [CrossRef]
40. Wang, J.; Fan, Z.; Zhou, Y. Nonlocal controllability of semilinear dynamic systems with fractional derivative

in Banach spaces. J. Optim. Theory Appl. 2012, 154, 292–302. [CrossRef]
41. Lv, Z.W.; Liang, J.; Xiao, T.J. Solutions to fractional differential equations with nonlocal initial condition in

Banach spaces. Adv. Differ. Equ. 2010, 2010, 340349. [CrossRef]
42. Baleanu, D.; Agheli, B.; al Qurashi, M.M. Fractional advection differential equation within Caputo and

Caputo–Fabrizio derivatives. Adv. Mech. Eng. 2016, 8, 1–8. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1051/mmnp/2018067
http://dx.doi.org/10.3390/fractalfract2030020
http://dx.doi.org/10.3390/physics1010005
http://dx.doi.org/10.3390/fractalfract2010003
http://dx.doi.org/10.1016/j.chaos.2018.10.007
http://dx.doi.org/10.1051/mmnp/2018070
http://dx.doi.org/10.1007/BF01078180
http://dx.doi.org/10.1016/j.na.2010.02.035
http://dx.doi.org/10.14232/ejqtde.2009.4.8
http://dx.doi.org/10.1007/s10957-012-9999-3
http://dx.doi.org/10.1186/1687-1847-2010-340349
http://dx.doi.org/10.1177/1687814016683305
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Some Preliminaries
	Preliminaries
	Main Results
	Conclusions
	References

