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Abstract
In this article, we propose a novel fractional generalization of the three-dimensional
differential transform method, namely the ternary-fractional differential transform
method, that extends its applicability to encompass initial value problems in the
fractal 3D space. Several illustrative applications, including the Schrödinger, wave,
Klein–Gordon, telegraph, and Burgers’ models that are fully embedded in the fractal
3D space, are considered to demonstrate the superiority of the proposed method
compared with other generalized methods in the literature. The obtained solution is
expressed in a form of anααα-fractional power series, with easily computed coefficients,
that converges rapidly to its closed-form solution. Moreover, the projection of the
solutions into the integer 3D space corresponds with the solutions of the classical
copies for these models. This reveals that the suggested technique is effective and
accurate for handling many other linear and nonlinear models in the fractal 3D space.
Thus, research on this trend is worth tracking.
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1 Introduction
Over recent years, it has been demonstrated that many physical phenomena can be suc-
cessfully reformulated by means of non-integer order differential equations due to the
inefficiency of the integer-order differential equations in modeling certain issues. For in-
stance, when modeling chaotic thermodynamic systems, it is indispensable to use a non-
integer model because the separation of time-scales of classical physics does not work
adequately [1]. The non-integer order derivatives are commonly called fractional order
derivatives or simply fractional derivatives. To mention a few of the phenomena that can
be modeled by fractional derivatives: the electromagnetic transient phenomenon in trans-
mission lines is governed by the fractional diffusion model [2], the damping properties of
the viscoelastic material are related to the fractional Kelvin–Voigt model [3], and the in-
teraction of solitons in a collisionless plasma is simulated by the fractional Klein–Gordon
model [4].

The fractional derivatives are in nonlocal nature, unlike the integer-order derivatives.
Consequently, it is often stated that the physical interpretation of the fractional deriva-
tive order α is hard to pin down or does not exist at all. However, many researchers have
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attempted to attribute physical meanings to fractional derivatives, see, for example, [5,
6]. It has been demonstrated in certain circumstances that the nonlocality feature of the
fractional derivatives makes them appropriate for describing the memory and hereditary
features of various materials. Thus, the fractional derivative order α can be physically de-
scribed as an index of memory [7–13].

Differential transform method (DTM) is a powerful transformation technique that can
be easily applied to (non)linear problems to achieve much more accurate analytical or nu-
merical solutions than the existing ones in the literature. One of the distinguishing features
of this method is its capability to reduce the size of computational work. The concept of the
one-dimension DTM was introduced for the first time by Zhou [14] in 1986 to solve prob-
lems related to engineering models in electric circuit analysis. Posteriorly, Chen and Ho
[15] developed this method to solve two-dimensional PDEs. Later, the three-dimensional
DTM was introduced by Ayaz [16].

Over the past few years, the DTM has been successfully implemented in the area of
partial differential equations of fractional order. Arikoglu and Ozkol [17] proposed an an-
alytical technique, called the fractional differential transform method (FDTM), for solv-
ing (non)linear differential equations endowed with one memory index α. Very recently,
Jaradat et al. [18, 19] developed this method to address (non)linear differential equations
endowed with two memory indices α1 and α2. It is worth mentioning here that some re-
cent advancements in analytical methods can be also found in [20–24]. In this article, we
present a novel fractional generalization of the three-dimensional DTM to extend the ap-
plication of the DTM to (non)linear differential equations endowed with three memory
indices α1, α2, and α3. Comparing with the complexity of these equations, the suggested
generalization is efficacious and easily applicable. Several examples were carried out to
demonstrate the efficiency of the proposed technique.

The rest of this article proceeds as follows. We amalgamate the DTM with a new ternary-
fractional power series in Sect. 2 to handle physical differential equations in the fractal 3D
space. Then, in Sect. 3, we employ the new formulation of DTM to provide a full fractional
solution of several well-known physical models in the fractal 3D space. In Sect. 4, we offer
a potential interpretation for the fractional derivative order. Finally, we present concluding
remarks in Sect. 5.

2 Ternary-fractional differential transform schema
In this section, we introduce and investigate a developed analytical scheme, derived from
a novel fractional version of the Taylor series expansion, to handle various (non)linear
differential equations in the fractal 3D space. This new technique generalizes the classical
three-dimensional differential transform ideas in the fractal 3D space and provides new
insights for analytically studying the combined effects of three distinct memory indices.
The ternary-fractional power series is defined as follows.

Definition 2.1 ([25]) An ααα-fractional power series (ααα-FPS) around (0, 0, 0) is a fractional
power series in the following Cauchy form:

∞∑

i+j+k=0
i,j,k∈N∗

ai,j,ktiα1 xjα2 ykα3 = a0,0,0︸︷︷︸
i+j+k=0

+ a1,0,0tα1 + a0,1,0xα2 + a0,0,1yα3
︸ ︷︷ ︸

i+j+k=1

+ · · ·
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+
n∑

l=0

l∑

m=0

an–l,l–m,mt(n–l)α1 x(l–m)α2 ymα3

︸ ︷︷ ︸
i+j+k=n

+ · · · , (2.1)

where ααα = (α1,α2,α3) ∈ (0, 1)3, x, y, t are nonnegative variables of indeterminate, and ai,j,k ’s
are real constant coefficients.

It is readily verified that expansion (2.1) can be expressed as

∞∑

i=0

i∑

j=0

j∑

k=0

ai–j,j–k,kt(i–j)α1 x(j–k)α2 ykα3 . (2.2)

Definition 2.2 The ternary-fractional differential transform (ternary-FDT) of a function
w(x, y, t) is

Wααα(i, j, k) =
1

Γ (iα1 + 1)Γ (jα2 + 1)Γ (kα3 + 1)
· ∂ iα1+jα2+kα3 [w(0, 0, 0)]

∂tiα1∂xjα2∂ykα3
(2.3)

for (i, j, k) ∈N
3∗.

Remark 1 We should point out here that the fractional derivative adopted in this work is
the Caputo sense, although our work requires only the fractional derivative of the power
function which almost all the existing fractional derivative definitions agree with. The
fractional derivative of the power function is given by

∂αtb

∂tα
=

⎧
⎨

⎩

Γ (b+1)
Γ (b–α+1) tb–α ; b > 0,

0; b = 0.
(2.4)

It is worth mentioning here that different representations of fractional derivatives have re-
cently been proposed based on the exponential law [26] and on the Mittag—Leffler func-
tion [27]. Some remarkable works in these trends can be found in [28–30].

Remark 2 In case of ααα → (1, 1, 1), then ternary-FDT (2.3) reduces to the classical three-
dimensional differential transform [16].

Definition 2.3 The ternary-fractional differential inverse transform of {Wααα(i, j, k)}i,j,k∈N∗
is defined as

w(x, y, t) =
∞∑

i+j+k=0

Wααα(i, j, k)tiα1 xjα2 ykα3 . (2.5)

Remark 3 Definition 2.3 evinces that the concept of ternary-FDT is derived from the ααα-
FPS.

With the aid of equations (2.3) and (2.5), some fundamental properties for ternary-FDT
are shown in the following theorem.
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Theorem 2.4 Let Wααα(i, j, k), Uααα(i, j, k), and Vααα(i, j, k) be the ternary-FDT of w(x, y, t),
u(x, y, t), and v(x, y, t) respectively, and c be an arbitrary constant. Then the following prop-
erties hold true.

(i) If w(x, y, t) = u(x, y, t) ± cv(x, y, t), then Wααα(i, j, k) = Uααα(i, j, k) ± cVααα(i, j, k).
(ii) If w(x, y, t) = u(x, y, t) ·v(x, y, t), then Wααα(i, j, k) =

∑i
n=0

∑j
m=0

∑k
l=0 Uααα(n, m, l)Vααα(i – n,

j – m, k – l).
(iii) If w(x, y, t) = ∂nα1 [u(x,y,t)]

∂tnα1 , then Wααα(i, j, k) = Γ ((i+n)α1+1)
Γ (iα1+1) Uααα(i + n, j, k).

(iv) If w(x, y, t) = ∂nα1+mα2 [u(x,y,t)]
∂tnα1 ∂xmα2 , then Wααα(i, j, k) = Γ ((i+n)α1+1)Γ ((j+m)α2+1)

Γ (iα1+1)Γ (jα2+1) Uααα(i + n, j + m, k).

(v) If w(x, y, t) = ∂nα1+mα2+lα3 [u(x,y,t)]
∂tnα1 ∂xmα2 ∂ylα3 , then

Wααα(i, j, k) =
Γ ((i + n)α1 + 1)Γ ((j + m)α2 + 1)Γ ((k + l)α3 + 1)

Γ (iα1 + 1)Γ (jα2 + 1)Γ (kα3 + 1)
Uααα(i + n, j + m, k + l).

Proof (i) Follows immediately from Definition 2.2 and the linearity of the fractional deriva-
tives.

(ii)

w(x, y, t) =

( ∞∑

i+j+k=0

Uααα(i, j, k)tiα1 xjα2 ykα3

)( ∞∑

i+j+k=0

Vααα(i, j, k)tiα1 xjα2 ykα3

)

=
∞∑

i+j+k=0

( i∑

n=0

j∑

m=0

k∑

l=0

Uααα(n, m, l)Vααα(i – n, j – m, k – l)

)
tiα1 xjα2 ykα3

as desired.
(iii)

Wααα(i, j, k) =
1

Γ (iα1 + 1)Γ (jα2 + 1)Γ (kα3 + 1)
· ∂ (i+n)α1+jα2+kα3 [u(0, 0, 0)]

∂t(i+n)α1∂xjα2∂ykα3

=
Γ ((i + n)α1 + 1)

Γ (iα1 + 1)

(
1

Γ ((i + n)α1 + 1)Γ (jα2 + 1)Γ (kα3 + 1)

· ∂ (i+n)α1+jα2+kα3 [u(0, 0, 0)]
∂t(i+n)α1∂xjα2∂ykα3

)

=
Γ ((i + n)α1 + 1)

Γ (iα1 + 1)
Uααα(i + n, j, k).

(iv) and (v) The proof can be concluded by using the same manner of proof as for (iii). �

Some ternary-FDT for some basic functions around the origin are listed in Table 1.

3 The application side of the suggested method
In this section, we show the worthiness of the suggested technique by solving various well-
known partial differential equations that are viewed in the fractal 3D space. The resulting
solutions generalized the existing solutions when these equations were projected into the
integer 3D space. In all examples, the fractional derivative parameters are assumed to be
in (0, 1) and t, x, y ≥ 0.

Example 1 Consider the following Schrödinger model embedded in the fractal 3D space:

i
∂α1 [w(x, y, t)]

∂tα1
=

∂2α2 [w(x, y, t)]
∂x2α2

+
∂2α3 [w(x, y, t)]

∂y2α3
, (3.1)
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Table 1 Ternary-FDT for some basic functions

Function w(x, y, t) Transformed form

tnα1 xmα2 ylα3 Wααα (i, j, k) =

{
1; i = n, j =mandk = l,

0; otherwise.

Eα2 (λx
α2 ) =

∑∞
j=0

λj xjα2
Γ (jα2+1)

Wααα (i, j, k) =

{
λj

Γ (jα2+1)
; i = k = 0, j ≥ 0,

0; otherwise.

tnα1 xmα2 ylα3Eα2 (λx
α2 ) Wααα (i, j, k) =

{
λj–m

Γ ((j–m)α2+1)
; i = n, k = l, j ≥m,

0; otherwise.

Eα1 (μtα1 )Eα2 (λx
α2 )Eα3 (νy

α3 ) Wααα (i, j, k) =
μiλjνk

Γ (iα1+1)Γ (jα2+1)Γ (kα3+1)

sinα2 (λx
α2 ) =

∑∞
j=0

(–1)j (λxα2 )2j+1
Γ ((2j+1)α2+1)

Wααα (i, j, k) =

{
(–1)mλ2m+1

Γ ((2m+1)α2+1)
; i = k = 0, j = 2m + 1,

0; otherwise.

cosα2 (λx
α2 ) =

∑∞
j=0

(–1)j (λxα2 )2j
Γ (2jα2+1)

Wααα (i, j, k) =

{
(–1)mλ2m
Γ (2mα2+1)

; i = k = 0, j = 2m,

0; otherwise.

sinhα2 (λx
α2 ) =

∑∞
j=0

(λxα2 )2j+1
Γ ((2j+1)α2+1)

Wααα (i, j, k) =

{
λ2m+1

Γ ((2m+1)α2+1)
; i = k = 0, j = 2m + 1,

0; otherwise.

coshα2 (λx
α2 ) =

∑∞
j=0

(λxα2 )2j
Γ (2jα2+1)

Wααα (i, j, k) =

{
λ2m

Γ (2mα2+1)
; i = k = 0, j = 2m,

0; otherwise.

contingent on the initial condition

w(x, y, 0) = sinα2

(
xα2

)
+ sinα3

(
yα3

)
. (3.2)

By implementing the ternary-FDT and harnessing Theorem 2.4, we attain the following
transformed recurrence equation of (3.1):

i
Γ ((i + 1)α1 + 1)

Γ (iα1 + 1)
Wααα(i + 1, j, k) =

Γ ((j + 2)α2 + 1)
Γ (jα2 + 1)

Wααα(i, j + 2, k)

+
Γ ((k + 2)α3 + 1)

Γ (kα3 + 1)
Wααα(i, j, k + 2), (3.3)

with initial transform coefficients

Wααα(0, 2j + 1, 0) =
(–1)j

Γ ((2j + 1)α2 + 1)
for j ≥ 0,

Wααα(0, 0, 2k + 1) =
(–1)k

Γ ((2k + 1)α3 + 1)
for k ≥ 0,

Wααα(0, j, k) = 0 otherwise.

(3.4)

By recursively solving equation (3.3) with utilizing the initial transform coefficients (3.4),
we acquire the following generic transform coefficients:

Wααα(i, 2j + 1, 0) =
(–1)jii

Γ (iα1 + 1)Γ ((2j + 1)α2 + 1)
for j ≥ 0,

Wααα(i, 0, 2k + 1) =
(–1)kii

Γ (iα1 + 1)Γ ((2k + 1)α3 + 1)
for k ≥ 0,

Wααα(i, j, k) = 0 otherwise.

(3.5)
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Therefore, theααα-memory exact solution of the Schrödinger model (3.1)–(3.2) has the form

w(x, y, t) =
∞∑

i+j=0

Wααα(i, 2j + 1, 0)tiα1 x(2j+1)α2 +
∞∑

i+k=0

Wααα(i, 0, 2k + 1)tiα1 y(2k+1)α3

=
∞∑

i+j=0

(–1)jiitiα1 x(2j+1)α2

Γ (iα1 + 1)Γ ((2j + 1)α2 + 1)
+

∞∑

i+k=0

(–1)kiitiα1 y(2k+1)α3

Γ (iα1 + 1)Γ ((2k + 1)α3 + 1)

=

( ∞∑

i=0

iitiα1

Γ (iα1 + 1)

)( ∞∑

j=0

(–1)jx(2j+1)α2

Γ ((2j + 1)α2 + 1)

)

+

( ∞∑

i=0

iitiα1

Γ (iα1 + 1)

)( ∞∑

k=0

(–1)ky(2k+1)α3

Γ ((2k + 1)α3 + 1)

)

=
∞∑

i=0

iitiα1

Γ (iα1 + 1)

( ∞∑

j=0

(–1)jx(2j+1)α2

Γ ((2j + 1)α2 + 1)
+

∞∑

k=0

(–1)ky(2k+1)α3

Γ ((2k + 1)α3 + 1)

)

= Eα1

(
itα1

)(
sinα2

(
xα2

)
+ sinα3

(
yα3

))
. (3.6)

We remark here that for ααα → (1, 1, 1), we attain the closed-form solution w(x, y, t) =
eit(sin(x) + sin(y)) for the integer copy of the Schrödinger model (3.1)–(3.2).

Example 2 Consider the following wave model embedded in the fractal 3D space:

∂2α1 [w(x, y, t)]
∂t2α1

= 2
(

∂2α2 [w(x, y, t)]
∂x2α2

+
∂2α3 [w(x, y, t)]

∂y2α3

)
, (3.7)

contingent on the initial conditions

w(x, y, 0) = sinα2

(
xα2

)
sinα3

(
yα3

)
and

∂α1 [w(x, y, 0)]
∂tα1

= 0. (3.8)

By implementing the ternary-FDT and harnessing Theorem 2.4, we attain the following
transformed recurrence equation of (3.7):

Γ ((i + 2)α1 + 1)
Γ (iα1 + 1)

Wααα(i + 2, j, k) = 2
(

Γ ((j + 2)α2 + 1)
Γ (jα2 + 1)

Wααα(i, j + 2, k)

+
Γ ((k + 2)α3 + 1)

Γ (kα3 + 1)
Wααα(i, j, k + 2)

)
, (3.9)

with initial transform coefficients

Wααα(0, 2j + 1, 2k + 1) =

⎧
⎨

⎩

(–1)j+k

Γ ((2j+1)α2+1)Γ ((2k+1)α3+1) for j, k ≥ 0,

0; otherwise,
(3.10)

and

Wααα(1, j, k) = 0 for j, k ≥ 0. (3.11)
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By recursively solving equation (3.9) with utilizing the initial transform coefficients (3.10)–
(3.11), we acquire the following generic transform coefficients:

Wααα(2i, 2j + 1, 2k + 1) =

⎧
⎨

⎩

(–1)j+k (–4)i

Γ (2iα1+1)Γ ((2j+1)α2+1)Γ ((2k+1)α3+1) for i, j, k ≥ 0,

0; otherwise.
(3.12)

Therefore, the ααα-memory exact solution of the wave model (3.7)–(3.8) has the form

w(x, y, t) =
∞∑

i+j+k=0

(–1)j+k(–4)i

Γ (2iα1 + 1)Γ ((2j + 1)α2 + 1)Γ ((2k + 1)α3 + 1)
t2iα1 x(2j+1)α2 y(2k+1)α3

=

( ∞∑

i=0

(–1)i(2tα1 )2i

Γ (2iα1 + 1)

)( ∞∑

j=0

(–1)jx(2j+1)α2

Γ ((2j + 1)α2 + 1)

)( ∞∑

k=0

(–1)ky(2k+1)α3

Γ ((2k + 1)α3 + 1)

)

= cosα1

(
2tα1

)
sinα2

(
xα2

)
sinα3

(
yα3

)
. (3.13)

We remark here that for ααα → (1, 1, 1), we attain the closed-form solution w(x, y, t) =
cos(2t) sin(x) sin(y) for the integer copy of the wave model (3.7)–(3.8).

Example 3 Consider the following nonhomogeneous Klein–Gordon model embedded in
the fractal 3D space:

∂2α1 [w(x, y, t)]
∂t2α1

–
∂2α2 [w(x, y, t)]

∂x2α2
–

∂2α3 [w(x, y, t)]
∂y2α3

= –2, (3.14)

contingent on the initial conditions

w(x, y, 0) = x2α2 + y2α3 and
∂α1 [w(x, y, 0)]

∂tα1
= y2α3 . (3.15)

By implementing the ternary-FDT and harnessing Theorem 2.4, we attain the following
transformed recurrence equation of (3.14):

Γ ((i + 2)α1 + 1)
Γ (iα1 + 1)

Wααα(i + 2, j, k) –
Γ ((j + 2)α2 + 1)

Γ (jα2 + 1)
Wααα(i, j + 2, k)

–
Γ ((k + 2)α3 + 1)

Γ (kα3 + 1)
Wααα(i, j, k + 2)

=

⎧
⎨

⎩
–2; i = j = k = 0,

0; otherwise,
(3.16)

with initial transform coefficients

Wααα(0, j, k) =

⎧
⎪⎪⎨

⎪⎪⎩

1; j = 2, k = 0,

1; j = 0, k = 2,

0; otherwise,

(3.17)
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and

Wααα(1, j, k) =

⎧
⎨

⎩

1
Γ (α1+1) ; j = 0, k = 2,

0; otherwise.
(3.18)

By recursively solving equation (3.16) with utilizing the initial transform coefficients
(3.17)–(3.18), we acquire, besides the initial transforms, the following generic transform
coefficients:

Wααα(2, 0, 0) =
Γ (2α2 + 1) + Γ (2α3 + 1) – 2

Γ (2α1 + 1)
,

Wααα(3, 0, 0) =
Γ (2α3 + 1)
Γ (3α1 + 1)

,

Wααα(i, j, k) = 0, otherwise.

(3.19)

Therefore, the ααα-memory exact solution of the Klein–Gordon model (3.14)–(3.15) has the
form

w(x, y, t) = x2α2 + y2α3 +
1

Γ (α1 + 1)
tα1 y2α3 +

Γ (2α2 + 1) + Γ (2α3 + 1) – 2
Γ (2α1 + 1)

t2α1

+
Γ (2α3 + 1)
Γ (3α1 + 1)

t3α1 . (3.20)

We remark here that for ααα → (1, 1, 1), we attain the closed-form solution w(x, y, t) = x2 +
y2 + ty2 + t2 + 1

3 t3 for the integer copy of the Klein–Gordon model (3.14)–(3.15).

Example 4 Consider the following homogeneous linear telegraph model embedded in the
fractal 3D space:

∂2α1 [w(x, y, t)]
∂t2α1

+ 2
∂α1 [w(x, y, t)]

∂tα1
+ w(x, y, t)

= 2
(

∂2α2 [w(x, y, t)]
∂x2α2

+
∂2α3 [w(x, y, t)]

∂y2α3

)
, (3.21)

contingent on the initial conditions

w(x, y, 0) = Eα2

(
xα2

)
Eα3

(
yα3

)
and

∂α1 [w(x, y, 0)]
∂tα1

= –3Eα2

(
xα2

)
Eα3

(
yα3

)
. (3.22)

By implementing the ternary-FDT and harnessing Theorem 2.4, we attain the following
transformed recurrence equation of (3.21):

Γ ((i + 2)α1 + 1)
Γ (iα1 + 1)

Wααα(i + 2, j, k) +
2Γ ((i + 1)α1 + 1)

Γ (iα1 + 1)
Wααα(i + 1, j, k) + Wααα(i, j, k)

= 2
(

Γ ((j + 2)α2 + 1)
Γ (jα2 + 1)

Wααα(i, j + 2, k) +
Γ ((k + 2)α3 + 1)

Γ (kα3 + 1)
Wααα(i, j, k + 2)

)
, (3.23)
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with initial transform coefficients

Wααα(i, j, k) =

⎧
⎨

⎩

1
Γ (jα2+1)Γ (kα3+1) ; j, k ≥ 0, i = 0,

–3
Γ (α1+1)Γ (jα2+1)Γ (kα3+1) ; j, k ≥ 0, i = 1.

(3.24)

By recursively solving equation (3.23) with utilizing the initial transform coefficients
(3.24), we acquire the following generic transform coefficients:

Wααα(i, j, k) =
(–3)i

Γ (iα1 + 1)Γ (jα2 + 1)Γ (kα3 + 1)
. (3.25)

Therefore, the ααα-memory exact solution of the telegraph model (3.21)–(3.22) has the form

w(x, y, t) =
∞∑

i+j+k=0

(–3)i

Γ (iα1 + 1g)Γ (jα2 + 1)Γ (kα3 + 1)
tiα1 xjα2 ykα3

=

( ∞∑

i=0

(–3tα1 )i

Γ (iα1 + 1)

)( ∞∑

j=0

xjα2

Γ (jα2 + 1)

)( ∞∑

k=0

ykα3

Γ (kα3 + 1)

)

= Eα1

(
–3tα1

)
Eα2

(
xα2

)
Eα3

(
yα3

)
. (3.26)

We remark here that for ααα → (1, 1, 1), we attain the closed-form solution w(x, y, t) = ex+y–3t

for the integer copy of the telegraph model (3.21)–(3.22).

Example 5 Consider the following nonlinear Burgers’ model embedded in the fractal 3D
space:

∂α1 [w(x, y, t)]
∂tα1

=
∂2α2 [w(x, y, t)]

∂x2α2
+

∂2α3 [w(x, y, t)]
∂y2α3

+ w(x, y, t)
∂α2 [w(x, y, t)]

∂xα2
(3.27)

contingent on the initial condition

w(x, y, 0) = xα2 + yα3 . (3.28)

By implementing the ternary-FDT and harnessing Theorem 2.4, we attain the following
transformed recurrence equation of (3.27):

Γ ((i + 1)α1 + 1)
Γ (iα1 + 1)

Wααα(i + 1, j, k)

=
Γ ((j + 2)α2 + 1)

Γ (jα2 + 1)
Wααα(i, j + 2, k) +

Γ ((k + 2)α3 + 1)
Γ (kα3 + 1)

Wααα(i, j, k + 2)

+
i∑

n=0

j∑

m=0

k∑

r=0

Γ ((m + 1)α2 + 1)
Γ (mα2 + 1)

Wααα(n, m + 1, r)Wααα(i – n, j – m, k – r) (3.29)

with initial transform coefficients

Wααα(0, j, k) =

⎧
⎪⎪⎨

⎪⎪⎩

1; j = 1, k = 0,

1; j = 0, k = 1,

0; otherwise.

(3.30)
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By recursively solving equation (3.29) with utilizing the initial transform coefficients
(3.30), we acquire the following relation among the transform coefficients:

Wααα(i, 0, 1) = Wααα(i, 1, 0); i ≥ 0,

Wααα(i, j, k) = 0; otherwise,
(3.31)

where Wααα(i, 1, 0) is given recursively by

Wααα(0, 1, 0) = 1,

Wααα(1, 1, 0) =
Γ (α2 + 1)
Γ (α1 + 1)

,
(3.32)

and for i ≥ 2

Wααα(i, 1, 0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Γ ((i–1)α1+1)Γ (α2+1)
Γ (iα1+1)

∑n
r=1 2Wααα(r – 1, 1, 0)Wααα(i – r, 1, 0);

i = 2n,
Γ ((i–1)α1+1)Γ (α2+1)

Γ (iα1+1) (Wααα(n, 1, 0)2 +
∑n

r=1 2Wααα(r – 1, 1, 0)Wααα(i – r, 1, 0));

i = 2n + 1.

(3.33)

Therefore, the ααα-memory solution of Burgers’ model (3.27)–(3.28) is

w(x, y, t) =
∞∑

i+j+k=0

Wααα(i, j, k)tiα1 xjα2 ykα3

=
∞∑

i=0

Wααα(i, 1, 0)tiα1 xα2 +
∞∑

i=0

Wααα(i, 0, 1)tiα1 yα3

=
(
xα2 + yα3

) ∞∑

i=0

Wααα(i, 1, 0)tiα1 . (3.34)

We should point out here that Wααα(i, 1, 0) = 1 as ααα → (1, 1, 1). Thus, the closed-form solu-
tion for the integer copy of (3.27)–(3.28) is

w(x, y, t) = (x + y)
∞∑

i=0

ti =
x + y
1 – t

for 0 ≤ t < 1. (3.35)

4 Graphical analysis and discussions
In the present part, we choose Burgers’ model (3.27)–(3.28) to illustrate and comprehend
the impact of the Caputo fractional derivative. Figure 1 shows a sample of the cross-
sections attitude for the 8th series solution of (3.34) for diverse values of the fractional
parameters in particular domains. In all situations, we have continuous successive behav-
ior as long as the fractional parameters get closer to the integer derivative order. Therefore,
the role of order-variation of the fractional derivative is to preserve a homotopy mapping
from the present value of the solution “ααα → (0, 0, 0)” to its instantaneous rate of change
“ααα → (1, 1, 1)”. This interpretation is made by the phenomena of a sequential-asymptotic
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Figure 1 Sample of cross-sections for the approximate solution w8(x, y, t) = (xα2 + yα3 )
∑8

i=0Wααα (i, 1, 0)tiα1

propagation of the solution as the fractional parameters vary from 0 to 1 as depicted in
Fig. 1. Further, the cross-sections of the integer derivative order reconcile with their asso-
ciates when ααα → (1, 1, 1). This shows the generality of ααα-Burgers’ model.

5 Conclusions
In this work, we have viewed several well-known partial differential equations in the fractal
3D space and provided their solutions analytically in terms of an ααα-FPS. An adaptation of
the fractional differential transform method by means of a newααα-FPS representation is de-
veloped and used to obtain a complete fractional solution form of these new models. The
projections of these solutions into the integer 3D space reconcile with the solutions of the
classical copies of these models. Moreover, the proposed method has been autonomously
constructed without the need to convert the equation into solvable and perturbation or
linearization terms. In summary, we have successfully provided a comprehensive analytic
study of partial differential equations that are fully embedded in the fractal 3D space.
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