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Abstract: In this paper, a new definition for the fractional order operator called the Caputo-Fabrizio
(CF) fractional derivative operator without singular kernel has been numerically approximated
using the two-point finite forward difference formula for the classical first-order derivative of
the function f (t) appearing inside the integral sign of the definition of the CF operator. Thus,
a numerical differentiation formula has been proposed in the present study. The obtained numerical
approximation was found to be of first-order convergence, having decreasing absolute errors with
respect to a decrease in the time step size h used in the approximations. Such absolute errors are
computed as the absolute difference between the results obtained through the proposed numerical
approximation and the exact solution. With the aim of improved accuracy, the two-point finite forward
difference formula has also been utilized for the continuous temporal mesh. Some mathematical
models of varying nature, including a diffusion-wave equation, are numerically solved, whereas
the first-order accuracy is not only verified by the error analysis but also experimentally tested
by decreasing the time-step size by one order of magnitude, whereupon the proposed numerical
approximation also shows a one-order decrease in the magnitude of its absolute errors computed at
the final mesh point of the integration interval under consideration.
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MSC: 65L12; 65Q10; 65G40

1. Introduction

Differential equations of arbitrary real order ν > 0 are used to model various physical models
arising in many branches of science and engineering. Applications of such mathematical models can
be seen from statistical mechanics and Brownian motion, via visco-elasticity problems, to continuum
and quantum mechanics, biosciences, chemical engineering, and control theory, just to name a few;
see, for example, Soontharanon et al. [1–24] and the references cited therein.

The rapid rise in popularity of the field known as fractional calculus (FC) has given birth to various
different ways to define fractional derivatives and fractional integrals. Unlike the Riemann-Liouville
fractional integral, there are many different versions of definitions for the fractional derivative, with
some of them equivalent to each other only under some restrictions imposed on the function being
differentiated [25–28]. In addition to this, three new classifications of the fractional operators were
debated recently in [29].
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Due to increasing development of the fractional derivatives in modeling physical problems,
it seems appropriate to have not only an effective and universally accepted definition for such a
derivative, but also an efficient and accurate numerical approximation, which is important to deal
with problems having inherited singularities and non-linearities in the systems [30–33]. However, the
non-local structure of these fractional operators has provided limited options to design efficient codes,
for it requires all past information to be taken into consideration while simulating. This is what we
call the presence of persistent memory, which makes the computations more costly and slow [34–37].
In this regard, there are numerous short memory principles in the recent literature [38] that are widely
used to reduce the computational cost and the effect of rounding-off error accumulation while using
numerical techniques, thereby making the short memory principles quite useful in solving fractional
initial value problems.

The definition of the fractional derivative operator called the Caputo-Fabrizio operator without
singular kernel [39] is the direct consequence of the the classical Caputo derivative operator. This
is because the latter involves a singular mathematical expression called the kernel in its definition,
leading to a few difficulties in finding solutions to the associated differential equations, whereas the
kernel of the former has no singularity at t = τ.

Various other useful properties and interesting applications of this new derivative operator,
including the most celebrated one called the Laplace transform technique, can be found in [40].
Additional applications of the operator are seen in recently published works regarding the
analysis of the Korteweg-de Vries-Burgers equation used in liquids and waves dynamics [41],
magnetohydrodynamics (MHD) free convection flow of generalized Walters’-B fluid over a static
vertical plate [42], and nonlinear Fisher’s reaction diffusion equation [43].

The present paper fundamentally aims to propose a numerical approximation for the
Caputo-Fabrizio (CF) operator using a two-point finite difference formula for the f ′(t) term, as
well as offer a discussion of error analysis associated with the proposed approximation. Thus, a
numerical differentiation formula for the CF operator has been proposed in the present study. Based
upon the error analysis discussed in Section 3, the current work shows that the local truncation error
term of the approximation consists of a positive constant that depends upon the fractional operator ν,
leading to the expression of the form O(h), which proves the first-order convergence of the proposed
numerical approximation. This approximation is later employed for a continuous temporal mesh with
the purpose of improved accuracy, as discussed in Section 4. This is followed by some numerical
experiments in Section 5 to illustrate the performance of the proposed numerical approximation.

It must be noted that the authors in [44,45] have discretized the CF operator using finite difference
schemes with a different derivation approach, error analysis, and way of illustrating the numerical
results. Some of the schemes in those works are explicit, and others are implicit with very promising
rates of convergence. The numerical approximation presented in this paper, being simple enough with
the explicit nature of first-order convergence, is computationally inexpensive with respect to machine
memory storage and time consumption, as shown in the tabular data of Section 5. Next, we present
some important definitions used in the present study, along with a few of the properties associated
with fractional derivative operators that need to be known at this stage.

2. Mathematical Preliminaries

This section refreshes some of the basic definitions and properties considered to be useful for the
present study.

Definition 1. [2] The fractional derivative of real order ν > 0 for f (t) in the classical Caputo sense is defined as

CDν
0,t[ f (t)] =

1
Γ(m− ν)

∫ t

0

(
t− τ

)m−ν−1
f (m)(τ)dτ, t > 0, (1)
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where m− 1 < ν ≤ m, m ∈ N, t > 0, f ∈ Cm−1[0, t] and k(t) = tm−ν−1 is the singular kernel. In order
to get rid of this singular kernel, a new definition was introduced in [39] that facilitates solving various natural
and physical laws without being caught by the convoluted integrals.

Definition 2. [2] The Laplace transform operation of the classical Caputo operator possesses the initial
conditions to be defined at the lower terminal t = 0, for which the valid physical interpretations are easily
possible. Thus, the Caputo definition is very useful for solving real life problems expressible in the form of
fractional differential equations.

L
[C

Dν
0,t f (t)

]
= sνF(s)−

n−1

∑
k=0

sν−k−1 f (k)(0), (2)

where n− 1 < ν ≤ n, n ∈ N.

Definition 3. [39] The new operator called the Caputo-Fabrizio operator for fractional derivatives of order
ν > 0 is defined as follows:

CFDν
0,t[ f (t)] =

M(ν)

1− ν

∫ t

0
f ′(τ) exp

[
− ν

t− τ

1− ν

]
dτ, t > 0, (3)

where M(ν) is the normalization function (any smooth positive function) such that M(0) = M(1) = 1, and
f ∈ H1(a, b), b > a. Furthermore, note the absence of any singular kernel in the definition above. Definition 3
forms most of the work presented in the subsequent sections.

Definition 4. [39] The Laplace transform operation of the CF operator also carries with it the initial conditions
to be defined at the lower terminal t = 0, where the physical meaning of the conditions is well defined in the
literature. This once again makes the fractional derivative very useful for solving real life problems based upon
fractional differential equations in CF form.

L
[CF

Dν
0,t f (t)

]
=

sn+1F(s)− sn f (0)− sn−1 f ′(0)− . . .− f (n)(0)
s + ν(1− s)

, (4)

where n− 1 < ν < n, n ∈ N, and s ∈ C.

3. Proposed Numerical Approximation

Suppose that f (t) ∈ H1(a, b), and I = [0, T]. Let h be the fixed step size with h = T/n, n ∈ N,
and denote tk = kh. Now, we investigate the numerical approximation of the integral that appeared
above in Equation (3). One of the easiest ways is to use the classical two-point finite forward difference
formula for the first derivative on the interval [0, T]. For t = tn and 0 < ν < 1, one obtains

CFDν
0,t[ f (t)]

∣∣∣∣∣
t=tn

=
M(ν)

1− ν

∫ tn

0
f ′(τ) exp

[
− ν

(tn − τ)

1− ν

]
dτ

≈ M(ν)

1− ν

n−1

∑
k=0

[ fk+1 − fk
h

+O(h)
] ∫ tk+1

tk

exp
[
− ν

(tn − τ)

1− ν

]
dτ

=
M(ν)

h(1− ν)

1− ν

ν

n−1

∑
k=0

(
fk+1 − fk +O(h2)

)
exp

[
− ν

(tn − τ)

1− ν

]∣∣∣∣∣
tk+1

tk

=
M(ν)

hν

n−1

∑
k=0

(
fk+1 − fk +O(h2)

)[
exp

(
− ν

tn − tk+1
1− ν

)
− exp

(
− ν

tn − tk
1− ν

)]
.
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For n = 1, 2, and 3, we respectively get

CFDν
0,t[ f (t)]|t=t1 =

M(ν)

hν

(
e

ν

1− ν
h
− 1
)(

f1 − f0

)
e
−

ν

1− ν
h

CFDν
0,t[ f (t)]|t=t2 =

M(ν)

hν

(
e

ν

1− ν
h
− 1
)[(

f1 − f0

)
e
−

ν

1− ν
2h
+
(

f2 − f1

)
e
−

ν

1− ν
h]

CFDν
0,t[ f (t)]|t=t3 =

M(ν)

hν

(
e

ν

1− ν
h
− 1
)[(

f1 − f0

)
e
−

ν

1− ν
3h
+
(

f2 − f1

)
e
−

ν

1− ν
2h
+
(

f3 − f2

)
e
−

ν

1− ν
h]

. (5)

Continuing in the same way, we obtain

CFDν
0,t[ f (t)]

∣∣∣∣∣
t=tn

=
M(ν)

hν

(
e

ν

1− ν
h
− 1
) n−1

∑
k=0

(
fn−k − fn−k−1

)
e
−

ν

1− ν
(k+1)h

.

One can replace k by k− 1 to get the following form:

CFDν
0,t[ f (t)]

∣∣∣∣∣
t=tn

=
M(ν)

hν

(
e

ν

1− ν
h
− 1
) n

∑
k=1

(
fn−k+1 − fn−k

)
e
−

ν

1− ν
kh

. (6)

Equation (6) is the first-order time discretization of the newly developed fractional operator called the
CF operator without singular kernel [39]. Thus, we have established the following theorem:

Theorem 1. Suppose that the interval [0, T] is subdivided into n sub-intervals [tk, tk+1] of equal width h = T/n
by using the nodes tk = kh, for k = 0, 1, ..., n, then the following relation

CFDν
0,t( f , h, ν) =

M(ν)

hν

(
e

ν

1− ν
h
− 1
) n

∑
k=1

(
fn−k+1 − fn−k

)
e
−

ν

1− ν
kh

+
M(ν)

hν

(
e

ν

1− ν
h
− 1
) n

∑
k=1

e
−

ν

1− ν
kh
O(h2),

(7)

is the proposed numerical approximation to the CF operator without singular kernel. In addition, we have

CFDν
0,t[ f (t)]

∣∣∣∣∣
t=tn

= CFDν
0,t( f , h, ν)− ECF( f , h, ν), tn > 0, ν > 0.

Furthermore, if f (t) ∈ C1[0, T], then there exists a constant Aν that depends only upon ν in such a way that
the error term ECF( f , h, ν) has the following form:

|ECF( f , h, ν)| ≤ Aν|| f ′||∞Tνh = O(h).

Proof. From the earlier steps of Section 3, we have the following:

CFDν
0,t( f , h, ν) =

M(ν)

hν

(
e

ν

1− ν
h
− 1
) n

∑
k=1

(
fn−k+1 − fn−k +O(h2)

)
e
−

ν

1− ν
kh

. (8)

Taking the third term of Equation (8), one obtains

M(ν)

hν

(
e

ν

1− ν
h
− 1
) n

∑
k=1

e
−

ν

1− ν
kh
O(h2),
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where ∑n
k=1 e

−
ν

1− ν
kh

=
e
−

ν

1− ν
h

1− e
−

ν

1− ν
h

, if
∣∣∣e− ν

1− ν
h∣∣∣ < 1.

Thus, Equation (6) is reduced to

M(ν)

hν

(
e

ν

1− ν
h
− 1
) n

∑
k=1

e
−

ν

1− ν
kh
O(h2) = AνO(h),

where Aν =
M(ν)

ν
and

∣∣∣ ∫ tn

0
f ′(τ) exp

[
− ν

(tn − τ)

1− ν

]
dτ −

∫ tn

0
f̃ ′(τ) exp

[
− ν

(tn − τ)

1− ν

]
dτ
∣∣∣ ≤ Aν|| f ′||∞Tνh.

This completes the proof for the proposed numerical approximation (6) to be of first-order accuracy
with the above error term. We now turn to the study of this fractional operator with the advantage
of having no singular part in the main integrand for continuous temporal mesh, as discussed in the
next section.

4. Temporal Mesh for Two-Point Finite Difference

One of the interesting features of the CF operator is the absence of the singularity. In the previous
section, we introduced the numerical approximation of a fractional derivative using the CF operator
where two-point approximation is utilized and the truncation error of the two-point finite difference
approach has been proven to have an accuracy which is dependent on the fractional order. However,
in the real-world modeling of a physical system, one must consider a continuous temporal variable
which gives the characteristic of the system and the improvement of accuracy is naturally considered.
For any integer N, we divide the interval [0, T] into N sub-intervals. We consider the time-step as
hn = tn − tn−1, 1 ≤ n ≤ N, where hmax = max

1<l<N
hl , hmin = min

1<l<N
hl . For any temporal meshes, we

present the following definition and theorem for approximating the absolute error of the interval
0 ≤ t ≤ tn−1.

Definition 5. Suppose N is a finite grid size and a sequence of mesh is finite. The mesh points are then
quasi-uniform if there exists a constant Γ 6= 0 such that

hmax

hmin
≤ Γ.

Definition 5 Characterize the time step and hmax ≤ ΓT/N must hold. We can deduce that
when Γ = 1, we can have the uniform mesh with hmax = T/N. Next, we present the theorem in
approximating the error for any uniform temporal meshes.

Theorem 2. Suppose that the fractional order derivative for 0 < ν < 1 and let a function f (t) ∈ C2[0, T] hold.

∫ tn

0
f ′(τ) exp

[
− ν

1− ν
(tn − τ)

]
dτ =

n

∑
k=1

f (tk)− f (tk−1)

hk

∫ tk

tk−1

exp
[
− ν

1− ν
(tn − τ)

]
dτ +On,

where the absolute error for interval 0 ≤ t ≤ tn−1 is given by

|On| ≤
exp

(
− ν

1−ν hn
)

8
h2

max max
0≤t≤tn

| f ′′(t)|

+

∣∣∣∣∫ tn

tn−1

f ′(τ) exp
[
− ν

1− ν
(tn − τ)

]
dτ −

∫ tn

tn−1

f (tn)− f (tn−1)

hn
exp

[
− ν

1− ν
(tn − τ)

]
dτ

∣∣∣∣ .
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Proof. We can write the CF integral of the form

∫ tn

0
f ′(τ) exp

[
− ν

1− ν
(tn − τ)

]
dτ =

∫ tn−1

0
f ′(τ) exp

[
− ν

1− ν
(tn − τ)

]
dτ+∫ tn

tn−1

f ′(τ) exp
[
− ν

1− ν
(tn − τ)

]
dτ. (9)

Now, using the formula integration by parts yields

∫ tn−1

0
f ′(τ) exp

[
− ν

1− ν
(tn − τ)

]
dτ =

[
f (τ) exp

(
− ν

1− ν
(tn − τ)

)]tn−1

0

− ν

1− ν

∫ tn−1

0
f (τ) exp

(
− ν

1− ν
(tn − τ)

)
dτ

=

{
f (tn−1) exp

[
− ν

1− ν
hn

]
− f (0) exp

[
− ν

1− ν
tn

]}
− ν

1− ν

n−1

∑
j=1

∫ tj

tj−1

f (τ) exp
(
− ν

1− ν
(tn − τ)

)
dτ,

and by linear interpolation of f (τ), we can get

∫ tn−1

0
f ′(τ) exp

[
− ν

1− ν
(tn − τ)

]
dτ

=

{
f (tn−1) exp

[
− ν

1− ν
hn

]
− f (0) exp

[
− ν

1− ν
tn

]}
− ν

1− ν

n−1

∑
j=1

∫ tj

tj−1

(tj − τ) f (tj−1)− (tj−1 − τ) f (tj)

hj

× exp
(
− ν

1− ν
(tn − τ)

)
dτ − (O1)

n. (10)

Simplifying the second term, we obtain the following

ν

1− ν

∫ tj

tj−1

(tj − τ) exp
(
− ν

1− ν
(tn − τ)

)
dτ

= −hj exp
[
− ν

1− ν
(tn − tj−1)

]
+
∫ tj

tj−1

exp
(
− ν

1− ν
(tn − τ)

)
dτ.

Simplifying the above equation further gives

ν

1− ν

∫ tj

tj−1

(tj−1 − τ) exp
(
− ν

1− ν
(tn − τ)

)
dτ

= −hj exp
[
− ν

1− ν
(tn − tj)

]
+
∫ tj

tj−1

exp
(
− ν

1− ν
(tn − τ)

)
dτ,

and the term

(O1)
n =

ν

1− ν

n−1

∑
j=1

1
2

∫ tj

tj−1

f (εj)(τ − tj)(τ − tj−1) exp
(
− ν

1− ν
(tn − τ)

)
dτ,
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where tj−1 < εj < tj.
Substituting the obtained equalities into Equation (10), we have

∫ tn−1

0
f ′(τ) exp

[
− ν

1− ν
(tn − τ)

]
dτ =

{
f (tn−1) exp

[
− ν

1− ν
hn

]
− f (0) exp

[
− ν

1− ν
tn

]}
+

n−1

∑
j=1

f (tj−1) exp
[
− ν

1− ν
(tn − tj−1)

]
−

n−1

∑
j=1

f (tj) exp
[
− ν

1− ν
(tn − tj)

]
+

n−1

∑
j=1

f (tj)− f (tj−1)

hj

∫ tj

tj−1

exp
[
− ν

1− ν
(tn − τ)

]
dτ − (O1)

n.

We can easily check that the first four terms cancel each other. Thus, we obtain

∫ tn−1

0
f ′(τ) exp

[
− ν

1− ν
(tn − τ)

]
dτ =

n−1

∑
j=1

f (tj)− f (tj−1)

hj

∫ tj

tj−1

exp
[
− ν

1− ν
(tn − τ)

]
dτ − (O1)

n

and

|(O1)
n| ≤ 1

8

(
ν

1− ν

)
max

0≤t≤tn−1
| f ′′(t)|

n−1

∑
j=1

h2
j

∫ tj

tj−1

exp
[
− ν

1− ν
(tn − τ)

]
dτ

≤ 1
8

(
h2ν

1− ν

)
max

0≤t≤tn−1
| f ′′(t)|

∫ tj

tj−1

exp
[
− ν

1− ν
(tn − τ)

]
dτ

=
h2

max
8

max
0≤t≤tn−1

| f ′′(t)|
(

exp
[
− ν

1− ν
hn

]
− exp

[
− ν

1− ν
tn

])
≤ 1

8
max

0≤t≤tn−1
| f ′′(t)| exp

[
− ν

1− ν
hn

]
h2

max.

This completes the required error approximation for a given interval [tn−1, tn]. In this expression,
we can directly observe that the CF operator can either be used in quasi-uniform and uniform mesh,
depending on the consideration. In the context of non-uniform mesh or temporal meshes, see [46] and
the results presented therein.

In the section that follows, a few test problems have been chosen to check the performance of the
above approximations.

5. Results and Discussion

Firstly, as many as five different types of mathematical functions were chosen to check the
performance of the proposed numerical approximation (6) by computing the absolute errors at the

last mesh point
(

ε(t = T) = |y(T)− yN |
)

, where N is the total number of integration steps over the

interval [0, 1] for ν ∈
{ 1√

2
,

1
4

,
1
2

,
3
4

}
with M(ν) = 1 in the test Problems 1–5 listed below with their

numerical simulations recorded in the Tables 1–4. In addition, the choice ν = 0.999 was also tested on
a few selected test problems in Table 5 to observe the behavior of the solution when ν goes near to 1.

Secondly, Problem 6 depicts the behavior of the approximation graphically, where the absolute
errors reduce with an increase in the number of mesh points. Lastly, using the approximation for the
temporal mesh as discussed in the previous section, once again a decrease in the absolute errors was
observed for the diffusion-wave equation presented in Problem 7. In order to carry out the numerical
computations, MATLAB Ver.9.2.0.538062 (R2017a) on a personal computer equipped with a CPU
Intel(R) Core(TM) i3-4005U @ 1.70 GHz running under the operating system Windows 10 was used.
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Problem 1 f (t) = t.
CFDν

0,t[ f (t)] =
1
ν

[
1− exp

( ν

1− ν

)
t
]

Problem 2 f (t) =
√

t.
CFDν

0,t[ f (t)] = − 1
2ν

√
ν

ν− 1
π exp

( ν

ν− 1
t
)

Erf
(√ ν

ν− 1
t
)

Problem 3 f (t) = sin(t).

CFDν
0,t[ f (t)] =

−ν exp
( ν

ν− 1
t
)
+ ν cos(t) + (1− ν) sin(t)

1− 2ν + 2ν2

Problem 4 f (t) = t exp(t).
CFDν

0,t[ f (t)] = exp
( ν

ν− 1
t
)[
− ν + (ν + t) exp

( 1
1− ν

t
)]

Problem 5 f (t) = sin(t) cos(t).

CFDν
0,t[ f (t)] =

−ν exp
( ν

ν− 1
t
)
+ ν cos(2t)− 2(ν− 1) sin(2t)

4− 8ν + 5ν2

The exact solution of Problem 2 above contains a special function Erf(·) that is called the error
function (entire) and is defined as follows:

Erf(t) =
2√
π

∫ t

0
exp(−x2)dx. (11)

The absolute errors decrease with a decrease in the time-step size h, as shown in Tables 1–4.
Furthermore, note that a reduction in the time-step size h by one order of magnitude also drops
the absolute error by one order of magnitude, as depicted in columns 2–4 in each of Tables 1–4.
This experimental fact can be used as a claim for the first-order accuracy of the proposed numerical
approximation, as proved in the sections above. Thus, the performance of the proposed numerical
approximation (6) is found to be reliable with first-order accuracy, and the same is shown by the above
test problems. Furthermore, Table 5 shows a similar sort of behavior when ν = 0.999, wherein the first
test problem yields almost zero error. One of the reasons for this behavior is the test problem itself,
which is linear, and besides that, ν→ 1.

Problem 6 Given a sample function f (t) = t2 and for the interval [0, t] with ν = 1
2 , we can directly

obtain the exact solution as
CFD

1
2
0,t[t

2] = 4
(

t + exp(−t)− 1
)

. (12)

We can numerically compute the 1
2 -order derivative of t2 on the uniform mesh. Absolute errors were

plotted in Figure 1 by letting N = [50, 70, 130, 220, 550, 670, 730], and these errors tend to zero as the
number of mesh points increases, implying that as the number of mesh points increases, the time
increment decreases, as discussed in the previous section. A similar sort of behavior is depicted in
Figures 2 and 3.

Problem 7 Consider a diffusion-wave equation with an exact solution

x(t) = 3.5 sin(2.3πt) exp (−3.23t) . (13)

Using the approximation for temporal mesh, we can obtain the absolute errors with respect to the
number of mesh points, as plotted in Figure 4. It can be seen that the absolute errors can easily be
minimized. A similar sort of behavior is depicted in Figures 5 and 6.
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Table 1. Absolute errors at the last mesh point over [0, 1] with ν = 1√
2

.

Problem h = 10−2 h = 10−3 h = 10−4 Duration (ms)

1 3.0908 × 10−3 3.0573 × 10−4 3.0540 × 10−5 0.004
2 5.0191 × 10−3 4.8874 × 10−4 4.8518 × 10−5 0.008
3 4.7798 × 10−3 4.8426 × 10−4 4.8488 × 10−5 0.008
4 7.477 × 10−2 7.5080 × 10−3 7.5110 × 10−4 0.005
5 1.9188 × 10−2 1.9220 × 10−3 1.9223 × 10−4 0.008

Table 2. Absolute errors at the last mesh point over [0, 1] with ν =
1
4

.

Problem h = 10−2 h = 10−3 h = 10−4 Duration (ms)

1 9.5697 × 10−3 9.5553 × 10−4 9.5539 × 10−5 0.006
2 3.0462 × 10−3 3.0712 × 10−4 3.0835 × 10−5 0.008
3 4.1345 × 10−3 4.0793 × 10−4 4.0737 × 10−5 0.006
4 6.1334 × 10−2 6.1716 × 10−3 6.1754e × 10−4 0.005
5 7.0012 × 10−3 7.0960 × 10−4 7.1055 × 10−5 0.008

Table 3. Absolute errors at the last mesh point over [0, 1] with ν =
1
2

.

Problem h = 10−2 h = 10−3 h = 10−4 Duration (ms)

1 7.3945 × 10−3 7.3613 × 10−4 7.3580 × 10−5 0.006
2 8.9548 × 10−4 8.0795 × 10−5 7.7668 × 10−6 0.007
3 7.4921 × 10−4 6.7530 × 10−5 6.6793 × 10−6 0.007
4 6.9383 × 10−2 6.9755 × 10−3 6.9792 × 10−4 0.006
5 1.2357 × 10−2 1.2451 × 10−3 1.2460 × 10−4 0.006

Table 4. Absolute errors at the last mesh point over [0, 1] with ν =
3
4

.

Problem h = 10−2 h = 10−3 h = 10−4 Duration (ms)

1 2.0217 × 10−3 1.9945 × 10−4 1.9918 × 10−5 0.007
2 5.3955 × 10−3 5.2689 × 10−4 5.2382 × 10−5 0.007
3 6.0877 × 10−3 6.1385 × 10−4 6.1436 × 10−5 0.005
4 7.5564 × 10−2 7.5842 × 10−3 7.5870 × 10−4 0.005
5 2.0529 × 10−2 2.0530 × 10−3 2.0530 × 10−4 0.006

Table 5. Absolute errors at the last mesh point over [0, 1] with ν = 0.999.

Problem h = 10−2 h = 10−3 h = 10−4 Duration (ms)

1 6.6613 × 10−16 8.8818 × 10−16 1.3323 × 10−15 0.006
3 1.1729 × 10−2 9.1039 × 10−4 8.4875 × 10−15 0.008
5 2.5673 × 10−2 1.9723 × 10−3 1.8373 × 10−4 0.007
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Figure 1. Absolute errors vs. fractional order ν for the approximation of continuous uniform mesh for
a temporal variable using the Caputo-Fabrizio operator on a given function f (t) = t2 with a varying
number of mesh points.

Figure 2. Absolute errors vs. number of mesh points N for the approximation of continuous uniform
mesh for a temporal variable using the Caputo-Fabrizio operator on a given function f (t) = t2 with
varying fractional order ν.

Figure 3. Logarithmic plot of absolute errors vs. number of mesh points for Problem 6.
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Figure 4. Absolute errors vs. number of mesh points N for the approximation of continuous uniform
mesh for a temporal variable using the Caputo-Fabrizio operator for Problem 7 with varying fractional
order ν.

Figure 5. Absolute errors vs. number of mesh points N for the approximation of continuous uniform
mesh for a temporal variable using the Caputo-Fabrizio operator for Problem 7 with varying fractional
order ν.

Figure 6. Logarithmic plot of absolute errors vs. number of mesh points for Problem 7.
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6. Conclusions

In this research work, a numerical approximation using the two-point finite forward difference
formula of classical calculus for the first derivative of f (t) has been presented and found to be efficient
with first-order accuracy for the CF operator. The error analysis presented confirms the first-order
convergence of the proposed numerical approximation on the basis of getting a local truncation error
term of the form O(h), which was further extended for the continuous temporal mesh with the aim of
getting better accuracy.

Test Problems 1–5 supported the claim of first-order convergence of the proposed numerical
approximation with the one-order decreasing behavior of the computed absolute errors with every
respective one-order drop in the magnitude of the time-step h, as demonstrated in Tables 1–4, while
consuming a considerably small CPU time in milliseconds.

Furthermore, considering the continuous uniform temporal mesh for the CF operator (3),
a decrease in the amount of absolute errors with the increasing number of mesh points for the
integration interval under consideration was observed once again in test Problems 6 and 7, and this
experimental fact remains true if the real fractional order ν > 0 is allowed to vary, as shown by
Figures 1–6.
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