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This research obtains some new optical soliton solutions with beta derivative for

Chen-Lee-Liu equation (CLL) in optical fibers. Three integration schemes which are

Ricatti-Bernoulli (RB) sub-ODE, generalized Bernoulli (GB) sub-ODE and generalized

tanh (GT) methods are applied to reach such solutions. The constraints conditions for

the existence of soliton solutions are reported. The solutions are obtained using newly

introduced fractional derivative called beta derivative. Numerical simulations of some of

the obtained solutions are illustrated.
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1. INTRODUCTION

Nonlinearity has been very attractive area of study whose vitality have been thought of by
considering a heavy-amplitude wave motions determined in several areas starting from fluids and
plasmas to solid state, chemical biological systems among others. Owing to this, solitons have been
one of the most mesmerizing viewpoint in nonlinear phisical aspect. A philosophical balance of
nonlinearity and dispersion are the major essence for the presence of solitonic concept [1]. Several
studies on soliton and other results for the multiple traveling wave solutions of nonlinear partial
differential equations can be seen inMiller and Ross [2], Podlubny [3], Oldham and Spanier [4], and
Kiryakova [5]. Monopulse water wave is the first soliton reported in El-Sayed andGaber [6]. Optical
solitons has also brought about mathematical insight and innovation of the various mechanism for
their analytical and numerical solutions [7–23].

2. BETA DERIVATIVE

The idea of the effect of memory has been an issue for quite a long time in the community of
modeling. Naturally, the classical models are not convenient to admit this memory [24–26]. A
lot of authors have proposed that the effect of the memory could be fully explained by fractional
derivatives [27–30]. In Khalil et al. [31], Khalil introduced a new definition of derivative called
“conformable derivative,” this derivative satisfied some conventional characteristics, for instance,
the chain rule. Atangana in Atangana et al. [32] analyzed some characteristics of this derivative,
thereby proving some related theorems and proposing a new definitions. An exciting research
that has a great relationship with this operator are stated in Cenesiz et al. [33], He et al. [34],
Abdeljawad [35], Chung [36], and Cenesiz and Kurt [37]. Recently, Atangana in [38] introduced the
“beta-derivative.” The newly introduced derivatives satisfies a lot of characteristics that have been
considered as limitation for the fractional derivatives and is used to model some physical problems.
These derivatives may not be seen as fractional derivative but can be considered to be a natural
extension of the classical derivative [31]. The beta-derivative is defined as Atangana et al. [38].
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therefore we have
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where l is a constant.
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The proofs of the above beta properties were plainly presented
in [29].

3. GOVERNING EQUATION

Here, we consider the evolution of a slowly varying envelope u as
modeled by a family of the CLL equation of the form [30]:

iA0D
α
t u+ aA0D

2α
x u+ ib(|u|2)A0D

α
x u = 0, (9)

where u(x, t) is the normalized electric-field envelope, AoD
α
t and

A
oD

α
x are beta derivatives [29]. The coefficient of the constant

a is group velocity dispersion, the coefficient of b is the Bohm
potential that is explored in chiral solitons with quantum
Hall effect.

It is imperative to know that many equations in nonlinear
sciences contain an empirical parameters. These parameters can
be investigated through establishing an exact solutions thereby
designing an experiments to generate a convenient conditions
that could determine these parameters. Thus, generating an

exact traveling wave solutions is becoming more mesmerizing in
nonlinear sciences [31–37].

The aim of current work is to establish optical soliton
solutions by via three different analytical methods which are RB
method [35], GB method [36] and GT method [37].

4. MATHEMATICAL ANALYSIS

To solve Equation (9), the starting step is

u(x, t) = u(ξ )eiφ(x,t), (10)

u(x, t) represent the shape of the pulse so that

ξ =
1

α

(

x+
1

Ŵ(α)

)α

−
υ

α

(

t +
1

Ŵ(α)

)α

(11)

and the phase component is given by

φ(x, t) = −
k

α

(

x+
1

Ŵ(α)

)α

+
w

α

(

t +
1

Ŵ(α)

)α

+ θ0(ξ ), (12)

where k denotes the soliton frequency, w is the wave number of
the soliton, θ0(ξ ) is an extra phase function depending on the
variable ξ , υ indicates the speed of the soliton. Substituting (10)
into (9), and isolating the real and imaginary parts, we obtain the
following

−wu+υuθ ′+au′′−auθ ′2−ak2u+2akuθ ′−bu3θ ′+bku3 = 0,
(13)

and

a(uθ ′′ + 2u′θ ′)− υu′ − 2aku′ + bu2u′ = 0, (14)

where u′ = du
dξ
, u′′ = d2u

dξ2
, θ ′ = dθ

dξ
, and θ ′′ = d2θ

dξ2
. In order to

solve the equation above, we use the ansatz of the form

θ ′ = z1u
2 + z2, (15)

where z1, z2 are the nonlinear and constant chirp parameters,
respectively to be found. Using Equation (15) in Equation
(14), we obtain two algebraic equations that define the chirp
parameters

z1 = −
b

4a
, z2 = k+

υ

2a
. (16)

Inserting Equation (16) along with Equation (15) into Equation
(14) gives

u′′ + B1u+ B2u
3 + B3u

5, (17)

where

B1 =
υ2

4a2
+

υk

a
−

w

a
, B2 = −

bυ

2a2
, B3 =

3b2

16a2
. (18)

Applying the balancing principle in Equation (17) gives n =
1
2 which is not closed form. In order to obtain closed form
solutions, we use the transformation

u = U
1
2 , (19)
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in Equation (17) to obtain

4B1U
2 + 4B2U

3 + 4B3U
4 + 2UU ′′ − U ′2 = 0. (20)

Applying the balancing principle in Equation (20) gives n = 1.

5. APPLICATIONS

In this section, we apply three integration schemes to attain
optical solitons for the underlying equation.

5.1. Application of RB sub-ODE Method
This section will apply RB sub-ODE method [39] to obtain
soliton solutions for Equation (9). Assuming that the solution of
Equation (20) is the solution of the RB equation

U ′ = a1U
2−M + b1U + c1U

M , (21)

where a1, b1, c1 and M are constants and will be found later.
Substituting Equation (21) into Equation (20) we have

−2a1b1mU(ξ )3 + 4a1b1U(ξ )3 − 2a21mU(ξ )4−m

+3a21U(ξ )4−m − c21U(ξ )3m (22)

2a1c1U(ξ )m+2 + 4B1U(ξ )m+2 + 4B2U(ξ )m+3 + b21U(ξ )m+2

+2c21mU(ξ )3m

+4B3U(ξ )m+4 + 2b1c1mU(ξ )2m+1 = 0.

Settingm = 0, we obtain

4a1b1U(r)3 + 2a1c1U(r)2 + 3a21U(r)4 + 4B1U(r)2

+4B2U(r)3 + 4B3U(r)4 + b21U(r)2 − c21 = 0. (23)

Setting each coefficients of U i(i = 0, 2, 3, 4) to zero, we have

2a1c1 + 4B1 + b21 = 0,

4
(

a1b1 + B2
)

= 0,

3a21 + 4B3 = 0,

c21 = 0.

(24)

Solving Equation (24), we obtain

Result 1 a1 = ±2i
√

B3
3 , b1 =

2iB1
B2

√

B3
3 , c1 = 0.

Case 1. When M 6= 1, b1 6= 0, c1 = 0, we get the following
algebraic solution

u(x, t) =

(

−
B2

B1
+ Ce

−
(

2iB1
B2

√

B3
3

)

ξ

)− 1
2

eiφ(x,t). (25)

Case 2.WhenM 6= 1, b2 − 4a1c1 < 0, we have the following
singular periodic solutions
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3
(ξ + C))
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cot(
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3
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)
1
2

eiφ(x,t), (27)

provided that B3 > 0.
Case 3.WhenM 6= 1, b2−4a1c1 > 0, we obtain the following

dark optical and singular optical soliton solutions, respectively
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(

−
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√
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1
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provided that B3 > 0.
Case 4.WhenM 6= 1, b2−4a1c1 = 0, we acquire the following

algebraic solution

u(x, t) =

(

−
1

2i
√

B3
3 (ξ + C)

−
B1

2B2

)
1
2

eiφ(x,t) (30)

5.2. Application for GB Sub-ODE Method
This section will apply GB Sub-ODE method to produce optical
soliton solutions for Equation (9). According to GB method [40],
Equation (20) has the solution given as

U(x, t) = a0 + a18(ξ ), (31)

where a0 and a1 are unknown constants and 8(ξ ) satisfies the
Ricatti equation

8′ + λ8 = µ82, (32)

where µ is a non-zero constant. Inserting Equation (31) along
with Equation (32) into the Equation (20), we get

8a1a0B18(ξ )+ 4a20B1 + 4a30B2 + 4a40B3 + 2a1a0λ
28(ξ )

−6a1a0λµ8(ξ )2

4a21B18(ξ )2 + 12a20a1B28(ξ )+ 16a30a1B38(ξ )

+a21λ
28(ξ )2 + 4a0a1µ

28(ξ )3

4a31B28(ξ )3 + 12a0a
2
1B28(ξ )2 + 24a20a

2
1B38(ξ )2

−4a21λµ8(ξ )3 + 3a21µ
28(ξ )4

4a41B38(ξ )4 + 16a0a
3
1B38(ξ )3 = 0. (33)

Collecting the coefficients 8i(i = 0, 1, 2, 3, 4), we obtain

4a20
(

a0B2 + a20B3 + B1
)

= 0,

2a0a1
(

6a0B2 + 8a20B3 + 4B1 + λ2
)

= 0,

4a41B3 + 3a21µ
2 = 0,

a1
(

a1
(

4B1 + λ2
)

− 6a0 (λµ − 2a1B2) + 24a1a
2
0B3

)

= 0,

4a1
(

a1 (a1B2 − λµ) + a0
(

4a21B3 + µ2
))

= 0.

(34)
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FIGURE 1 | Some physical features of the obtained solutions a = k = w = C = 0.9, µ = 1.2, λ = 1.5, b = 1.7, α = 0.3, υ = 0.3. (A) 3 and 2 dimensional plots for

(29). (B) 3 and 2 dimensional plots for (28). (C) 3 and 2 dimensional plots for (26). (D) 3 and 2 dimensional plots for (27).

Solving Equation (34), we obtain

Result 1. λµ 6= 0, a0 = λ2−4B1
2B2

, a1 = − 2(λ2µ−2B1µ)
3B2λ

.
This results yield the following dark optical and singular optical
soliton solutions, respectively

u(x, t)=

(

λ2 − 4B1

2B2
−

2
(

λ2µ − 2B1µ
)

3B2λ

(

tanh[
λ

2
ξ ]− 1

)

)
1
2

eiφ(x,t),

(35)

u(x, t)=

(

λ2 − 4B1

2B2
−

2
(

λ2µ − 2B1µ
)

3B2λ

(

coth[
λ

2
ξ ]− 1

)

)
1
2

eiφ(x,t),

(36)

5.3. Application for GT Method
This section will apply GB Sub-ODE method to produce optical
soliton solutions for Equation (9). According to GB method [41],
Equation (20) has the solution given as

U(x, t) = a0 + a18(ξ ), (37)

where a0 and a1 are unknown constants and 8(ξ ) satisfies the
Ricatti equation

8′ = C + 82, (38)

where µ is a non-zero constant. Inserting Equation (37) along
with Equation (38) into the Equation (20), we get

8a1a0B18(ξ )+ 4a20B1 + 4a30B2 + 4a40B3 − a21C
2 + 4a1a0C8(ξ ),

4a21B18(ξ )2 + 12a1a
2
0B28(ξ )+ 16a1a

3
0B38(ξ )+ 2a21C8(ξ )2,

4a31B28(ξ )3 + 12a0a
2
1B28(ξ )2 + 24a20a

2
1B38(ξ )2 + 4a0a18(ξ )3,

4a41B38(ξ )4 + 16a0a
3
1B38(ξ )3 + 3a218(ξ )4 = 0.

(39)

Collecting the coefficients 8i(i = 0, 1, 2, 3, 4), we obtain

4a20B1 + 4a30B2 + 4a40B3 − a21C
2 = 0,

4a0a1
(

3a0B2 + 4a20B3 + 2B1 + C
)

= 0,

2a21
(

6a0B2 + 12a20B3 + 2B1 + C
)

= 0,

4a1
(

a21B2 + a0
(

4a21B3 + 1
))

= 0,

a21
(

4a21B3 + 3
)

= 0.

(40)
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FIGURE 2 | Some physical features of the obtained solutions with the parameter values a = k = w = C = 1.9, µ = 1.2, λ = 1.5, b = 1.7, α = 0.3, υ = 0.3. (A) 3 and

2 dimensional plots for (36). (B) 3 and 2 dimensional plots for (35).

Solving Equation (40), we obtain

Result 1. a0 = − 3B2
8B3

, a1 = 1
2 i
√

3
B3
. If C < 0, this results yield

the following dark optical and singular optical soliton solutions,
respectively.

u(x, t) = −
3B2

8B3
−
1

2
i

√

3

B3

√
−C

(

tanh
(√

−Cξ

)

)
1
2

eiφ(x,t), (41)

and

u(x, t) = −
3B2

8B3
−

1

2
i

√

3

B3

√
−C

(

coth
(√

−Cξ

)

)
1
2

eiφ(x,t), (42)

If C > 0, this results yield the following dark optical and singular
optical soliton solutions, respectively.

u(x, t) = −
3B2

8B3
−

1

2
i

√

3

B3

√
C

(

tan
(√

Cξ

)

)
1
2

eiφ(x,t), (43)

and

u(x, t) = −
3B2

8B3
+

1

2
i

√

3

B3

√
C

(

cot
(√

Cξ

)

)
1
2

eiφ(x,t), (44)

6. RESULTS AND DISCUSSION

The RB sub-ODE, GB Sub-ODE and GT integration schemes
are employed to establish optical and other solitons for the
Chen-Lee-Liu equation in optical fibers. Dark, singular and
albegraic solutions are constructed successfully. The RB sub-
ODE scheme provided dark soliton (Equation 28), singular
soliton (Equation 29), trigonometric solutions (Equations 26, 27),
algebraic solutions (Equations 25,30). The GB Sub-ODE scheme
provided dark and singular optical solitons reported in Equations
(35) and (36), respectively. The GT scheme provided similar
solution as RB sub-ODE that is dark, singular and trigonometric

solutions reported in Equations (41–44), respectively. The GB
sub-ODE scheme could not provide the algebraic solutions and
trigonometric solutions in comparison with RB sub-ODE and
GT schemes. Moreover, the GT schemes could not provide the
algebraic solutions as provided by RB sub-ODE. The following
paragraph will give some explanations for the obtained results.

Dark optical soliton explains the solitary waves with smaller
intensity than the background, the singular soliton solutions
depict a solitary wave possessing discontinuous derivatives; an
instance of such solitary waves are compactions, which possess
a finite (compact) support, and peakons, whose peaks possess
a discontinuous first derivative. These kinds of solitary waves
are of extreme important owing to their efficiency and of course
flexibility in the long-distance optical communication.

It worth noting that optical fibers are thin long strands of
ultra-pure glass or plastic such that a light can be transmitted
from one end to another without much attenuation or loss. In
order to have a clear vision on the affect of parameters to the
transmission of solitons, we consider the following investigation:

Suppose that α ∈ C, then the solutions reported in Equations
(28), (29), (35), (36), (41), and (42) will turn to periodic wave
solutions with singularity. This shows that when α ∈ C, the
long distance light transmission through the optical materials
will automatically be affected or lost owing to the smaller
attenuation. The plain understanding for the physical features
and mechanisms to the reported solutions by suitable choice
of the parameter values are shown through 2D and 3D. The
perspective view and the propagation pattern of the wave along
the x-axis of the obtained dark optical solitons appeared in (28),
(35), (41), singular optical solitons appeared in Equations (29),
(36), and (42), trigonometric solutions appeared in Equations
(25), (26), (43), and (44) can be seen in the 3D and 2D plots in
Figures 1–3.

7. CONCLUSION

This research obtained some new optical soliton solutions with
beta derivative for CLL in optical fibers. Three integration
schemes which are RB sub-ODE, GB sub-ODE and GT are
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FIGURE 3 | Some physical features of the obtained solutions with the parameter values a = k = w = 1.2, C = −1, µ = 2.2, λ = 2.5, b = 1.7, α = 0.3, υ = 0.3. (A) 3

and 2 dimensional plots for (41). (B) 3 and 2 dimensional plots for (42). (C) 3 and 2 dimensional plots for (43). (D) 3 and 2 dimensional plots for (44).

applied to reach such solutions. The constraints conditions for
the existence of soliton solutions are reported. The solutions
are obtained using newly introduced fractional derivative called
beta derivative. Numerical simulations of some of the obtained
solutions are illustrated.
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