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Abstract: The q-homotopy analysis transform method (q-HATM) is employed to find the solution
for the fractional Kolmogorov–Petrovskii–Piskunov (FKPP) equation in the present frame work.
To ensure the applicability and efficiency of the proposed algorithm, we consider three distinct initial
conditions with two of them having Jacobi elliptic functions. The numerical simulations have been
conducted to verify that the proposed scheme is reliable and accurate. Moreover, the uniqueness and
convergence analysis for the projected problem is also presented. The obtained results elucidate that
the proposed technique is easy to implement and very effective to analyze the complex problems
arising in science and technology.

Keywords: q-homotopy analysis transform method; fractional Kolmogorov–Petrovskii–Piskunov
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1. Introduction

Integration and differentiation with arbitrary order is called fractional calculus (FC), and it is the
general expansion of integer order calculus to arbitrary order. Derivatives of arbitrary order were
invented by Leibnitz soon after the integer order derivatives. Recently, FC has become a powerful tool
because of its favorable properties such as analyticity, linearity, and nonlocality. With the fast growth
of digital computer knowledge, many researchers have started to work on the theory and applications
of FC to present their view points.

Moreover, many pioneering references are available for diverse definitions of fractional calculus,
this has laid the groundwork for FC study [1–6]. The theory of fractional-order calculus has been
related to practical projects, and it has been applied to study many interesting topics including chaos
theory [7], biomathematics [8], financial models [9], optics [10], and other areas. The analytical and
numerical solutions for differential equations of fractional order present in the above phenomena play
a vital role in describing the characters of nonlinear complex problems as they exist in daily life.

Fractional order models extend our concepts of differentiability, and they incorporate non-local
and systematic memory effects through fractional order space and time derivatives [11]. These features
allow us to model phenomena across multiple time and space scales without having to partition the
problem into smaller and smaller compartments. The extent to which a fractional order model will
span multiple scales is based on an underlying presumption that fractional derivatives can limit or
capture salient features of complex phenomena. In interdisciplinary fields, many systems can be
described more accurately and more conveniently by fractional differential equations. For instance,
fractional derivatives have been widely used in mathematical modeling of viscoelastic materials [12].
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The anomalous diffusion phenomena in nonhomogeneous media can be explained by non-integer,
derivative-based equations of diffusion [13]. Another example of an element with fractional order is
fractance, which is an electrical circuit with non-integer order impedance that has both resistance and
capacitance properties [14]. Moreover, it has been shown that the dynamic process of heat conduction
can be modeled more adequately via fractional order calculus [15]. In biology, the membranes of
biological cells are proven to have fractional order electrical conductance and are classified among
non-integer order systems [16,17]. In economics, it is known that some finance systems can display
fractional order dynamics [18].

In [19], Kolmogorov, Petrovskii, and Piskunov initiated the traveling waves theory and derived
an equation called Kolmogorov–Petrovskii–Piskunov (KPP) equation. The KPP equation initially arose
from the study of genetic models in the increase of microorganisms. Later, it was applied to analyze
various biological, physical, and chemical models. Mainly, it is used in biological models to elucidate
the progression of microbiological population densities (cells or bacteria) in terms of space–time, as a
result of diffusion mechanisms. Particularly, nonlocal models are designed to elucidate the patterns
of formation in bacterial regions [20]. This helps to analyze the micro-morphogenesis, which is of
particular interest in the elementary phenomena of contemporary microbiology [21]. Now, we consider
a nonlinear KPP equation [22]:

∂v(x, t)
∂t

− ∂2v(x, t)
∂x2 + av(x, t) + bv2(x, t) + cv3(x, t) = 0, x ∈ R, t ∈ [0, ∞) , (1)

where a, b, and c are constants. The KPP equation contains various familiar nonlinear equations in
mathematical physics. In the case of a = −1, b = 0, and c = 1, it reduces to the Newll–Whitehead
equation; For a = µ, b = −(µ + 1), and c = 1, it is called the FitzHugh–Nagumo equation; and for
a = −1, b = 1, and c = 0, it is a special case of the Fisher equation (i.e., vt − vxx = v− v2). In the
present investigation, we consider the fractional KPP (FKPP) equation [23,24]:

∂µv(x, t)
∂tµ − ∂2v(x, t)

∂x2 + 2v3(x, t) = 0, 0 < µ ≤ 1, (2)

with the initial condition v(x, 0) =
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                   ‖𝑣 − 𝑣 ‖ ≤ ‖𝑣 − 𝑣 ‖. 

But ‖𝑣 − 𝑣 ‖ < ∞, consequently as 𝑚 → ∞ then ‖𝑣 − 𝑣 ‖ → 0, therefore, the sequence 𝑣  is a 
Cauchy sequence in 𝐶 𝐽 . It yields 𝑣  and is a convergent sequence. This concludes our required 
results. 

5. Solution for the fractional KPP equation 

In this part, we consider two distinct initial conditions for the FKPP equation to validate the 
applicability and efficiency of the proposed algorithms.  
Case (𝒊). 

ℊ (𝑥) = 𝜌𝑥 𝑠𝑑 √2𝜀𝜌𝑥2 , √22 , (25) 

where 𝑠𝑑 √ , √  is the Jacobi elliptic function, and 𝜀 and 𝜌 are arbitrary constants. The exact 
solution for the classical KPP equation is given by 𝑣(𝑥, 𝑡) = 𝜌𝑥 𝑠𝑑 √2𝜀𝜌(𝑥 + 6t)2 , √22 . 
On solving Equation (20) with the initial condition (24), we obtain  𝑣 (𝑥, 𝑡) = 𝜌𝑥 𝑠𝑑 √ , √ ,  

 𝑣 (𝑥, 𝑡) = ℏ (𝑥𝜌 (−3√2 𝑐𝑑 √ √ , √  𝑛𝑑 √ √ , √  − √2𝑎𝑥 𝜌 𝑐𝑑 √ √ , √  

          ×  𝑠𝑑 √ √ , √ + 𝑥 𝜌 𝑠𝑑 √ √ , √ (−(−2 + √2)𝜀 𝑛𝑑 √ √ , √ +  2 𝑠𝑑 √ √ , √ ))), 
 𝑣 (𝑥, 𝑡) = ( ℏ)ℏ (𝑥𝜌 (−3√2 𝑐𝑑 √ √ , √  𝑛𝑑 √ √ , √ − √2𝜀𝑥 𝜌 𝑐𝑑 √ √ , √  

          ×  𝑠𝑑 √ √ , √ + 𝑥 𝜌 𝑠𝑑 √ √ , √ (−(−2 + √2)𝜀 𝑛𝑑 √ √ , √ + 2 𝑠𝑑 √ √ , √ ))) 

          + ℏ  (20𝜀 ⁄ 𝑥 𝜌 𝑐𝑑 √ √ , √ 𝑛𝑑 √ √ , √ + 2𝜀 𝑥 𝜌 𝑐𝑑 √ √ , √ 𝑠𝑑 √ √ , √  

          − 20√𝜀𝑥 𝜌 𝑐𝑑 √ √ , √ 𝑛𝑑 √ √ , √ ( −1 + √2 𝜀 𝑛𝑑 √ √ , √ + (3√2 − 2(−2 

          + √2)𝜀)𝑠𝑑 √ √ , √ + 𝜀 𝑐𝑑 √ √ , √ 𝑠𝑑 √ √ , √ (15√2 − 4(6 + 7(−1 + √2)𝜀)𝑥 𝜌  

          × 𝑛𝑑 √ √ , √ +  4(−3√2 + (−2 + √2)𝜀)𝑥 𝜌 𝑠𝑑 √ √ , √ ) +𝑠𝑑 √ √ , √ (2(3 − 

          ×  2√2)𝜀 𝑥 𝜌 × 𝑛𝑑 √ √ , √ + 12𝑠𝑑 √ √ , √ −1 + 𝑥 𝜌 𝑠𝑑 √ √ , √  

          + 𝜀 𝑛𝑑 √ √ , √  (15(−2 + √2) + 4(6 − 3√2 + (−4 + 3√2)𝜀)𝑥 𝜌 𝑠𝑑 √ √ , √ ))), 

 ⋮ 
On continuing the same procedure, the remaining iterative terms can be found.  

(x). Here, v(x, t) specifies the state evolution over the
spatial-temporal domain characterized by the coordinates x, t, respectively.

Recently, a number of new and advanced schemes have been developed to study the differential
systems of fractional orders. These schemes are in parallel to the formation of new computational
algorithms and symbolic programming. Most of the complex phenomena, including chaos, solitons,
asymptotic properties, singular formation, etc., remained undetected or were in feeble states in the
pre-computer era. New mathematical theories and analytical techniques that have been combined
with recent computational algorithms have precipitated this revolution in our understanding, and this
aids us in our study of nonlinear phenomena.

A Chinese mathematician, Liao Shijun, proposed the homotopy analysis method (HAM) [25,26] by
employing the fundamental concept of differential geometry and topology, called homotopy. Recently,
HAM has been efficiently employed to analyze and find the solution for problems arising in distinct
areas of science and technology. In connection with this, the q-homotopy analysis transform method
(q-HATM) was proposed by Singh et al. [27], which is an elegant amalgamation of q-HAM and the
Laplace transform. The future scheme controls and manipulates the series solution, which quickly
converges to the exact solution in a short, permissible region. As a result, many authors have recently
analyzed the different phenomena situated in different areas with the help of q-HATM, including
Srivastava et al. who studied models of vibration equations of arbitrary order [28], Singh et al. who
were employed to find the solution to the fractional Drinfeld–Sokolov–Wilson equation [29], Bulut et al.
who analyzed HIV infection of CD4+T lymphocyte cells with a fractional model [30], Kumar et al. who
analyzed the model of Lienard’s equation [31], and many others [32–35].
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On employing the methods with perturbation, linearization, or discretization techniques,
we obtained only approximate solutions for nonlinear complex problems. These problems were
appraised by exerting different schemes having their own limitations and weakness, including more
time for evaluation, massive computational work, and obtaining divergent results. The classical
technique (i.e., HAM) necessitates more time for computational work and a large computer memory.
To overcome these limitations, there is a need to combine this technique with already available
transform techniques. The enhancement of the proposed technique is its proficiency of amalgamating
two strong algorithms to solve linear and nonlinear fractional differential equations, both numerically
and analytically. The proposed method provides many strong properties, including nonlocal
effect, a straightforward solution procedure, a large convergence region free from any assumptions,
discretization, and perturbation. It is worth revealing that the Laplace transform with semi-analytical
techniques requires less CPU time to evaluate solutions for nonlinear complex models and phenomena
in science and technology. The q-HATM solution involves two auxiliary parameters, } and n, which
helps us to adjust and control the convergence of the solution. We can say that the proposed technique
can decrease computation time and work compared to other traditional techniques while maintaining
great efficiency of the obtained results. Therefore, in the present frame work we employ q-HATM to
investigate the nonlinear FKPP equation.

Analytical and numerical solutions for the nonlinear fractional differential equations are of
fundamental importance since most complex phenomena are modelled mathematically by differential
and integral equations, but actually require a fractional order. There are many methods available
in the literature to solve these equations. The KPP equation is studied through distinct techniques
like the discrimination algorithm [36], the (G’/G)-expansion method [37], the homotopy perturbation
method (HMP) [23], the generalized two-dimensional differential transform method [24], and many
others [22,38–42]. The rest of the paper is arranged as follows. In Section 2 the preliminaries of
fractional order integrals and derivatives and the Laplace transform are presented. Section 3 concerns
the fundamental procedure of the proposed algorithm for the fractional KPP equation. In Section 4
the convergence analysis of the technique is presented. In Section 5, a solution for the fractional KPP
equation is investigated. In Sections 6 and 7, the numerical simulation and discussions and concluding
remarks are cited.

2. Preliminaries

We recall the definitions and notations of FC and the Laplace transform, which shall be employed
in the present frame work:

Definition 1. The fractional integral of a function f (t) ∈ Cδ (δ ≥ −1) and of order µ > 0, initially defined by
Riemann–Liouville, which is presented [1,2] as

Jµ f (t) =
1

Γ(µ)

∫ t

0
(t− ϑ)µ−1 f (ϑ)dϑ, J0 f (t) = f (t). (3)

Definition 2. The fractional derivative of f ∈ Cn
−1 in the Caputo [3] sense is defined as

Dµ
t f (t) =

{
dn f (t)

dtn , µ = n ∈ N ,
1

Γ(n−µ)

∫ t
0 (t− ϑ)n−µ−1 f (n)(ϑ)dϑ, n− 1 < µ < n , n ∈ N.

(4)

Definition 3. The Laplace transform (LT) of a Caputo fractional derivative Dµ
t f (t) is represented [4,5] as

L
[

Dµ
t f (t)

]
= sµF(s)−

n−1

∑
r=0

sµ−r−1 f (r)(0+), (n− 1 < µ ≤ n), (5)



Mathematics 2019, 7, 265 4 of 18

where F(s) symbolizes the LT of the function f (t).

3. Proposed Algorithm for the Fractional Kolmogorov–Petrovskii–Piskunov (KPP) Equation

In this segment, we applied a fundamental solution procedure of the proposed algorithm for the
FKPP equitation. First, we consider a fractional order, nonlinear KPP equation:

Dµ
t v(x, t)− ∂2v(x, t)

∂x2 + 2v3(x, t) = 0, 0< µ ≤ 1, t >0, (6)

subjected to the initial condition
v(x, 0) =
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On continuing the same procedure, the remaining iterative terms can be found.  

(x), (7)

where Dµ
t v(x, t) denotes the fractional Caputo derivative of the function v(x, t). Here, v(x, t) is a

bounded function (i.e., for a number ε > 0 we have ‖v‖ ≤ P), Now, by performing the LT on
Equation (5) and make use of conditions provided in Equation (7), we get

L[v(x, t)]− 1
s
[
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(x)] +
1
sµ L

{
− ∂2v

∂x2 + 2v3
}

= 0. (8)

We define the nonlinear operator with the assistance of Equation (8), as

N [ϕ(x, t; q)] = L[ϕ(x, t; q)]− 1
s
[
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(x)] +
1
sµ L

{
−∂2 ϕ(x, t; q)

∂x2 + 2ϕ3(x, t; q)
}

. (9)

where q ∈
[
0, 1

n

]
, and ϕ(x, t; q) is a real function of x, t, and q. For a non-zero auxiliary function, we

construct a homotopy as follows [43]:

(1− nq)L[ϕ(x, t; q)− v0(x, t)] = }qN [ϕ(x, t; q)], (10)

where L is a symbol of LT, } 6= 0 is an auxiliary parameter, q ∈
[
0, 1

n

]
(n ≥ 1) is the embedding

parameter, and v0(x, t) is an initial guess of v(x, t). The following results hold respectively for q = 0
and q = 1

n :

ϕ(x, t; 0) = v0(x, t), ϕ(x, t;
1
n
) = v(x, t). (11)

Thus, by amplifying q from 0 to 1
n , the solution ϕ(x, t; q) converges from v0(x, t) to the solution v(x, t).

Expanding the function ϕ(x, t; q) in series form by applying the Taylor theorem [44] near to q,
one can get

v(x, t; q) = v0(x, t) +
∞

∑
m=1

vm(x, t)qm, (12)

where

vm(x, t) =
1

m!
∂m ϕ(x, t; q)

∂qm

∣∣∣∣q=0. (13)

On choosing the auxiliary linear operator, v0(x, t), n and }, the series (11) converges at q = 1
n and then

it yields one of the solutions for Equation (6):

v(x, t) = v0(x, t) +
∞

∑
m=1

vm(x, t)(
1
n
)

m
. (14)

Now, the zero-th order deformation Equation (10) differentiates m-times with respect to q, is then
divided by m!, and finally assigns q = 0, which gives
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L[vm(x, t)− kmvm−1(x, t)] = }<m(
→
v m−1), (15)

where
→
v m = {v0(x, t), v1(x, t), . . . , vm(x, t)}. (16)

Employing the inverse LT on Equation (15), it yields

vm(x, t) = kmvm−1(x, t) + }L−1
[
<m(

→
v m−1)

]
. (17)

Then, we define <m(
→
v m−1) for the cited equation as follows:

<m

[→
v m−1

]
= L[vm−1(x, t)]− (1− km

n ) 1
s [
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(x)]

+ 1
sµ L
{
− ∂2vm−1

∂x2 + ∑m−1
i=0 (∑i

j=0 vjvi−j)vm−1−i

}
,

(18)

where

km =

{
0, m ≤ 1,
n, m > 1.

(19)

By Equation (17), Equation (18) is reduced to

vm(x, t) = (km + })vm−1(x, t)− (1− km
n )L−1

{
1
s [
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(x)]
}

+ }L−1
[

1
sµ L
{
− ∂2vm−1

∂x2 + ∑m−1
i=0 (∑i

j=0 vjvi−j)vm−1−i

}]
.

(20)

Finally, on solving Equation (20) we get the iterative terms of vm(x, t). The q-HATM series solution is
presented by

v(x, t) =
∞

∑
m=0

vm(x, t). (21)

4. Convergence Analysis of the Technique

Here, we present the convergence analysis of the proposed algorithm for the FKPP equation

Theorem 1. (Uniqueness theorem) The obtained solution for the FKPP Equation (6) with the aid of q-HATM is
unique wherever 0 < λ < 1, where λ = (km + }) + }(δ2 + 2(P2 + Q2 + PQ))T .

Proof. The solution for the FKPP equation defined in Equation (6) is presented as

v(x, t) =
∞

∑
m=0

vm(x, t),

where

vm(x, t) = (km + })vm−1(x, t)− (1− km

n
)L−1(
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(x)) + }L−1
{

1
sµ L

[
−∂2v(x, t)

∂x2 + 2v3(x, t)
]}

.

If possible, let v and vn be the two distinct solutions for the FKKP equation such that |v| ≤ P and
|vn| ≤ Q, then using the above relation, we have

|v− vn| =
∣∣∣∣(km + })(v− vn) + }L−1

{
1
sµ L(−( ∂2v

∂x2 −
∂2vn

∂x2 ) + 2(v3 − vn3))

}∣∣∣∣. (22)
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By employing convolution theorem for LT, we obtained

|v− vn| = (km + })|v− vn|+ }
∫ t

0 (
∣∣∣ ∂2v

∂x2 − ∂2vn

∂x2

∣∣∣+ ∣∣2(v3 − vn3)
∣∣) (t−ξ)µ

Γ(µ+1)dξ,

≤ (km + })|v− vn|+ }
∫ t

0 ( ∂2

∂x2 |v− vn|+ 2
∣∣(v− vn)(v2 + vn2 + vvn)

∣∣) (t−ξ)µ

Γ(µ+1)dξ,

≤ (km + })|v− vn|+ }
∫ t

0 (δ2|v− vn|+ 2
∣∣(v− vn)(P2 + Q2 + PQ)

∣∣) (t−ξ)µ

Γ(µ+1)dξ,

where δ2 = ∂2

∂x2 . By the help of the integral mean value, the above equation reduces to

|v− vn|≤ (km + })|v− vn|+ }(δ2|v− vn|+ 2
∣∣∣(v− vn)(P2 + Q2 + PQ)

∣∣∣)T
|v− vn|≤ λ|v− vn|

(1− λ)|v− vn|≤ 0

Since 0 < λ < 1, then |v− vn| = 0, which gives v = vn. This proves the uniqueness of the solution. �

Theorem 2. (Convergence theorem) Suppose E is a Banach space and F : E→ E is mapping (nonlinear).
Presume that

‖F(u)− F(v)‖ ≤ λ‖u− v‖, ∀ u, v ∈ E, (23)

then by the aid of Banach’s fixed point theory [45,46] there is a fixed point for F. Moreover, the sequence achieved
with the solution obtained by q-HATM converges to a fixed point F with an arbitrary choice of u0, v0 ∈ E and

‖vm − vn‖ ≤
λn

1− λ
‖v1 − v0‖, ∀ u, v ∈ E. (24)

Proof. Let (C[J], ‖.‖) be a Banach space of all continuous functions on J with the norm symbolized as
‖g(t)‖ = max

t∈J
|g(t)|. First, we prove {vn} is a Cauchy sequence in the Banach space.

Now, consider

‖vm − vn‖ = max
t∈J
|vm − vn|

= max
t∈J

∣∣∣∣(km + })(vm−1 − vn−1)

+ }L−1( 1
sµ L
[
−( ∂2vm−1

∂x2 −
∂2vn−1

∂x2 ) + 2(v3
m−1 − v3

n−1)
]
)
∣∣∣

≤ max
t∈J
{(km + })|(vm−1 − vn−1)|

+ }L−1( 1
sµ L
[∣∣∣ ∂2vm−1

∂x2 −
∂2vn−1

∂x2

∣∣∣+ 2
∣∣v3

m−1 − v3
n−1

∣∣])}
On employing a convolution theorem for LT, we get

‖vm − vn‖ ≤ max
t∈J

[(km + })|(vm−1 − vn−1)|

+ }
t∫

0
(
∣∣∣ ∂2vm−1

∂x2 −
∂2vn−1

∂x2

∣∣∣+ 2
∣∣v3

m−1 − v3
n−1

∣∣)] (t−ξ)µ

Γ(µ+1)dξ,

≤ max
t∈J

[(km + })|vm−1 − vn−1|

+ }
t∫

0
(δ2|vm−1 − vn−1|+ 2

∣∣(vm−1 − vn−1)(P2 + Q2 + PQ)
∣∣)] (t−ξ)µ

Γ(µ+1)dξ.
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With the aid of the integral mean value theorem [44,45], the above relation reduced to

‖vm − vn‖ ≤ max
t∈J

[(km + })|vm−1 − vn−1|

+ }(δ2|vm−1 − vn−1|+ 2
∣∣(vm−1 − vn−1)(P2 + Q2 + PQ)

∣∣)T ],
‖vm − vn‖ ≤ λ‖vm−1 − vn−1‖.

Setting m = n + 1, it yields:

‖vn+1 − vn‖ ≤ λ‖vn − vn−1‖ ≤ λ2‖vn−1 − vn−2‖ ≤ . . . ≤ λn‖v1 − v0‖.

On using triangular inequality, we have

‖vm − vn‖ ≤ ‖vn+1 − vn‖+ ‖vn+2 − vn+1‖+ . . . + ‖vm − vm−1‖
≤
[
λn + λn+1 + . . . + λm−1]‖v1 − v0‖

≤ λn[1 + λ + λ2 + . . . + λm−n−1]‖v1 − v0‖
≤ λn

[
1−λm−n−1

1−λ

]
‖v1 − v0‖.

As 0 < λ < 1, so 1− λm−n−1 < 1, then we have

‖vm − vn‖ ≤
λn

1− λ
‖v1 − v0‖.

But ‖v1 − v0‖ < ∞, consequently as m→ ∞ then ‖vm − vn‖ → 0 , therefore, the sequence {vn} is a
Cauchy sequence in C[J]. It yields {vn} and is a convergent sequence. This concludes our required
results. �

5. Solution for the fractional KPP equation

In this part, we consider two distinct initial conditions for the FKPP equation to validate the
applicability and efficiency of the proposed algorithms.

Case (i).
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On continuing the same procedure, the remaining iterative terms can be found.  

(x) = ρx sd(
√

2ερx2

2
,

√
2

2
), (25)

where sd(
√

2ερx2

2 ,
√

2
2 ) is the Jacobi elliptic function, and ε and ρ are arbitrary constants. The exact solution for

the classical KPP equation is given by

v(x, t) = ρx sd(
√

2ερ(x2 + 6t)
2

,

√
2

2
).

On solving Equation (20) with the initial condition (24), we obtain
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v0(x, t) = ρx sd(
√

2ερx2

2 ,
√

2
2 ),

v1(x, t) = }tµ

Γ[µ+1] (xρ2(−3
√

2 cd(
√

εx2ρ√
2

, 1√
2
) nd(

√
εx2ρ√

2
, 1√

2
) −
√

2ax2ρ cd(
√

εx2ρ√
2

, 1√
2
)

2

× sd(
√

εx2ρ√
2

, 1√
2
) + x2ρ sd(

√
εx2ρ√

2
, 1√

2
)(−(−2 +

√
2)ε nd(

√
εx2ρ√

2
, 1√

2
)

2
+ 2 sd(

√
εx2ρ√

2
, 1√

2
)

2
))),

v2(x, t) = (n+})}tµ

Γ[µ+1] (xρ2(−3
√

2 cd(
√

εx2ρ√
2

, 1√
2
) nd(

√
εx2ρ√

2
, 1√

2
)−
√

2εx2ρ cd(
√

εx2ρ√
2

, 1√
2
)

2

× sd(
√

εx2ρ√
2

, 1√
2
) + x2ρ sd(

√
εx2ρ√

2
, 1√

2
)(−(−2 +

√
2)ε nd(

√
εx2ρ√

2
, 1√

2
)

2
+ 2 sd(

√
εx2ρ√

2
, 1√

2
)

2
)))

+ }2ρ3x t2µ

Γ[2µ+1] (20ε3/2x2ρ cd(
√

εx2ρ√
2

, 1√
2
)

3
nd(

√
εx2ρ√

2
, 1√

2
) + 2ε2x4ρ2cd(

√
εx2ρ√

2
, 1√

2
)

4
sd(
√

εx2ρ√
2

, 1√
2
)

− 20
√

εx2ρ cd(
√

εx2ρ√
2

, 1√
2
)nd(

√
εx2ρ√

2
, 1√

2
)((−1 +

√
2)ε nd(

√
εx2ρ√

2
, 1√

2
)

2
+ (3
√

2− 2(−2

+
√

2)ε)sd(
√

εx2ρ√
2

, 1√
2
)

2
+ ε cd(

√
εx2ρ√

2
, 1√

2
)

2
sd(
√

εx2ρ√
2

, 1√
2
)(15
√

2− 4(6 + 7(−1 +
√

2)ε)x4ρ2

×nd(
√

εx2ρ√
2

, 1√
2
)

2
+ 4(−3

√
2 + (−2 +

√
2)ε)x4ρ2sd(

√
εx2ρ√

2
, 1√

2
)

2
) + sd(

√
εx2ρ√

2
, 1√

2
)(2(3−

× 2
√

2)ε2x4ρ2 × nd(
√

εx2ρ√
2

, 1√
2
)

4
+ 12sd(

√
εx2ρ√

2
, 1√

2
)

2
(−1 + x4ρ2sd(

√
εx2ρ√

2
, 1√

2
)

2
)

+ ε nd(
√

εx2ρ√
2

, 1√
2
)

2
(15(−2 +

√
2) + 4(6− 3

√
2 + (−4 + 3

√
2)ε)x4ρ2sd(

√
εx2ρ√

2
, 1√

2
)

2
))),

...

On continuing the same procedure, the remaining iterative terms can be found.

The nature of the solution v(x, t) obtained by q-HATM for the FKPP equation with the initial
conditions considered in Equation (25) is presented in Figure 1a, and the corresponding nature of the
exact solution and surface of absolute error are presented in Figure 1b,c, respectively. Figure 2 is the
responses of obtained solutions for case (i) with distinct fractional Brownian motions and standard
motions (µ = 1). Figure 3 represent the }-curves with diverse values of µ and n obtained by q-HATM
for case (i). This helps us to control and adjust the convergence region of the obtained solution.

The error analysis has been presented in order to show the efficiency of the proposed technique
for the solution to the FKPP equation with the initial conditions considered in case (i), which is
presented in Table 1, for diverse values of x and t with distinct fractional Brownian motions and
standard motions. From the table we can see that as µ increases from µ = 0.8 to 1, the solution gets
closer to the exact solution.

Table 1. Numerical simulations for fractional Kolmogorov–Petrovskii–Piskunov (FKPP) equation in

terms of absolute error (
∣∣∣vExact − vq−HATM

∣∣∣) considered in case (i) using q-HATM at ρ = −0.5, ε =

0.5, } = −1, and n = 1 with distinct x and t for different µ.

x t µ=0.8 µ=0.90 µ=1

0.2

0.02 0.004048 0.001614 4.33982× 10−7

0.04 0.006276 0.002612 8.27204× 10−7

0.06 0.007984 0.003405 7.14642× 10−8

0.08 0.009382 0.004070 2.92827× 10−6

0.1 0.010561 0.004641 9.24811× 10−6

0.4

0.02 0.008131 0.003243 6.42643× 10−6

0.04 0.012647 0.005266 1.89783× 10−5

0.06 0.016140 0.006892 3.54655× 10−5

0.08 0.019029 0.008272 5.37359× 10−5

0.1 0.021493 0.009474 7.16866× 10−5

0.6

0.02 0.012305 0.004914 3.08277× 10−5

0.04 0.019220 0.0080222 8.27743× 10−5

0.06 0.024642 0.010555 1.52659× 10−4

0.08 0.029180 0.012738 2.37386× 10−4

0.1 0.033108 0.014673 3.33966× 10−4

0.8

0.02 0.016605 0.006656 8.82289× 10−5

0.04 0.026002 0.010896 2.05704× 10−4

0.06 0.033399 0.014373 3.48489× 10−4

0.08 0.039628 0.017386 5.12819× 10−4

0.1 0.045047 0.020072 6.95126× 10−4

1

0.02 0.020854 0.008402 1.44746× 10−4

0.04 0.032340 0.013606 2.47111× 10−4

0.06 0.041138 0.017723 2.59702× 10−4

0.08 0.048301 0.021142 3.02914× 10−4

0.1 0.054307 0.024043 3.08285× 10−4
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On continuing the same procedure, the remaining iterative terms can be found.  

(x) = x2. (26)

On solving Equation (20) with the initial condition (25), we obtain

v0(x, t) = x2,
v1(x, t) = }tµ

Γ[µ+1] (−2 + 2x6),

v2(x, t) = (n+})}tµ

Γ[µ+1] (−2 + 2x6) + 12}2(−6+x6)x4t2µ

Γ[2µ+1] ,

v3(x, t) = (n+})2}tµ

Γ[µ+1] (−2 + 2x6) + 12(n+})}2(−6+x6)x4t2µ

Γ[2µ+1] + 24t3µx2}3

Γ[1+µ]2Γ[1+3µ]
(3(12− 21x6 + x12)Γ[1 + µ]2

+ (−1 + x6)
2Γ[1 + 2µ]),

...

On continuing the same procedure, the remaining iterative terms can be found.

The nature of the FKPP equation with the initial conditions considered in Equation (26) for
different µ (i.e., 0.50, 0.75, and 1) is observed in Figure 4, which elucidates the rule of fractional
derivatives in the projected problem. Figure 5 represent the }-curves with diverse values of µ and n
obtained by q-HATM for case (ii).
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In order to show the efficiency of the proposed technique for case (ii), the numerical simulations
have been connected, which are presented in Table 2.
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Figure 5. }-curves obtained for v(x, t) in case (ii) with diverse µ when x = 0.1 and t = 0.01 at distinct n.

Table 2. Numerical simulations for the FKPP equation considered in case (ii) using q-HATM at } = −1
and n = 1 with distinct x and t for different µ.

x t µ = 0.7 µ = 0.8 µ = 0.9 µ = 1

0.01

0.2 0.71354 0.59265 0.48863 0.40010
0.4 1.15909 1.03179 0.91172 0.80012
0.6 1.53948 1.42709 1.31320 1.20010
0.8 1.88289 1.79638 1.70125 1.60010
1 2.20119 2.14744 2.07961 2.00011

0.05

0.2 0.71591 0.59502 0.49101 0.40249
0.4 1.16139 1.03412 0.91407 0.80246
0.6 1.54170 1.42936 1.31549 1.20242
0.8 1.88502 1.79856 1.70347 1.60236
1 2.20323 2.14953 2.08174 2.00227

0.1

0.2 0.72283 0.60217 0.49829 0.40986
0.4 1.16738 1.04053 0.92080 0.80942
0.6 1.54654 1.43477 1.32138 1.20870
0.8 1.88855 1.80275 1.70827 1.60769
1 2.20530 2.15230 2.08521 2.00640

Case (iii).
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 ⋮ 
On continuing the same procedure, the remaining iterative terms can be found.  

(x) =
2x sd(x2, 1√

2
)

dn(x2, 1√
2
)

, (27)

where sd(x2, 1√
2
) and dn(x2, 1√

2
) are the Jacobi elliptic functions.
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On solving Equation (20) with the initial condition (26), we obtain

v0(x, t) =
2x sd(x2, 1√

2
)

dn(x2, 1√
2
)

,

v1(x, t) = − 2}xtµ

dn
[

x2, 1√
2

]3
Γ[µ+1]

(2
√

2x2cd(x2, 1√
2
)

2
dn(x2, 1√

2
)

2
sd(x2, 1√

2
) + 2cd(x2, 1√

2
)dn(x2, 1√

2
)

×nd(x2, 1√
2
)(3dn(x2, 1√

2
) + 2

√
2x2cn(x2, 1√

2
)sn(x2, 1√

2
)) + sd(x2, 1√

2
)(3
√

2cn(x2, 1√
2
)

×dn(x2, 1√
2
)sn(x2, 1√

2
) + 2x2cn(x2, 1√

2
)

2
(
√

2dn(x2, 1√
2
)

2
+ 2sn(x2, 1√

2
)

2
)

+ dn(x2, 1√
2
)

2
((−2 +

√
2)nd(x2, 1√

2
)

2 −
√

2sn
[

x2, 1√
2

]2
)))),

v2(x, t) = − 2(n+})}xtµ

dn(x2, 1√
2
)

3
Γ[µ+1]

(2
√

2x2cd(x2, 1√
2
)

2
dn(x2, 1√

2
)

2
sd(x2, 1√

2
) + 2cd(x2, 1√

2
)dn(x2, 1√

2
)

×nd(x2, 1√
2
)(3dn(x2, 1√

2
) + 2

√
2x2cn(x2, 1√

2
)sn(x2, 1√

2
)) + sd(x2, 1√

2
)

×(3
√

2cn(x2, 1√
2
)dn(x2, 1√

2
)sn(x2, 1√

2
) + 2x2cn(x2, 1√

2
)

2
(
√

2dn(x2, 1√
2
)

2
+ 2sn(x2, 1√

2
)

2
)

+ 2x2(−4sd(x2, 1√
2
)

2
+ dn(x2, 1√

2
)

2
((−2 +

√
2)nd(x2, 1√

2
)

2 −
√

2sn
[

x2, 1√
2

]2
))))

− 4t2µx}2

dn(x2, 1√
2
)

5
Γ[2µ+1]

(−4x4cd(x2, 1√
2
)

4
dn(x2, 1√

2
)

4
sd(x2, 1√

2
)− 4x2cd(x2, 1√

2
)

3
dn(x2, 1√

2
)

3

×nd(x2, 1√
2
)(5
√

2dn(x2, 1√
2
) + 4x2cn(x2, 1√

2
)sn(x2, 1√

2
))− 2cd(x2, 1√

2
)dn(x2, 1√

2
)

×nd(x2, 1√
2
)(30x2cn(x2, 1√

2
)

2
dn(x2, 1√

2
)(
√

2 dn(x2, 1√
2
)

2
+ 2sn(x2, 1√

2
)

2
)

+ 8x4cn(x2, 1√
2
)

3
sn(x2, 1√

2
)(5dn(x2, 1√

2
)

2
+ 3
√

2sn(x2, 1√
2
)

2
) + 10x2dn(x2, 1√

2
)

×(−12sd(x2, 1√
2
)

2
+ dn(x2, 1√

2
)

2
((−2 +

√
2)nd(x2, 1√

2
)

2 − 4(−1 +
√

2)sd(x2, 1√
2
)

2

− 3
√

2sn(x2, 1√
2
)

2
))− cn(x2, 1√

2
)sn(x2, 1√

2
)(32
√

2x4dn(x2, 1√
2
)

4
+ 96
√

2x4sd(x2, 1√
2
)

2

+ dn(x2, 1√
2
)

2
(−15

√
2 + 8(−1 +

√
2)x4nd(x2, 1√

2
)

2 − 16(−2 +
√

2)x4sd(x2, 1√
2
)

2

+ 40x4sn(x2, 1√
2
)

2
))) + cd(x2, 1√

2
)

2
dn(x2, 1√

2
)

2
sd(x2, 1√

2
)(−60x2cn(x2, 1√

2
)dn(x2, 1√

2
)

×sn(x2, 1√
2
) + dn(x2, 1√

2
)

2
(−15

√
2− 24x4cn(x2, 1√

2
)

2
+ 56(−1 +

√
2)x4nd(x2, 1√

2
)

2

+ 16x4sd(x2, 1√
2
)

2 − 8
√

2x4sd(x2, 1√
2
)

2
+ 24x4sn(x2, 1√

2
)

2
) + 24x4(4nd(x2, 1√

2
)

2

+
√

2(2sd(x2, 1√
2
)

2 − cn(x2, 1√
2
)

2
sn(x2, 1√

2
)

2
))) + dn(x2, 1√

2
)

4
(4(−3 + 2

√
2)x4

×nd(x2, 1√
2
)

4
+ 5sn(x2, 1√

2
)

2
(3
√

2− 4x4sn[(x2, 1√
2
)

2
) + nd(x2, 1√

2
)

2
(−8(−4

+ 3
√

2)x4sd(x2, 1√
2
)

2
+ 3(−5(−2 +

√
2)− 8(−1 +

√
2)x4sn(x2, 1√

2
)

2
))))),

...

On continuing the same procedure, the remaining iterative terms can be found. Then, the q-HATM series
solution for Equation (20) is presented by

v(x, t) = v0(x, t) +
∞

∑
m=1

vm(x, t)(
1
n
)

m
. (28)

The surface of the considered equation with the initial conditions cited in Equation (27) is
presented in Figure 6a, and the corresponding plot for diverse time (t) is shown in Figure 6b. This helps
us to understand the behavior of the KPP equation when spatial-temporal variables are changed.
Figure 7 is the responses of obtained solutions for case (iii) with distinct fractional Brownian motions
and standard motions (µ = 1). Figure 8 represent the }-curves with distinct values of µ and n
obtained by q-HATM for case (iii). This aids us to control and adjust the convergence region of the
obtained solution.
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Figure 8. ℏ-curves obtained for 𝑣(𝑥, 𝑡) in case (𝑖𝑖𝑖) with diverse 𝜇 when 𝑥 = 0.1 and 𝑡 = 0.01 at 
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In order to show the efficiency of the proposed technique for case (𝑖𝑖𝑖), the numerical simulations 
have been connected, which are presented in Tables 3 for diverse values of 𝑥 and 𝑡 with 
distinct fractional Brownian motions and standard motions. 

Table 3 Numerical simulations for the 𝐹𝐾𝑃𝑃 equation considered in case (𝑖𝑖𝑖) using 𝑞-HATM at  ℏ = −1 and 𝑛 = 1 with distinct 𝑥 and 𝑡 for different 𝜇. 
x t μ=0.8 μ=0.9 μ=1 

0.1 

0.02 0.39544 0.31857 0.25627 
0.04 0.73580 0.63051 0.53892 
0.06 1.07771 0.95890 0.84998 
0.08 1.42750 1.30632 1.18942 
0.1 1.78728 1.67345 1.55725 

0.2 

0.02 1.03187 0.79132 0.61147 
0.04 2.17367 1.76387 1.43330 
0.06 3.48467 2.94515 2.48151 
0.08 4.95178 4.32609 3.75607 
0.1 6.56361 5.89892 5.25702 

0.3 

0.02 2.14834 1.57388 1.16766 
0.04 4.99339 3.89101 3.03371 
0.06 8.49589 6.94886 5.65234 
0.08 12.5737 10.6995 9.02354 
0.1 17.1721 15.1092 13.1473 

0.4 

0.02 3.92819 2.79270 2.01364 
0.04 9.67310 7.36715 5.60298 
0.06 16.9775 13.6543 10.8974 
0.08 25.6269 21.5326 17.8969 
0.1 35.4848 30.9193 26.6014 

Figure 7. Response of q-HATM solution v(x, t) in case (iii) with respect to t at } = −1, n = 1, and
x = 1 for diverse µ.
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Figure 8. }-curves obtained for v(x, t) in case (iii) with diverse µ when x = 0.1 and t = 0.01 at
distinct n.

In order to show the efficiency of the proposed technique for case (iii), the numerical simulations
have been connected, which are presented in Table 3 for diverse values of x and t with distinct fractional
Brownian motions and standard motions.

Table 3. Numerical simulations for the FKPP equation considered in case (iii) using q. -HATM at
} = −1 and n = 1 with distinct x and t for different µ.

x t µ = 0.8 µ = 0.9 µ = 1

0.1

0.02 0.39544 0.31857 0.25627
0.04 0.73580 0.63051 0.53892
0.06 1.07771 0.95890 0.84998
0.08 1.42750 1.30632 1.18942
0.1 1.78728 1.67345 1.55725

0.2

0.02 1.03187 0.79132 0.61147
0.04 2.17367 1.76387 1.43330
0.06 3.48467 2.94515 2.48151
0.08 4.95178 4.32609 3.75607
0.1 6.56361 5.89892 5.25702

0.3

0.02 2.14834 1.57388 1.16766
0.04 4.99339 3.89101 3.03371
0.06 8.49589 6.94886 5.65234
0.08 12.5737 10.6995 9.02354
0.1 17.1721 15.1092 13.1473

0.4

0.02 3.92819 2.79270 2.01364
0.04 9.67310 7.36715 5.60298
0.06 16.9775 13.6543 10.8974
0.08 25.6269 21.5326 17.8969
0.1 35.4848 30.9193 26.6014

0.5

0.02 6.27845 4.41081 3.14532
0.04 15.8083 11.9311 8.98311
0.06 28.0760 22.4336 17.7701
0.08 42.6940 35.7006 29.5059
0.1 59.4191 51.5854 44.1909

6. Numerical Results and Discussion

In this section, we conduct a numerical simulation for the obtained solution of the fractional order
KPP equation with the help of q-HATM. Further, the solution obtained by the proposed method is
more accurate compared to the solution obtained by the other techniques. From the cited tables it is
clear that the proposed problem noticeably depends on order (µ). From the figures, we can see that as
time increases, the solution to the FKPP equation also increases in both the cases.

We can see from the obtained solution that the solution procedure of the proposed method is
straightforward and simple to implement, whereas the solution obtained with the help of techniques
presented in [24] is difficult, and it requires more computation in order to evaluate more terms in the
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series solution. The proposed technique provides us two parameters, namely, auxiliary parameter
(}) and embedding parameter q ∈

[
0, 1

n

]
(n ≥ 1), which helps to control and adjust the convergence

region of the obtained solution. From the tables and plots obtained in the present investigation,
we can say that the proposed technique effectively captures the behavior of the FKPP equation.
Moreover, the future method is very efficient to analyze the fractional order differential equations
with initial conditions that have Jacobi elliptic functions with the help of the mathematical software
MATHEMATICA (Version-10.4, Wolfram Research, Champaign, Illinois, US).

7. Conclusions

In this paper, we profitably employed q-HATM to find the solution for the KPP equation of
fractional order. We considered three cases with two distinct initial conditions having Jacobi elliptic
functions, which were very difficult to solve with the aid perturbation, linearization, and discretization.
The proposed algorithm was free from these difficulties. The novelty of the proposed technique is that
it provides a nonlocal effect, a straightforward solution procedure, and a promising large convergence
region. The convergence analysis is presented with the aid of Banach’s fixed point theory for the
considered problem. In the present investigation we can see that the FKPP equation, having initial
conditions analyzed with Jacobi elliptic functions, finds the approximated analytical solution in the
series form. Further, the obtained solutions contain two parameters, which helps us to control the
convergence of the obtained solution. Finally, we can conclude that the considered technique is highly
coherent and it can be employed to examine wide classes of nonlinear mathematical models that have
fractional orders. They can be applied for understanding the behaviors of complex phenomena in
connected areas of science and technology.
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