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Abstract

In this paper, we study a coupled system of implicit impulsive boundary value
problems (IBVPs) of fractional differential equations (FODEs). We use the Schaefer
fixed point and Banach contraction theorems to obtain conditions for the existence
and uniqueness of positive solutions. We discuss Hyers—Ulam (HU) type stability of the
concerned solutions and provide an example for illustration of the obtained results.
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1 Introduction

The fractional calculus is one of the most emerging areas of investigation. The fractional
differential operators are used to model many physical phenomena in a much better form
as compared to ordinary differential operators, which are local. Results derived by FDEs
are much better and more accurate. For applications and details on fractional calculus, we
refer the readers to [1-7]. Our work is concerned with implicit-type coupled systems of
FODEs with impulsive conditions. The IFODEs are of high worth. Such equations arise
in management sciences, business mathematics and other managerial sciences, and so on.
Some physical phenomena have sudden changes and discontinuous jumps. To model such
problems, we impose impulsive conditions on the differential equations at discontinuity
points. For applications and recent work, we refer the readers to [8—29]. Coupled systems
of FODEs have been studied extensively in the last few decades because in applied sci-
ences, we deal with many physical problems that can be modeled via these systems. We
would like to refer the readers to [30—36] and references therein.

Since in many situations, such as nonlinear analysis and optimization, finding the exact
solution of differential equations is almost difficult or impossible, we consider approxi-
mate solutions. It is important to note that only stable approximate solutions are accept-
able. Various approaches of stability analysis are adopted for this purpose. The HU-type
stability concept has been considered in the numerous literature. The said stability analy-
sis is an easy and simple way in this regard. This type concept of stability was formulated
for the first time by Ulam [37], and then the next year it was elaborated by Hyers [38].
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In the beginning, this concept was applied to ordinary differential equations and then ex-
tended to FODEs. We refer the readers to [39-44]. Very recently, Ali et al. [45], studied
the Ulam-type stability for coupled systems of nonlinear implicit fractional differential
equations.

Motivated by the aforesaid work, in this paper, we investigate the following coupled

system with impulsive and (m + 2)-point boundary conditions:

§DIE®) = D(t, (), §DIE®), £ (0,1)t7,j=1,2...,m,

SDLu(t) = w (@), CD%(:)) te[0,1,t#ti=1,2,...,m,

£0)=hE),  £1)=g¢) and ) =w(),  wu@)=f(w), (1)
AE(L) =LE®R), AL =LE®), j=12...,m,

Ap(ty) = L;(u(t), AW (6) =L(u(®), i=12,...,n

where 1 <, <2,®,¥ :[0,1] x R x R— R, and g,i;f,«k : C(J,R) = R are continuous

functions defined as

P P
g&) =) 2EE),  hE) =) 1EMm),

Jj=1 Jj=1

q q
fw) =Y sinE), k@)=Y i),

i=1 i=1

&, mi§,n€(0,1)fori=1,2,...,q,j=1,2,...,p,and

AE(L) =&(t) -&(¢)),
AE'() =8'(¢)-€'(t),
)= u(t)) - n(t),

A () = w' (&) = 1 (&)-

The notations &(tj*), w(t’) are right limits, and E(tj‘), w(£7) are left limits; Ij,fj,li,j,» :R— R
are continuous functions; and Df, Dg . are the Caputo-type fractional differential opera-
tors of order o and B, respectively.

For system (1), we discuss necessary and sufficient conditions for the existence and
uniqueness of a positive solution by using the Schaefer fixed point and Banach contraction

theorems. Further, we investigate various kinds of HU and GHU stability.

2 Background materials and some auxiliary results
In this section, we give some basic definitions and results, which are used in the proof of

our results.
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We define the spaces of all piecewise continuous functions

B =PC(,R)={£:] > R:j=0,1,2,3,...,mE(t),&(¢;) and &'(£),§'(¢))
exist forj=0,1,2,3,...,m},

By =PC(,R) = {p:] > R:i=0,1,2,3,...,mu(t), u(t;) and u' (), 1/ (£)
exist fori=0,1,2,3,...,n}.

Clearly, B; and B, are Banach spaces under the norms ||£||g, = max,¢; |£(¢)| and ||ulg, =
max,e; | (£)|, respectively. Their product B = B; x B, is also a Banach space with norm

66, p)lls = 1€ 118, + [l tllB,-

Definition 1 ([1]) The Caputo fractional derivative of a function & : (0, 00) — R is defined
by

t(r_ o)l-a-1
§DyE(®) - / 7“”;)_0[) £0(s)ds,

0

where [ = [a] + 1, and [«] denotes the integer part of a real number «.

Definition 2 ([4]) The Riemann-Liouville fractional integral of order « € R, ofa function
& € C((0,00),R) is defined as

oLE (1) = % fo (£ -5 E(s)ds,

where « >0, and I” is the gamma function, provided that the right-hand side is pointwise
defined on (0, 00).

Lemma 1 ([46]) For a >0, we have

0] 0) .
§ ‘( )tl, where | = [a] + 1.
i!

o [§DE@)] =£(t) -
i=0

Lemma 2 ([46]) For a > 0, the differential equation D& (t) = x(t) has the following solu-
tion:

-1

E(t) = olfx(t) + Y

i=0

@) .
§ ’( )i
il

where [ = [a] + 1.

Theorem 1 (Schaefer’s fixed point theorem [47]) Let B be a Banach space, and let T :
B — B be a completely continuous operator. If theset W ={£ € B: £ =nTE&, 0<n<l}is
bounded, then T has a fixed point in B.

Definition 3 ([48]) The coupled system (1) is said to be HU stable if there exists K, g =
max{Kg, Kz} > 0 such that, for € = max{e,, €g} > 0 and for every solution (&, 1) € B of the
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inequality

I6DFE(6) ~ (6, u(0), (DEE M) < €ur LE],
|AE@) - LEG) < €ar j=1,2,...,m,
A8 ) ~LEG)| < € j=1,2,.m;

(2)
I§DL(e) - W (D), SDLuE) < €p, te],
|[Ap(t) - L(u(t)| <eg, i=12,...,m,
|AM/(tl)_jl(M(tl))| E Eﬂ! i: 1;21”';”1
there exists a unique solution (¢, 0) € B with
(&, )@ - (9,0)(0)] <Kupe, te]. (3)

Definition 4 ([48]) The coupled system (1) is said to be GHU stable if there exists ¢ €
C(R*,R*) with ¢(0) = 0 such that, for any approximate solution (&, t) € B of inequality (2),

there exists a unique solution (¢, 0) € B of (1) satisfying
€ 0@ - 2,0)0)]| < ple), te). @)
Denote @5 = max{®@y, P4} € C(J,R) > 0 and Kg,,,0, = max{Ke,, Ko, } > 0.

Definition 5 ([48]) The coupled system (1) is said to be HU-Rassias stable with respect
to Py if there exists a constant Ko, ¢, such that, for some € > 0 and for any approximate

solution (&, 1) € B of the inequalities

§DE() - (6, u(8), §DGE ()] < Pult)ea, tE],

(5)
D () — ¥ (6,60, §DL u(t))| < Pp(D)ep, Le],
there exists a unique solution (¢, 0) € B with
|6, 1)) - (,0)(1)] < Koy05Pape, tE]. (6)

Definition 6 ([48]) The coupled system (1) is said to be GHU-Rassias stable with respect
to @,z if there exists a constant Ke,,¢, such that, for any approximate solution (¢, 1) € B

of inequality (5), there exists a unique solution (%,0) € B of (1) satisfying

(€, 1)(0) = (9,0)(1)] < KoposPapt), te]. )

Remark 1 We say that (&, 1) € B is a solution of the system of inequalities (2) if there exist
functions ©,0 € C(J,R) depending upon &, i, respectively, such that
(i) 10O <€, 100 <ep, t€];
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(ii) and

(DEE®) = @t u(®),§DLE() + O), te],
AE() = [(5()) + 0,
AE' () =T(E() + 6,
SDLu(®) = W (tE@®),SDLu() +6(2), te),
Aplt;) = ILi(u(t)) + 65,
A () = I () + 6.

3 Mainresults

In this section, we present our main results.

Theorem 2 The solution (£, 1) € B of the coupled system

ngg(t)zw(t), te(0,1L,t#t,j=1,2,...,m,

SDLu(t)=¢(t), tel01),t#t,i=1,2,....n

§0)=h), &0)=g&) and pO)=x(),  w@)=£f(w), )
AE(@L) =LE®R), AL =LE®), j=12...,m,

Aplts) = Li(u(t:), AW () =L(u(t), i=1,2,...,n,

is given by the integral equations

£(t) = 1g(8) + (1 - () + X0, (E - H)E ) - Y, t(1 - )T (8)
+ X HEG) = S HEG) + g [ (6 =9 wls) ds
+ @ L Jy (=) e(s) ds
1 Lt =) [ (6 - )" Po(s)ds
- 7 Lt [ (=9 w(s) ds
- e L= 6) [ (6 - 5)*Pols)ds,
k=1,2,...,m,
() =t (1) + (1= k() + Ty (6~ )Ti(at:) — S0, 60— )T (8)
+ 2 L) = S () + g [ (6= 9)P ¢ (s) ds
+ b Y i (6= )P () dspalt)
+ 7o i = 1) [ (6= )¢ (s) ds
— i SR (- 5P e (s) ds()
— 7 L (U= 8) [ (6= )¢ () ds,
k=12,...,n.

Proof The proof can be obtained as in [14, 34]. O
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Corollary 1 In view of Theorem 2, our coupled system (1) has the following solution:

E(t) = 1g(€) + (1 - t)h(&) + Y (- 5)IE ) - Y, H(1 - 4)IE (&)
+ Z,k E@) - X 5 @)

L(t s)a 1P (s, 1uls), §DyE (5)) s
z, LS (=97 (s uls), §DLE (5)) ds

+ 1 Lt =) [ (6 =92 (s, 1(), D45 (5)) ds
@ Zkﬂf (=) D(s, u(s), SDLE(s)) ds
- ﬁzzﬂ(l—tf) (=920 (s, 1u(s), §DLE () s,
k=1,2,...,m,
ple) =t (1) + (1= e () + 3, (¢ = )Ta(8) = 2o 61 = 8) a8
+ Zf () - Y5, e
) ft(t—S)ﬂ W (s, £(s), SDY p(s)) ds
+ g Lina tl 1(t ~ )W (5,£(s), DL u(s)) ds
* osl 5t =) [ (6= 5)P2W (5,8 (s), § D] u(s)) ds
Zk” e 1 (5,£(5), S u(s)) ds

(ﬂlz, 1(1 t) [y (- 9)P2W (s,£(s), § DL uls)) ds,
k=1,2,...,n

(10)

For simplicity, we use use the notations u,:(¢) = @ (¢, u(t), CD’:;E(L‘)) and vg ,(f) =

D(t,&(2), CDﬁ u(2)). To convert the considered problem into a fixed point problem, we

define the operator 7: B — B by T'(§, u)(t) = (;‘; 'g ?))(t)) such that

k
To(E,10)(0) = 1() + (1= (&) + Yt - 5)L(£()

j=1

k k
=Y - p)IE@) + Y L(5())
=1 =1

k 1 ‘
_ Z thiE (L) + m (t— s)“‘luu,g (s)ds
j=1 i

(¢ - s)“’luﬂ,g (s)ds

T4

1 K L
+ 1) ;(t — t]-) ‘/t;l (t] _ S)a_zuu,é (s)ds

k+1

Z/ ) u,, 6 (s) ds

t k tj
I(a-1) 2.0~ t’)/ (6= 9)" g (s)ds,
j=1 b1
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k k

Tp(E, (1) = tf () + (1= () + (¢ = )T () = Y #(1 - t)Tpa(ty)

i=1 i=1
k t

k
1
L) - St gy [ e

i=1 ti

1 & 51
+ Tﬂ) izzlftl(ti —8)"" ve ,(s)ds

i
k

1 i
*FE-D > (-t /t 71();, —~ 8)P2vg () dis

i=1

k+1

) %ﬂ) Z/ -9 ve) ds
i=1 Y-l

i

¢ L K
“TG D > (-t / (ti — )P . (s) ds.
i=1 li-1

We obtain our results under the following assumptions:
(H1) forany &, u € C([0,1],R), there exist K, K, Kr, K. > 0 such that

lg@®) - g | pe < Kells —llec, — |fE) = f()| pe < KrllE = mllpcs

[7(&) = h(w)|| po. < KillE = ellpe,  |6(€) = ()| pe < KillE = llpcs

(H,) for all £&,&, 1,1 € R and ¢ € [0,1] there exist Ly >0, 0 < Loy < 1, Ly > 0, and
0 < Lys <1 such that

|@(t,&, 1) — P(t,E,1)| <Lo1l& —&| + Loolp - fil,

W (6, 1) — W (6 )| < Lyils — €|+ Lualp - ;
(Hs) there exist constants A;, Ay, As and A4 > 0 such that, for £,&, 4, 1 € R,
5E) - L@ = AlE-El, (L) -LE| <AE-El, j=12....m,
() - Ii(1)| < Aslw—al,  |I(w) = L(A] < Aalp -l i=1,2,...,m
(Hy) there exist constants ki, N7, ko, Ny, ks, N3, ka, Ny > 0 such that

L&) <kils] + M, (E)| <kal€l + Noy j=1,2,...,m,
(1) | < kslpl + N5

and ()| <kalpl + Na,i=1,2,...,1
(Hs) there exist constants ks, kg, k7, kg such that

lg@®)| <ks,  |nE)| <ks foralléeC([0,1],R),
[f(w)] < ko|ie ()| < ks

for all u € C([0,1],R);
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(Hg) there exist some functions p1, g1, r1 and ps, g2, 2 € C(J,R*) such that, for £ € J and
(1, &) € B, we have

|@ (£, 1(6), 6D ()] < pr(&) + 1 ()l + i (B[ DEE ()|
with p1* = sup,y [p1(£)], 1" = sup,; |q1(£)], and r1* = sup,y [r1(£)| < 1 and

| (6,60, 6DE1(0)| < p2(8) + q2(O)ll + r2(8)[G D

with py* = sup,.; [pa(t)], g2* = sup,; |g2(t)], and ry* = sup,y [ra(2)] < 1.

Theorem 3 If assumptions (Hy), (H,), (Hs) and the inequality
R = max(81,8;) < 1 (11)

are satisfied, where

2L 1
Ny = | Ky + Ky +2m(A; + Az) + 1 tm o
1-Lo, \Ta+1) TI'(x)

and

Ny | K4 K+ 2n(As + Ag) 4 2L (_L¥m  #
S A R TP S SV T WA §

then the coupled system (1) has a unique solution.

Proof Take (£, ), (£, it) € B and consider
| Ta(%-x /'L)(t) - T(x(éj :a)(t)|

= |t(g(®) - g()) + (1 - ) (h(&) - h(E))
k _ ~ k k
+ Y (- p)EG) -E@) - Dt -5)L(E@) - E@)) + D L(E@) -E())
j=1 j=1 j=1
k
S u(E) - Ew) + f(t 9 1 (5) — () s
j=1

1 &l
* m ; -/t;'1 (t - s)*! (u/ué (s) — Uy e (S)) ds

k

(t- j)// (tj—s)“’z(uu,g(s)—L't,l,g(s)) ds

j=1
k+1

F(a)Z/ (=9 (116) = B (9) s

Page 8 of 21
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k

1-¢t) fj (- 5)¥2 (Mu,g () — tye (s)) ds|, (12)

j=1
which further means that
| To (&, m)(8) = To (€, 1))

k

< |tl|g(&) - g@)] + 11 = el|n(E) - hE)| + Y 1t - ]

j=1

k k
< L) —E@®)| + D11 - 1| TE @) - TE®)| + D _|1E ) - 1E(8)]

Jj=1 Jj=1

+ Z eI £ () - LE ()| +

1 ]
(o) /t] (¢ = )"t () — 6 (s)| s

F()Z/ (= u(5) — ,5)| ds

k

1 vl
4 |t—t'|/ (¢ —5)*2 Uy () =ty 6(s)| ds
F(a_l) Z ! i1 ! ’ It e ‘

j=1

k+1

" T )Z/ (& — ) e (5) — i (s)| s

e 1)Z|1 r|f (6~ 9%t (5) — iy (5) . 13

By assumption (H;) we have

|10 (8) = 1 (0)] = @ (8, 10(8), 110 (8)) = @ (& 1(0), 1y (0))|

< Lo |u(t) = i(®)| + Loo | e (£) — 6 (0)|

=1 L \u - ()] (14)

By assumptions (H;) and (H3) and inequality (14), taking the maximum over the interval J,
from inequality (13) we have

| T, ) - TuE )],

<Kgll& &g, + KullE —&llp, + mA|IE &g,

+ mA||E — &g, + mAL|§ —E|lB, + mA;L||§ —&||p, + %
Ly, m
(1-Loy))I (@ +1)

Ly, (m+1)
T Lo)Ta+1)

<N (& -&lls, + e - 2llg,)s

= il -l LI
x |l - fills, + = iillp, + el — itlln
1 Lol @) 1

e —iells, + e — pells,

Li
(1-Lay)T ()

Page 9 of 21
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where

2L 1+m m
Ny = | K, + K, + 2m(A; + A ! .
! [“ n 2m(As ¢ 2)+1—L¢2(F(a+1)+F(a)>]

Similarly, we have

| T, 1) = Tp (&, i) |, < D2(1 =& lls, + Il = f2lls, )

where

Mo = | Ky 4 K+ 2n(As + Ag) + —oi (LF2 T
T L, Ty T TR ) )

from which we have

|| T(E»M) - T(é’ﬂ)“B S N[“(Srﬂ) - (él ﬁ) ||B]’

where 8 = max{®, R, }. Hence T is a contraction, and therefore, by the Banach contraction
principle, T has a unique fixed point. d

Theorem 4 If assumptions (H)—(Hg) hold, then the coupled system (1) has at least one
solution.

Proof Here we use the Schaefer fixed point theorem. We need to show that the operator
T has at least one fixed point. There are several steps involved in this method.

Step 1: We will show that the operator T is continuous. Take a sequence (§,, ;) —
(&,0) € B. For any t € ], we consider

| To (s 1) (&) — T (&, 1)(2)|
<|tl|g(&n) - g&)] + 11 = t]|1(&s) — h(&)|

k
+ Y =4l @) - (@) Drnl—r,\l(sn(t)) L(5())|

j=1 J=1

k

+Z‘|1 51)) ~L(E@) [+ Y 1115 ) - ()]

j=1

1
+ F(a)/tj(t—S)“—l|uM’g,n(S)—Mﬂyé(s)|d5

k )
1 /’/ i
+ — E (& —8)* e n(s) —uue(s)| ds
F(Ol) = t,;l ] | wE wE |

1 k i wo
"Te-1) le(t_ ) /t,_l(tj =) |tn(S) = e (5)| s

j=

k+1
||

F()Z/ (t,—s)"‘1|uﬂg,,(s) M#gS)|dS
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+ - o|[t| Z(l - t) /i (6 =872 e n(s) = g (s)| ds. (15)

j=1 b1

By assumption (H;) we have

|60 (8) = 106 @)| = | (6 pn(®), tp6.0(0)) = P (8, 11(2), 14,6 (2)) |

< Loy |in(t) = (O] + Lo |th6,n(8) — 14,6 (8)]

_ Loy
1-Lyp,

| n(8) = u(8)]. (16)

Since p, — w1 as n — 0o, we have that, for each ¢ €], u, ¢ ,(£) = u,£(t) as n — oo. Also,
for each t €, £,(¢) — &(£) as n — oo. Since every convergent sequence is bounded, there
exists a constant b such that |u, ¢ ,(¢)] <b and |u,(t)| <b for each ¢ € ]. We have

(=9 |ty n(8) — 4y (8)] < (£ =) ([t n(8)] + |14, (5)])
<2b(t-s)*",

(6 =) g n(8) = 6 )| = (& = 9" (|t (5)] + |11, (5)])
<2b(t;-s)*",

(t] - S)a72|uu,5,n (s) - Ue (5)| =< (tj - S)aiz(|uu,é,n(5)i + iuu,é (s) |)

< 2b(4— 5)* 2.

Clearly, the functions s — 2b(£—s)*"!,s — 2b(t;—s)*"!,and s — 2b(t;—s)*~2 are integrable
on the interval [0, t]. Thus, by assumptions (H;)—(H3), inequality (16), and the Lebesgue
dominated convergence theorem, the right-hand side of inequality (15) goes to zero, that

is,
| To s 1) (2) — To(E, 1)(8)] > 0 as n— oo,
and thus
| TeEns 1) = Tu(, )| = 0 as n— oc.
This implies that the operator Ty, is continuous. Similarly, we can show that the operator
T} is continuous, so that the operator T = (;Z) is continuous.

Step 2: We define the set £2, = {(§, u) € B: [(£, )| < o with |§] <01 and || < 02}, where
max{01,02} = 0. For t € ], we consider

k
| Tul€, )| < 181[g®)] + 11— £l |(E)| + It — 1T |5(2)]

j=1
k _ k k
+ 1= gl TEG)] + D |LE@)] + D1 |Ew))|
j=1 j=1 j=1

1 [ (=9 g (9)]
+HML“_” MMM¢+;J:——7@T——¢

j—1

Page 11 of 21
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in H/t, (=9 e Ol m%/t (&= 5)* 1|um(s)|d
+ -t —_—— = ds
, . T'a-1) 4
j=1 -1
IM;L?,-‘( )|
+ |t 1-¢ ——————————d& 17
| |§ it / s (7)
By (Hs) we have

|16 ()] < pr() + 1 (O] (&, )| + 71.(8) 14,06 (2) ]

<pi+4qi0+ri|ol

-arhe (18)
1-r]
Thus by (Hy), (Hs), and (Hs) from (17) we obtain the following result:
|7 (&5 ) ||B1 < ks + ke + m(kyo1 + N2) + m(ky01 + Na)
X mx
k k
+m(ki01 + N1) + m(kior + N7) + Tl + T+l
my (m+1)x my
=:¢1. 19
"Tew "Te@+) T (19)
Similarly, we can show that
| Ts (s8], < <2 (20)

Now if max(¢1, ¢») = ¢, then we have

TG Wlg=s.
This shows that bounded sets are mapped into bounded sets under 7.

Step 3: W will show that T is equicontinuous. Let D € B. Then for (¢, 1) € Dand £y, €]
such that #; < £, we consider

|Ta($x /’L)(tZ) - Ta(é’ M)(tl)|
<|(t2 - t1)(g(&) - g(&)) — (&2 — t1)) (h(§) — h(§))

k k
Y (b -t)(EG) -65) - ) (- )(EWG) -£@) - (- 1)

Jj=1 Jj=1

k
X Z L(5(5) - @)
j=1

1 t . 1 " .
(7 /t L /t (09060 )

1 k 5
Ta-1) Z(tz —-t) / (t;— )" Pupe(s)ds
j=1 b1

Page 12 of 21
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k+1

(tz—tl)Z/ (lf _S)ot Mug(S)dS

( k
CT(a- 1) Z(l tf)/ (& — )" u,z(s) ds|

/ (ty— )™ ds — m t, " b= 9 ds
xk+1)(ta—t1) kx(t—t)
r( )(’:2 Wt TR D YT @ 1)

We can see that the right-hand side of inequality (21) approaches to zero as ¢; — ;. Hence

| To(&, 1) (82) — Ta(§, )(01)| > 0 asty — .

Similarly, we can show that

| Ts(14,6)(t2) — Tp(, €)(11)| > 0 as by — b

Therefore by the Ascoli—Arzela theorem the operators T,, T are completely continuous,
and consequently T is completely continuous.

Step 4: Define the set Z = {(&,u) € B: (§,1) =8T(&,1),0 < 8 < 1}. We will show that Z
is bounded. If (§, 1) € Z, then by definition (§, 1) = §T'(§, ). Hence for any ¢ € ], we can

write
k _ k _
To(€, 1) =8 (tg(&) +(L=0)h(E) + Y (- p)(EE) - Yt - 5)TE(H)
j=1 j=1
k
+ Y L) Zﬂs(t)+ r( ] (t—s)“"luu,g(s)ds
j=1
k 4
(& —s)*" um(s)
,=1 b1

LS [ 9w
F(O[—l); _]/l;l j—S Upe\s)as

k+1
-— / (& —s)*" uug()ds

k

F(a 1) Z -t) // (t — )" U (s) dS>. (22)
j=1 i1

Page 13 of 21
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Taking the absolute values of both sides of (22) and using 0 < § < 1, we have

k
| To &, (0] < [6l]g®)] + 11— tl[n&)] + > It - 41|5(£@))|

j=1
k _ k k

+ Y 1= p)|[TE )] + Y _|5E@)] + Y 18]5Ew)]
j=1 j=1 j=1

1 t
+m/tj (t—s)“"1|uﬂ,g(s)|ds

k ,

1 g

+ E t—8)* M, £ (s)| ds
I'(a) = A_l(/ ’ ik ( )‘

1 k i
T ;(t -t) /t/ 71(4« = 8)*7|upe(s)| ds

k+1

|t] f B
g o 9 sl as

Il a f s
+ m ;(1 - t;) Ll (t] =) |I/£H,§(S)| ds. (23)

From inequalities (18) and (19) we have

| Ta (& 10|, < ks + ke + m(kaor + N2) + mkaor +N)

+ Wl(klgl +./\/1) + I’l’l(klgl +N1) + ﬁ
L mx_ . mx +(m+1)x LI (24)
Fa+l) T@ T@+1) T "
Similarly, we can obtain
| Ts (.8, < 52 (25)

From (24) and (25) we have

1Tl )| < s

where ¢ = max(¢i, ¢2). Thus the set S is bounded, and hence, by the Schaefer fixed point
Theorem, T has at least one fixed point. Consequently, the considered coupled system (1)
has at least one solution. a

4 Stability analysis
Theorem 5 If assumptions (Hy)—(Hs) and inequalities (11) are satisfied and if o = 1 —
% > 0, then the unique solution of the coupled system (1) is HU stable and conse-

quently GHU stable.
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Proof Let (&, 1) € A be an approximate solution of inequality (2), and let (#,0) € A be the

unique solution of the coupled system given by

CD"‘z?(t) =P(t, a(t),gD"‘z?(t)), tel0,1],t#t,j=1,2,...,m,
CDﬁa(t)—W(t (), CDﬂ ®), tel01],t#t,i=12,...,n,
H0)=h(®),  (1)=¢(@) and o(0)=«(0),  o(l)=f(0), (26)
AV () = L(0 (1)), AY' () =L(0®), j=1,2...,m,
Ao(t) =Lo(t),  Ad'(t)=IcE), i=1,2,...,n

By Remark 1 we have

§DLE() = D (6, u(0), §DLEW) + O), te(0,1],¢78,j=1,2,...,m
AEW) =LEWL)+60;,  AEWG)=LEG)+60;, j=1,2...,m
SDLu(t) = (e, SDLn@®) +6(t), tel01],t#t,i=12,...,n,
Ap(t) = L(u(t;) + 05, AR ) =L(w(t) +6;, i=12,...,n

27)

By Corollary 1 the solution of problem (27) is

E(t) = tg(€) + (1 - Dh(E) + X1, (- )L E @) + Xi, (- )6
= - )TE(®) - Tk, t1 - 5)6; + Xk HE®))
+ 200 0= X () - Y, 16
+ 1 s g Jy SR ds + Z oy G ds
+%Zf1f (t —s)* 1()(s)ds+ s T l(t t)fff (t = )" Uy 6(s) ds
+ ﬁ P t)f;f1 (6~ 5)*20(s) ds — 7 zk“ t/l (& — )1y (s) ds
a) Zkﬂ ]1 i —5)*"1O(s) d. T(a— 1) Z; 1 4) t, (tj_s)a_z”mé(s)ds
_% - k- ft (t—s)*~ 2(9(s)afs,
1(t) = tf () + (1= () + Ziﬂ(t—aﬁi(u(m>+z,i1<t—me,-
— Y 1= )Tt = Y5y 61— 80+ Y L)
= Do i) + Yo Lie) = Yo, 26
+ft(f—5>f’—vswd [ 195)ds+z l Md
ti r ti T(B) i=1Jt r)
gy it Jy = 9P710(s) ds + 7= zk t-t) tt’l(t'—S)ﬂ’sz(S)dS
(ﬁl 5 Lt =) [ (= 5V 20(s) ds = i SO (6= 5P ve u(s) s
ZkH (’f —5)P~ 19(3)‘15_ B T(g-1) Z; 1(1 t)fttl (t: =)/ Ve u(s) ds

mezl(l—ti) o (= $)P720(s) ds.

+

(28)
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We consider

k
|£(6) = 0 (8)] < 121]g(€) - g@)| + 11 = tl[ (&) = ()| + D 1 — 41T (&) — ()]

j=1

k k k
Y =410+ Y 1L - 4IL]E@5) - 0 @) + Y Il - 4116y

j=1 j=1 J=1
k k k k

+ ) LE@) - 9@)] + Y161+ Y 1Ll - 0(6)| + ) 1¢116))
j=1 j=1 j=1 j=1

t

- 1 ¢
+ m \ (¢ — )% ’u“,g (s) =ty (S)| ds + m /t (¢ _S)a—l |@(S)| ds

b (t _S)a lluué( up.é(s t _Sa 1|@(5)|
*Z/. I(a) ds+ Z/ @

-2

i (tj—5)" 210 ()|

+Z|t t,l/ Tds

k+1

F( )Z/ (- s)"‘l‘uug(s) u“g(s)‘ds

k+1
/ (t;—9)*O|(s) ds

k

t G
—— > -4 t—s)*2 —it,¢(s)|d
+ Ta-1) Z | 1|/tj_1(1 s) |”u,§(s) U ,E(S)| $

t -2
+Z|1 tlf 7(6_9 |O(s)|ds.

As in Theorem 3, we get

I =0l < Ri(IIE = DB, + e = alls, ) +2(4m + Dey (29)
and

liw=allec < R2 (Il = Dllpc + I = ollec) +2(4n + eg. (30)

From (29) and (30) we have

2(4m + 1)
1-8

€a

N
1§ -2ls, - —IIM ols, =
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and
Ry 2(4n + 1)
-0 - -0 < ——¢g,
ln—olls, 1-x, 1§ -vls, < 1w,
. 2(4m+1) _ 2(4n+1) _ . e .
respectively. Let T, = Ca and TN - Cg. Then the last two inequalities can be written

in matrix form as

L - || 1690, | _ | Cata
R — ’
- 1 e —olls, Cpep

which yields
- L N Ca o4
16 = 2lls, | _ g A || Celel (31)
”H/ -0 ”BZ @ (1-Rg) @ Cﬁfﬁ
where

RN,
- >0.
(1-R)(1-8y)

From system (31) we have

Co,éa &1C5E,3
+

1§ —?ls, <

w(1-8)
Cﬁéﬂ &QCD,GQ
— <
e = olls, < L
which imply that

Caéo, Cﬂéﬁ N1C565 Nzcaéa
+ + + .
w W(I—Rl) w’(l—Nz)

1§ =21, + Il —ollp, =

Cp R;Cp

If max{ey, €} = € and SU—" + ot oy t wf%g’;‘z) = Cy,p, then
|6, 1) = (9,0) || < Cupe.
This shows that system (1) is HU stable. Also, if
1€, 1) = (®,0)| < Capele)
with ¢(0) = 0, then the solution of system (1) is GHU stable. O

For the next result, we assume that
(H7) There exist two nondecreasing functions y,, ys € C(J,R*) such that

o} a(t) < L1ye(t) and olfy,g(t) < Lyyp(t), where L1,L,>0.

Theorem 6 If assumptions (Hy)—(Hs) and (H;) and inequalities (11) are satisfied and if
N8y
(1-87)(1-R2)
stable, and consequently it is GHU-Rassias stable.

w=1- > 0, then the unique solution of the coupled system (1) is HU-Rassias
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Proof We can obtain the result by using Definition 5 and performing the same procedure
as in Theorem 5. O

5 Example

To testify our results established in the previous section, we provide an adequate problem.

Example 1

3
cns _ ()] cos [CD2 £(8)] 1
D260 = oy + a0 (€)7o

3
DI u(t) = &(tcoss(6) ~ () sin(p) + <DL pegpal,
30+|CD2 p(o)|

%‘(O) :g(s) - 2150 &(uj) %.(1) _ h(%.) - ZSO E(V,')

=1 W75’ j=1 vj+25’ (32)
ROV =f) = S Gy D =k = 70 57,
A =16 = gy A8 @) =15 = momE
Ap() =1 = g AWE) =1n(3) = s

In system (32), we see that ¢ = 8 = %, and ¢ 7!% for j=1,2,...,50. For ¢ € [0,1] and
£,E, 1, [l € R, we obtain

— 1 _
|(t,6,1) - (t,6,)| < E[IE—SI + - pl]

and

W80~ W6 E )] = [~ 1+ 1 ).

From this we get Ly = Loy = 4—10 and Ly =Ly, = B—IO.Also,

_ 1 _ _ 1 -
lg6) —g@)| < =16 &I, |h@&)-hE)| < —I& &,

- 75 - 25
1 1
If(w) —f ()] < sol =ik le(w) =k GOl = gzl =,
_ 1 _ - - 1 -
|I€(t) - IE(4)| < L [I£ () - IE ()| < 2016 &b

_ 1 ) - . 1 )
[Tu(t) - 1) < 20l -l [Tu(t) - In(s)| < sgln -l

From this we obtain that K, = =, Kj = o, Ky = g5, K = 3, A1 = g5, Ao =

Ay = %, and m = 1. Calculating

N1 = | K, + Ko+ 2m(Ay + Ag) + —2 (2xm
= + Ky, +2m(Aq + + +
S I P T Lo, \ T+ 1) T(a)

and

2L 1
Ny = |:Kf + K +2n(As + Ay) + 1 ( MR ):|,
1-Ly, rg+1) )
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Figure 1 Graphical representation of HU-stability results for Example 1

we have 8; = 0.407 < 1 and 8, = 0.467 < 1, that is, max(X1, 8;) < 1. Therefore by Theorem 3
the coupled system (32) has a unique solution. Also, @ =1 — % = 0.8096104 >
0, and hence by Theorem 5 the coupled system (32) is HU stable and thus GHU stable.
Similarly, we can verify the conditions of Theorems 6 and 4. Next, we take the initial values
for the required solution & = 1, u = 2, and at the given fractional order the stability graph

is given in Fig. 1 corresponding to the parametric values computed.

6 Conclusion

We successfully applied the Schaefer and Banach fixed point theorems to develop suffi-
cient conditions for the existence of at least one solution and its uniqueness, respectively.
Then we obtained some results for different kinds of HU stability. The whole analysis was

demonstrated by an example.
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