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ABSTRACT
The aim of this paper is to investigate heat and mass transfer of Jeffery fluid on a stretching sheet. Moreover, the influence of magnetic field
with mixed convection, convective boundary condition and Soret and Dufour effects is also brought into the consideration along with chem-
ical reaction and thermophoresis condition. The problem is modeled by system of partial differential equations and solutions are obtained
by optimal homotopy analysis method. In addition, for comprehensive interpretation of the influence of the system parameters results are
shown by graphs and tables.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5086534

Mostly non-Newtonian fluid fields have applications in
industries and chemical engineering. Moreover, non-Newtonian
behavior has great importance while studying heat and momen-
tum transfer. The novelty of the present study is that we have
analyzed a non-Newtonian fluid called Jeffery fluid on stretch-
ing sheet in the presence of magnetic field using mixed con-
vection and convective boundary conditions. The solutions are
obtained by optimal homotopy analysis method and useful results
are discussed with the aid of graphs and tables.

NOMENCLATURE

σ∗ Electrical conductivity
υ Kinematic viscosity
T Fluid temperature
Tf Surface temperature
C Concentration field

Cp Specific heat
ρ Fluid density
γ Biot number
Sr Soret number
Df Dufour number
De Mass diffusivity
β1 Deborah number
λ2 Retardation time
M Hartmann number
kT Thermal diffusion
Pr Prandtl number
Sc Schmidt number
C∞ Ambient concentration
T∞ Ambient temperature
Tr Reference temperature
Grx Local Grashof number
Rex Local Reynolds number
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β Ratio of stretching rates
u Velocity along x-axis
v Velocity along y-axis
w Velocity along z-axis
k Chemical reaction parameter
µ Dynamic viscosity of fluid field
σ Thermal diffusivity of fluid
τ Thermophoretic parameter
VT Thermophoretic velocity
g Gravitational acceleration
k2 Thermophoretic coefficient
λ Local buoyancy parameter
Cs Concentration susceptibility
k∗ Thermal conductivity of fluid
βc Concentration expansion coefficient
N1 Concentration buoyancy parameter
B0 Magnitude of applied magnetic field
λ1 Ratio of relaxation and retardation times

I. INTRODUCTION
Mostly fluids used at physical and industrial levels are “non-

Newtonian”. They play important role in chemical engineering, food
engineering, plastic processing industries, bio-chemical engineer-
ing, petroleum production, oil exploration, power engineering and
medical engineering. Non-Newtonian behaviour has great impor-
tance while studying heat and momentum transfer. Many physical
phenomenon are modeled by constitutive equations based on non-
Newtonian fluids. Solutions of such system of equations are highly
complex. A lot of work has been done in the field of non-Newtonian
fluids by many researchers.1–6 Jeffery fluid is a non-Newtonian
fluid. Some investigators highlighted the mixed convection, con-
vective condition and MHD effects on Jeffery fluids on stretching
surface.7–12

The boundary layer flow because of stretching sheet arises in
different industrial manufacturing processes like glass-fiber, paper
industry, metallurgy, textile industry, extrusion of plastic, rubber,
metal and polymer sheets. Heat transfer plays an essential role in
such flows that is explored in the attempts.13–19 Rashidi et al.20

discussed two-dimensional flow over a stretching surface in porous
medium. Further thermal radiation and non-uniform magnetic field
are taken into account. Heat transfer in Micropolar fluid over
stretched sheet with Joule heating and convective boundary condi-
tion was studied by Waqas et al.21 Some significant efforts regarding
this can be shown by researchers.22–26

In thermophoresis, particles move from hot surface to cold
surface with velocity called thermophoretic velocity. The force due
to thermophoresis effect is known as thermophoretic force. Effects
of thermophoresis in MHD flow of Maxwell and Oldroyd B fluid
with joule heating was investigated by researchers (see Refs. 27, 28).
Kandasamy et al.29 explored heat source/sink and fluid viscos-
ity with thermophoresis in porous medium. et al.30 discussed vis-
coelastic fluid flow with thermophoresis and Soret and Dufour
effects.

The Soret effect can be examined in mixture of moving par-
ticles which exhibit individual responses to the force of a tem-
perature gradient. The Dufour effect is the energy flux due to a
mass concentration gradient. The concentration gradient results in a

temperature change. Ashraf et al.31 studied Soret and Dufour effects
on Oldroyd-B fluid. Heat and mass transfer with Soret and Dufour
effects has been investigated by Srinivasacharya.32–35 Erying-
Powell fluid has been considered for Soret and Dufour effects by
Qasim.36

Besthapu et al.37 worked on stagnation point flow of non New-
tonian nanofluid with thermal radiation and slip condition. Maxwell
model has been considered in order to study entropy generation
in methanol-based nanofluid by Qasim et al.38 Numerical inves-
tigation is carried out for Newtonian fluid under the influence of
buoyancy and entropy generation by Ganesh et al.39 Marangoni
boundary layer flow with nonlinear thermal radiations investigated
by researchers.40,41 Aman et al.42 discussed fractional Maxwell fluid
on a moving plate with second order slip.

In present paper, the 3D flow of Jeffery fluid over a stretched
surface is discussed. The flow exhibits Soret and Dufour effects
with convective boundary condition. Chemical reaction and ther-
mophoresis effects are also taken into account. Mathematical model-
ing of the problem is analyzed and solutions are obtained by optimal
homotopy analysis method. Graphical and tabular form of different
parameters are examined.

II. MATHEMATICAL ANALYSIS
Consider three-dimensional incompressible magnetohydrody-

namic mixed convection boundary layer flow of Jeffery fluid over
a stretching surface. Heat and mass transfer analysis is done along
with chemical reaction, thermophoresis and Soret-Dufour effects.
A magnetic field of strength B0 is transversely applied to the plate
(see Figure 1). Moreover, gravitational force is neglected, external
electric and induced magnetic field effect is negligible because mag-
netic Reynolds number is very small. Mathematical modeling of the
problem is given below:

∂u
∂x

+
∂v

∂y
+
∂w

∂z
= 0, (1)

FIG. 1. Physical model.
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uux + vuy +wuz = (
ν

1 + λ1
)[uzz + λ2(uuxzz + vuyzz +wuzzz

+uzuxz + vzuyz +wzuzz)] −
σ∗B2

0

ρ
u

+ g[βT(T − T∞) + βC(C − C∞)], (2)

uvx + vvy +wvz = (
ν

1 + λ1
)[vzz + λ2(uvxzz + vvyzz +wvzzz

+uzvxz + vzvyz +wzvzz)] −
σ∗B2

0

ρ
v, (3)

u
∂T
∂x

+ v
∂T
∂y

+w
∂T
∂z
= σ

∂2T
∂z2 +

DekT
CsCp

∂2C
∂z2 , (4)

u
∂C
∂x

+ v
∂C
∂y

+w
∂C
∂z
= De

∂2C
∂z2 +

DekT
Tm

∂2T
∂z2 − k(C − C∞)

−
∂

∂z
[VT(C − C∞)]. (5)

Thermophoretic velocity given by:

VT = −k2
VT

Tr

∂T
∂z

. (6)

τ is given by:

τ = −
k2(Tf − T∞)

Tr
. (7)

The boundary conditions are considered as:

u = ue = ax, v = by w = 0, − k∗
∂T
∂z
= h(Tf − T),

C = Cw , at z = 0, (8)

u→ 0, v → 0, T → T∞, C → C∞, as z →∞, (9)

where a and b have dimension reciprocal of time. Similarity trans-
formations are:

u = axf ′(η), v = ayg′(η), w = −
√
aν[ f (η) + g(η)],

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

, η =
√ a

ν
z. (10)

Clearly above similarity transformations satisfying equation (1).
Moreover, substituting these similarity transformations into Eqs. (2),
(3), (4) and (5), we get

f ′′′ + (1 + λ1)[( f + g)f ′′ − ( f ′)2
] + β1[( f ′′)2

− ( f + g)f ′′′′ − g′f ′′′]

− (1 + λ1)M2f ′ + λ[θ + N1φ] = 0, (11)

g′′′ + (1 + λ1)[( f + g)g′′ − (g′)2
] + β1[(g′′)2

− ( f + g)g′′′′ − f ′g′′′]

− (1 + λ1)M2g′ = 0, (12)

θ′′ + Pr( f + g)θ′ + PrDfφ′′ = 0, (13)

φ′′ + Sc( f + g)φ′ − Sckφ + ScSrθ′′ − Scτ(φ′θ′ − φθ′′) = 0, (14)

f (0) = 0, g(0) = 0, f ′(0) = 1, g′(0) = β, θ′(0) = −γ[1 − θ(0)] φ(0) = 1,

f ′(∞) = 0, g′(∞) = 0, θ(∞) = 0, φ(∞) = 0, (15)

where prime shows the differentiation with respect to η. The parameters and dimensionless numbers are as follow:

β1 = λ2a, M2
=
σ∗B2

0

ρa
, β =

b
a

, γ =
h
k∗

√ν
a

, Pr =
ν
σ

, λ =
Grx
Re2

x
,

Grx =
gβT(Tf − T∞)x3

ν2 , N1 =
βC(Cw − C∞)

βT(Tf − T∞)
, Df =

DeKT(Cw − C∞)

CsCp(Tf − T∞)ν
,

Sr =
DeKT(Tf ) − T∞)

Tmν(Cw − C∞)
, τ =

−k2(Tf − T∞)

Tr
, Sc =

ν
D

, k =
k1

a
. (16)

Local Nusselt number is as follow:

Nu/Re
1
2
x = −θ

′
(0), (17)

Local Sherwood number is as follow:

Sh/Re
1
2
x = −φ

′
(0), (18)

where Rex = uex
ν . Let initial approximations and auxiliary linear

operators

f0(η) = 1−e−η, g0(η) = β(1−e−η), θ0(η) = (
γ

1 + γ
)e−η, φ0(η) = e−η,

Lf = f
′′′
− f ′, Lg = g′′′ − g′, Lθ = θ′′ − θ, Lφ = φ′′ − φ. (19)

III. CONVERGENCE ANALYSIS
Homotopy solutions contain parameters which can control

convergence. These parameters are c f0 , c g0 , cθ0 and cφ0 . By minimizing
residual errors the optimum values of c f0 , c g0 , cθ0 and cφ0 are obtained.

BVPh2.0 is used so that minimum error can be obtained. Three
arrays of total optimum convergence control parameters are attained
at 2nd, 4th and 6th iterations. Table II indicates values of optimum
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convergence-control parameter at 6th iteration and singular aver-
aged squared residual errors.

IV. ANALYSIS OF RESULTS
In this section, we have analyzed the graphs for different

parameters. Figure 2 depicted the behaviour of f ′(η) due to β1. As β1
depends on λ2 and λ2 increases the velocity of fluid. Figure 3 shows
that as β increases there is decrease in f ′(η). Figure 4 shows that for
β = 0 velocity of fluid is zero. By increasing β the g′(η) increases
and g′(η) decreases. Physically when β increases from zero then the
lateral surface starts moving towards y-direction that is why f ′(η)
decreases and g′(η) increases. Behaviour of f ′(η) is opposite for λ
and λ1 (see Figures 5 and 6). f ′(η) and g′(η) decrease as M increases
because Lorentz force is produced by magnetic field whose direction
is opposite to the direction of flow due to which velocity decreases as
shown in Figures 7 and 8. Behaviour of velocity component f ′(η) for
N1 is shown in Figures 9. With the increase in N1, f ′(η) increases.

FIG. 2. Influence of β1 on velocity f ′(η) when λ=λ1=M=Sc=Df=0.5, τ=0.2,
Sr=β=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.

FIG. 3. Influence of β on velocity f ′(η) when λ=λ1=M=Sc=Df=0.5, β1=τ=0.2,
Sr=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.

FIG. 4. Influence of β on velocity g′(η) when λ=λ1=M=Sc=Df=0.5, β1=τ=0.2,
Sr=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.

FIG. 5. Influence of λ1 on velocity f ′(η) when λ=M=Sc=Df=0.5, β1=τ=0.2,
Sr=β=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.

FIG. 6. Influence of λ on velocity f ′(η) when λ1=M=Sc=Df=0.5, β1=τ=0.2,
Sr=β=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.
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FIG. 7. Influence of M on velocity f ′(η) when λ=λ1=Sc=Df=0.5, β1=τ=0.2,
Sr=β=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.

FIG. 8. Influence of M on velocity g′(η) when λ=λ1=Sc=Df=0.5, β1=τ=0.2,
Sr=β=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.

FIG. 9. Influence of N1 on velocity f ′(η) when λ=λ1=M=Sc=Df=0.5, β1=τ=0.2,
Sr=β=0.4, k=0.3, γ=0.6 and Pr=1.0.

FIG. 10. Influence of γ on temperature θ(η) when λ=λ1=M=Sc=Df=0.5, β1=τ=0.2,
Sr=β=0.4, k=N1=0.3 and Pr=1.0.

FIG. 11. Influence of γ on temperatureφ(η) when λ=λ1=M=Sc=Df=0.5, β1=τ=0.2,
Sr=β=0.4, k=N1=0.3 and Pr=1.0.

FIG. 12. Influence of Sr on concentration φ(η) when λ=λ1=M=Sc=Df=0.5,
β1=τ=0.2, β=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.
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FIG. 13. Influence of Df on temperature θ(η) when λ=λ1=M=Sc=0.5, β1=τ=0.2,
Sr=β=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.

FIG. 14. Influence of Sc on concentration θ(η) when λ=λ1=M=Df=0.5, β1=τ=0.2,
Sr=β=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.

FIG. 15. Influence of Sc on concentration φ(η) when λ=λ1=M=Df=0.5, β1=τ=0.2,
Sr=β=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.

FIG. 16. Influence of M on concentration θ(η) when λ=λ1=Sc=Df=0.5, β1=τ=0.2,
Sr=β=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.

FIG. 17. Influence of on M concentration φ(η) when λ=λ1=Sc=Df=0.5, β1=τ=0.2,
Sr=β=0.4, k=N1=0.3, γ=0.6 and Pr=1.0.

FIG. 18. Influence of N1 on concentration θ(η) when λ=λ1=M=Sc=Df=0.5,
β1=τ=0.2, Sr=β=0.4, k=0.3, γ=0.6 and Pr=1.0.
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FIG. 19. Influence of N1 on concentration φ(η) when λ=λ1=M=Sc=Df=0.5,
β1=τ=0.2, Sr=β=0.4, k=0.3, γ=0.6 and Pr=1.0.

TABLE I. Optimal convergence control parameters and error analysis using BVPh2.0.

m c f0 c g0 cθ0 cφ0 Em
t CPU TIMES [S]

2.0 −0.64 −0.60 −0.65 −1.28 9.01× 10−3 53.0139
4.0 −0.57 −0.51 −0.92 −1.36 1.99× 10−3 462.452
6.0 −0.57 −0.51 −1.20 −1.43 7.15× 10−4 3559.66

Figures 10–19 shows the variation of γ, Sr, Df, Sc, M and N1
on temperature and concentration. By increasing γ, θ(η) increases
while concentration decreases (see Figures 10 and 11). Figure 12
depicted the effect of Sr on φ(η). In Soret effect temperature gra-
dient causes the mass flux that is why concentration increases. Effect
of Df on θ(η) is presented by Figure 13. Dufour effect generate
energy flux by composition gradient causes enhance in tempera-
ture. Temperature and concentration having opposite behavior for
Sc. For Sc temperature is increasing and concentration is decreas-
ing as shown in Figures 14 and 15. Figures 16 and 17 demonstrate
that temperature and concentration increase with the enhance in
M. Temperature and concentration decrease as N1 increases (see
Figures 18 and 19). Table I demonstrate values of convergence con-
trol parameter. Table II presents error analysis at 6th iteration. Error
is decreasing with the increase in iterations. In Tables III and IV
values of Nusselt and Sherwood numbers are presented for various
parameters.

TABLE III. Local Nusselt numbers for certain noteworthy physical parameters.

β1 β λ1 λ N1 Pr Sc Sr k M Nu/Re
1
2
x

0.0 0.25402
0.2 0.25440
0.4 0.25478

0.0 0.24284
0.2 0.24869
0.4 0.25440

0.0 0.25585
0.3 0.25498
0.5 0.25411

0.0 0.25375
0.3 0.25414
0.5 0.25440

0.0 0.25411
0.3 0.25440
0.5 0.25459

1.0 0.25440
1.5 0.23911
2.0 0.22605

0.2 0.25970
0.4 0.25617
0.6 0.25263

0.2 0.25311
0.4 0.25440
0.6 0.25569

0.5 0.25095
0.7 0.24751
1.0 0.24234

0.4 0.25466
0.7 0.25307
1.0 0.25223

For the validation of present analysis it is pertinent to notice
that several results from the literature could be recovered from our
present analysis for example if Soret and Dufour effects, MHD,
mixed convection and thermophoresis conditions are eliminated
then results of Shehzad et al.43 could be recovered. Moreover, Ashraf
et al.30 considered Soret and Dufour effects in viscoelastic fluid
with thermophoresis and mixed convection. In present work anal-
ysis of MHD mixed convection Jeffery fluid is considered with ther-
mophoresis and Soret and Dufour effects which is comparable with
the results of Ref. 30.

TABLE II. Error analysis taking optimal values using Table I at m = 6.

m E f
m Eg

m Eθ
m Eφm CPU TIMES [S]

6.0 1.16× 10−5 3.63× 10−6 3.42× 10−4 3.04× 10−4 20.0719
12.0 1.71× 10−7 4.05× 10−8 6.53× 10−5 7.06× 10−5 112.377
18.0 5.13× 10−9 1.44× 10−9 1.89× 10−5 3.82× 10−5 440.944
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TABLE IV. Local Sherwood numbers for certain noteworthy physical parameters.

β1 β λ1 λ N1 Pr Sc Sr Df k M τ Sh/Re
1
2
x

0.0 0.67213
0.2 0.67347
0.4 0.67481

0.0 0.64025
0.2 0.65700
0.4 0.67347

0.2 0.67657
0.4 0.67450
0.6 0.67244

0.0 0.67117
0.3 0.67255
0.5 0.67347

0.0 0.67245
0.3 0.67347
0.5 0.674157

1.0 0.67347
1.5 0.67971
2.0 0.68595

0.2 0.55937
0.4 0.63535
0.6 0.71168

0.2 0.68456
0.4 0.67347
0.6 0.66238

0.2 0.66459
0.4 0.67051
0.6 0.676437

0.5 0.72685
0.7 0.77900
1.0 0.85493

0.6 0.67234
0.8 0.66946
1.0 0.66576

0.4 0.67993
0.7 0.68961
1.0 0.69930

V. CONCLUSIONS

Heat and mass transfer of Jeffery fluid is analyzed on stretch-
ing sheet under the influence of magnetic field with mixed con-
vection and convective boundary conditions. Moreover, Soret and
Dufour effects, chemical reaction and thermophoresis conditions
are considered and optimal homotopy analysis method is used to
find solutions. Main observations are given below.

● f ′(η) and g′(η) having opposite behaviour for β.
● M has same effect on velocity profiles.
● Features of Biot number and Sc on temperature and con-

centration are opposite. If one is increasing than other is
decreasing.

● With the increase in M increases θ(η) and φ(η).
● N1 decreases θ(η) and φ(η).
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