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1 Introduction
The concept of fractional calculus has been introduced in 1695, when in a letter to Leib-
nitz, L'Hospital asked a question about the derivative of order g = 1/2. This question was
proved a base for the generalization of classical calculus to fractional calculus. Later on, for
the first time Lacroix [23] introduced the fractional derivative. In 19th and 20th century,
Abel, Riemman and Liouvilli formally developed the concepts of fractional derivatives and
integrals. Recently the fractional calculus has become an attractive area of research. One
can see its enormous number of applications in different fields of science and engineering
like physics, chemistry, finance, diffusion processes, modeling of mechanical properties
of materials, signal processing, image processing, modeling of the behavior of viscoelastic
and visco-plastic materials under external influences, bioengineering, description of me-
chanical systems, control theory, psychology phenomenons, etc. For more about this area
and its applications, we refer to [1-5, 8,9, 11-14, 21, 22, 25, 26] and the references therein.
The impulsive differential equations constitute an important class of differential equa-
tions. These equations arise as a result of modeling the processes subject to abrupt (sud-
den) changes and discontinuous jumps occur in their states with respect to different in-
tervals of time. Such a phenomenon is naturally seen in various subjects of science like
physics, dynamics, geology, geography, biology, engineering and management sciences,
etc. Due to the significant applications of impulsive differential equations, this area has
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got much importance and attention. For its general study and applications, we refer to
[10, 27, 30-32, 35, 39, 41] and the references therein.

On the research side of both classical and fractional calculus, fixed point theory and
mathematical inequalities play an important role. Researchers use different techniques
to investigate the existence and uniqueness of solutions to various systems of differential
equations, we refer to [6, 7, 29].

On other hand, stability analysis has got too much importance on research side. It is very
important from numerical and optimization point of view in investigating various prob-
lems of physics, mathematical biology, biophysics, economics, where the actual solution is
almost difficult. In literature, we come across different approaches towards stability anal-
ysis. However, in this paper we discuss the Ulam—Hyers (UH) stability approach which is
comparatively the most simple and easy way of investigation the stability of systems. Its
history goes back to the middle of the 19th century. In 1940 Ulam posed the question in
a seminar held at Wisconsin University “Under what conditions does there exist an ad-
ditive mapping near an approximately additive mapping?” (see [33, 34]). In 1941, Hyers
[18] found the solution to Ulam’s question in the case of Banach spaces. In the year 1978,
Rassias investigated the UH stability for linear and nonlinear mappings. In 1988, Jung (see
[19, 20]) established the UH stability of more general mappings on restricted domains.
In 1993, Obloza [24] established the UH stability of linear differential equations. Later on
many researchers generalized these results in many directions.

Impulsive boundary value problems (BVPs) corresponding to integer order differential
equations with impulsive conditions have been considered extensively in the literature,
but in the case of non-integer order differential equations the problems still need further
investigation under impulsive conditions. The aforesaid stability has been investigated for
a class of linear fractional order differential equations (FDEs) [38]. Also the above results
have been recently extended to semilinear differential equations, impulsive differential
equations and partial differential equations, for detail see [16, 36]. Wang et al. [37], studied
the above results for a fractional order differential switched systems with coupled nonlocal
initial and impulsive conditions.

Recently, Benchohra et al. [15], studied the existence and uniqueness of solution for a
class of initial value problems with impulsive conditions given by

“DLO) = f(1,00 DLOW®), L€ (botenl k=0,1,...,b,0<g <1,
e(t)|t=0 :007 Ag(t)|t=tk ZIk(e(tk)), k= 1,2,.”,b,

where CD?k is the Caputo fractional derivative, f : /] x R x R — R is a given continuous
function.

The aim of this paper is to study existence, uniqueness of solution and UH stability anal-
ysis to the following BVP of implicit impulsive fractional differential equations:

Do) =f(t,00), DLOW) t€ (twtinal k=01,...,b,1<g =2,
e(t)|t=0 =0, e(t)|t=l = )\g(t”t:n’ A, ne (Or 1)’ (1)
Ae(t”t:t]k = I]ke(t]k)) AQ/(t)|£:tk = j]kg(t]k) k = 17 2¢ oo ’by

where f : /] x R x R — R and I, I, : R — R, are nonlinear continuous functions for
k=1,2,...,b. Further AO(t)|;—y, = 0(£)) — (), A0 (B)|i=r, = 0'(8) — 0'(%;), where 0(t))
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and 0(;) denote the right and left-hand limit of the function 6(t), respectively, at ¢ = ;.
Similarly 6'(£;) and 6'(¢; ) denote the right and left-hand limit of the function 6'(¢), respec-
tively, at ¢ = tx. Also, 0=ty < t; <--- < tp < tp+1 = 1; b is a positive integer.

For existence of solution, we use Schaefer’s fixed point theorem while for investigation of
uniqueness result, we use Banach’s fixed point theorem. For applications of our obtained

results, we give two numerical examples.

2 Preliminaries and background materials

In this section, we introduce some notations, spaces and definitions and previous results
which are used throughout this manuscript. We divide the interval J = [0, 1] into sub in-
tervals [0, t1], (1, £2], (£2, 83, . .., (f-1, &), (tb, 1], and denote these sub intervals by Jo, J1, /2,
..+» Jo-1, Jb, respectively. Letj =J\{t1,t2, t3,..., tp}. Define the space by

PC(J,R) = {6 :] — R0 € C(,R),0(t;),0(t;) exist, fork =1,2,...,b}.
Obviously (PC(/,R), |6 [lpcy,r) with the norm ||0|pc = sup,.; |0(¢)| is a Banach space.

Definition 2.1 ([26]) The fractional integral of order g € R, for a function /: (0,00) - R
is defined by

I'h(t) = %q) ‘/Ot(t—s)q‘lh(s) ds,

where I' is the Euler gamma function defined by I'(g) = fooc t1- et dt, with g > 0. Further
the integral on the right side is pointwise defined on (0, 00).

Definition 2.2 ([21]) The Caputo derivative of fractional order g > 0 of a function 4 :
(0,00) — Ris defined by

e L L el
Dth(t)—ir(q_l)/o(t )" HY(s) ds.

Here n = [g] + 1 and [g] represents the integer part of the real number g, and the integral
on the right side is pointwise defined on (0, 00).

Lemma 2.3 ([21]) For q > 0, we have the following result:

n-1 g ()
I°Din() = h(t) -y 0,

i=0

——t, where n = [q] + 1.
i!

Lemma 2.4 ([40]) The given FDE
“Dih(t) = ¢(8), q>0,
has a solution given by
I9DIn(t) = I1p(t) + co + crt + ot + e3> + -+ - + ¢, ",

wherec; €R,i=0,1,2,3,...,n—1,n=[q] + 1.
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For the UH’s type stability concepts to the concerned problem, we need the following
inequalities. Let ® € PC(J,R), and there exist a constant ¢ > 0, € > 0 and nondecreasing
function ¥ € C(J, R), such that the following inequalities exist:

I’DLO@) - f(t,01) DL O@1) <€, te];
|A@(t)|t:tk _Ik@(t]k)| S €, ]k = 1y2;'~yb; (2)
|A@,(t)|t=tk _i]k@(t]k” <e k= 1121'-«1b;

I’Df O(t) - f(t, O (), DL O®)| <9(2), te];
|A()|t tx -Ik® (t]k)| =9 k= 1,2,...,]); (3)
|AG (O)] =g, ~ OB <@, k=1,2,...,b,

and

D ©(t) - f(t, ©(t),°Df, O(0)| < €0 (1), te;
|A@(t)|t:t]k _Ilk@(t]k)| SG(P: k = 1121"'rb; (4')
IAO(8)|1=y, — KO ()| <€p, k=1,2,...,b.

Definition 2.5 ([28]) The problem (1) is UH stable if there exists a real number ¢}, > 0,
such that, for each € > 0 and to each solution ® € PC(J, R) of the inequality (2), there exists
a unique solution 6 € PC(/, R) of the problem (1) such that

|O(6) - 0(8)| <crple), tel,
holds.

Definition 2.6 ([28]) The problem (1) is GUH stable if there exists /s, € C(R,R,),
Vr5(0) = 0, such that, for each solution ® € PC(/,R) of the inequality (2), there exists a
unique solution 8 € PC(J, R) to the problem (1) such that

|O(t) - 6(t)| < yrple), te),
holds.

Definition 2.7 ([28]) The problem (1) is UHR stable with respect to (¢, ¢), if there exists
a real number ¢fp,9 > 0, such that, for each € > 0 and every solution ® € PC(/,R) of the
inequality (3), there exists a unique solution 6 € PC(J, R) of the problem (1) such that

|0(t) - 0(8)| < crpoe(P(B) +9), te],
holds.

Definition 2.8 ([28]) The problem (1) is GUHR stable with respect to (¢, ¢), if there exists
areal number ¢, 5 > 0, such that, for each solution ® € PC(/, R) of the inequality (4), there
exists a unique solution 6 € PC(/, R) to the problem (1) such that

©@6) 00| <crpo(9()+9), te,

holds.
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Remark 2.9 A function ® € PC(J,R) is a solution of the inequality (2), if there exist a
function ¢ € PC(J,R) and a sequence ¢, k = 1,2...,b (which depend on ® only) such
that
(i

(ii

|¢(t)l<6 l¢x| <€, te,k=12,...,b;
‘DL O(t) =f(t,0(t), DL © ())+¢(),te]k,k=1,2,...,b;
AO(t)Iz te = (O @)=y, + (), t € )i, k=1,2,...,b;

O () e=y, =I(® =g, +9(®), t e k=1,2,...,b.

(iii

)
)
)
(iv) A

Remark 2.10 A function ® € PC(J,R) is a solution of the inequality (4), if there exist a
function ¢ € PC(J,R) and a sequence ¢, k = 1,2,...,b (which depend on ® only) such
that
(i) |¢>(t)| <ed(t), Il <€p,t € i, k=1,2,...,b;
(i) D @(t) =f(t,0(t), ch o)) + ¢(¢), te]]k, =1,2,...,b;
(iif) A@(t”t te = (O ()=, + (0), t €N, k=1,2,...,b;
) A

(V ( )|t:tk —Ik(@(t)”t:tk + ¢( )1 t€J k= 1r2r~wb~

Similarly, one can state the remark for the inequality (3) in the same way.

Theorem 2.11 ((Banach’s fixed point theorem) [17]) Let C be a non-empty closed subset
of a Banach space E. Then any contraction mapping F from C into itself has a unique fixed
point.

Theorem 2.12 ((Schaefer’s fixed point theorem) [17]) Let E be a Banach space and F :
E — E is a completely continuous operator and the set D = {0 € E: 0 = uF6,0 < u <1} is
bounded. Then F has a fixed point in E.

3 Main results
In this section, we study the existence and uniqueness of solution to the proposed class of

impulsive BVP of implicit FDEs.

Lemma 3.1 Let 1 < g <2 and assume that o : ] — R be a continuous function. Then the
solution 6 € PC(J, R) of the following implicit impulsive BVP:

CDZkG(t) = G(t)r te (t]k’ t]k+1]1k = 0; 1: .o ~1b; 1< q =< 21
0(t)li=0 =0, OO)e=1 = 20O)|e=y,  2,m €(0,1), (5)
Ab oy, = LO(t), AO' ()=, = L0(t) k=1,2,...,b,

is given by fractional integral equation as

—fot t—5)to(s)ds+B, te,
iz Ji =)o ( s)ds+2l1 ‘ Hq o (s)) ds + I,(0)]
0(t) = + X5 -l <;q p a(s)ds+19(t,)] (6)

+3E l(t—t]k)[f:’ u, o(s)ds+]9(t)]+B
te]k;k=1,2,3,...,b,
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where

e[S =97 0(s) (1= 1) [ i = 9)T o (s) ds
S]]

I'(q) I'(q) * Iﬂ(m]

i=1

t(1 - ) 22 (-0 (s)ds
K g(t"_ti)[ 1)

ot —s)q‘ o(s)ds ftb(n—s )i 1cf(s)ds:|

——(1— .,)Z[ 5+l )] [ @

tA(n - ty) < ftl.il(ti—s)q_za(s)ds ]
T Z[ =T +1i(9)<ti>]

i=1

and§=1-in, An<1.

Proof Assume that 0 is a solution of problem (5), then, for any ¢ € Jy, there exist constants
1, ¢ € R such that

9(t)=1?0(t)—61—02t r'q )/(t sq_ s)ds —cy — cot

- 7)
0'(t) = ——— / (¢ —9)T20(s)ds - cy.
rg-1Jo ’
Similarly for ¢ € J;, there exist constants d;,d; € R, such that
1 t
o(t) = —— / (6o (s)ds —dy — dat 1),
F(‘]) t1
- (®)
@)= ———— | (t-9)720(s)ds—d>.
rq-1)J, ’

From (7) and (8), we have

2]

L1 ] .
o) =rg ), @ lo(s)ds—ci—ooti,  0(t) =~di,

0'(tr) = ﬁ /0 Na-o@ds - 0() =db
In view of

AO(t) =0(1) - 0(6) =N (0()) and  A0'(8) =0'(8) - 0'(t) =L (6(1)),
we get

1 o

@), (t1—5)" o (s)ds —c1 — oty + 1 (6(11)),

—d, =

—d2 = ﬁ/o‘ 1(t1 —S)q72U(S) dS —C +jl (Q(tl))

Page 6 of 27
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Consequently,

0(t) = Fi ) t(t—s)qflo(s)ds+

r:q)/ol(tl—s)qflo(s)ds

+ Ft(;_tll) /(;tl(tl—S)q ofs )ds+1( (¢ ))+(t—t1)fl(9(tl))

—C1 — Cyt, tE]l.

By a similar way repeating the same process, we get

t(t—S)ql (ti—5)"""
", T ZU T@ (S)dHh(@(ti))]

g2
+ Z(tk [/ %a(s)ds +1; (G(t ))]

+ Z(t t]k)[/ %a(s)ds+l (0 ))]

—C1 — Cyt, tE]]k,kZI,z,...,b. (9)

Applying the given boundary conditions 6(0) = 0 and 6(1) = A0(n), we get ¢; = 0 and

-9t 1-2) [ [ (ti—9)7"
/b ) s)ds + ;[/1 ) (s)ds+1i(6’(t,»)):|

k-1

+ 1-4 ;(t}k - ti)l:/:: (;i(:]?q;—;d(s) ds + j,'(@(ti))]
1 b ti (tl _S)q—2 B A n (T] —S)q_l
+ g ;(1 - tb)|;/t;_1 mﬁ(s) ds +Ii(9(ti))] - E /;b Tq)a-(s)ds
g ot —s)17? _
-5 ;(7) - tb)|:ft,'1 mo(s) ds +Ii(9(t,-))].
Substituting these values of ¢; and ¢; in (7) and (9), we get (6). 0

Assume that, for any v, v,x,% € R, ¢ € ], the following hypotheses hold:
(H1) The function f :J x R x R — R is continuous;

(H,) there exists a constant 0 < L < 1, such that
[f(t,v, %) = f(&,0,%)| <L(lv =] + |x - %]);

(H3) there exists a constant m > 0 such that |I,(v) = (V)| < m|v - V|;
(Hy) there exists a constant > 0 such that |[I(v) — L(@)| < I|v -]
Note: For simplicity we shall use “Df 6(¢) = (¢,6(¢), “Df., 6(¢)) = 04 (2).

Page 7 of 27
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Theorem 3.2 Under the hypotheses (Hy)—(Ha), and if the inequality

L(1+b)1+8)+A) L((b-1)(@E+1)+b(1+68+A1))
[ SA-DI(g+1) 5(1-D)I (g
m((2b—1)(8 + 1) + bA) + bI(§ + 1)] -1
8 )

(10)

holds, then problem (1) has a unique solution.

Proof We define an operator F : PC(J,R) — PC(/,R) by

t Lol ya-1
.F(G)(t):/ ¢ F()) f(s 0(s), G@(S) ds+Z/ (& S) 3,9(5),(79(3))ds

ti s) 2
+Zl€(t)+2(tk t)/ f(s,6(s), 00 (s)) dis

+Z(tk t,)IO(t,)+Z(t ) / (‘ i S,Q(S),Gg(s))ds

T1-s)1!
I'(q)

+ Z(t 1) I0(t) - £(s,0(5), 00(s)) ds

s

12}

zs)l

b
£(5,6(5),05(5)) ds - 2(1 _3) ;Iie(ti)

ti-1

-2
(- ”Z(tb ) / l S) F(5,6(5),00(5)) ds

-2
A A)Z(z,t, t)16(5) ——2(1 tb)/ l S) o (5:0(6),00(9) ds

b

q-1
—221 )0t tk/ - S) f(s 6(s), 09(s)) ds

b

tA o (f — 512
+ s ;(71 —1p) /;H F(qs_ 1)f(s,9(s),(,—(,(s)) ds

b

tA -
+ 3 Z(n - tp);0(t;), whered=1-n. (11)

i=1

We look for the fixed points. For this purpose we take 6,6 € PC(J,R) and, for each t € /,
we consider

| F6)() - FO) ()|

gq-1
s S) o (s) ags)]ds+2/ (6 - S) }Oe(s)—og(s)’ds

S

+Z‘Ii9(ti)_1ié(ti)’ |tk t|/ (t_S) ’09 —05(s)| ds
i-1
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‘ds

b
2‘159(2) ~IO(t)|

- k -2
+Z|tk tl|T6) - 16| + Y 1 - tk|f (6 - S) |o6 (s
i=1
+Z|t )| T0(6) - 10| + 't' z., (lr(zjlyag(s)—o@(s)’ds
ti _¢)a1 —
.\ tll(t,r(s; lo(s) = 03 6)] dis + t(1-2) >
+ ! (t,—s) - ’Ug o(;(s)’ds
t(l 1) & _ -
+ Z tn — )| |16 () - 16 (8)|
+ —(1 tb) Z/ L S) |09(s) a(,(s)|ds
NG Z|1(9)(t,) 14| + W/ (n—s)" |09(S ~ o5(5)| ds
i=1
)a-2
|21 Z/ 1) 00 (s) - 05(5)]
£ b .
+ |5 1= t)| Y_[T0() ~T0(2)].

i=1

o0 () =f (1,60, 00(0)) and  o5() = £ (1,6(2),05(0)).

By (H>), we get

|00 (2) - 05(8)| =

Then

Jos(6) - 03(6)] = [0~ @)

If (£,6(2),06(8)) = £ (2,6(2),05(0)) | < L[|6(2) - 0(8)] +

(12)

|06 (2) — 05(2)] ].

(13)

Using (13), k <b, ¢ <1, and taking the maximum on both sides of (12), we have

| 7@ -7©)]
- |:L((1 +b)(1+68)+A) L((b-1)8+1)+b(1+35+21))
L A-L)Ir(g+1) 8(1-L)I'(q)

m((2b—-1)(8 +1) + b)) + bi(§ + 1)
1)

:|||9 —0|lpc.

(14)

Page 9 of 27
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We use

L(1+b)(1+68)+A) L((b-1)@S+1)+b(1+5+A))
[ S1-L(g+1) 51-D)I'(9)
. m((2b—1)(8 + 1) + bA) + bI(§ + 1)i| -1

8

Hence, by Banach’s fixed point theorem F is a contraction and hence it has a unique fixed
point, that is the unique solution of our considered problem (1). d

Introduce the following hypotheses:
(Hs) There exist constants «, 8,y € C(J,R,), such that

If (£,6(0),00(0))| <a(t) + B®)IO] +y(D)logl, forte],0,0 R,
with a* = sup,;a(t), B* = sup,; B(t) and y* = sup,; ¥ (¢) < 1;
(Hg) the functions I; : R — R are continuous and there exist constants M*, N* > 0, such
that

|I.(0)| < M*|0| + N*, foreach® eR,i=1,2,...k

(H5) the functions I; : R — R are continuous and there exist constants F*, G* > 0, such
that

|I;(0)| < F*|6] + G*, foreachf €R,i=1,2,....k.
Theorem 3.3 Assume (H,), (H3), (Hs)—(H7) hold, then problem (1) has at leat one solution.

Proof Consider the operator F defined in theorem 3.2. Via Schaefer’s fixed point theorem
we prove that F has a fixed point. The proof completes in four steps.

Step 1: F is continuous. Let {6,} be a sequence such that 6, — 6 € PC(J,R). Then, for
each t € J, we have

| F6,)(0) - FO)@)]

t k 4
< %q)/tk (t —5)77Y o (s) - o9(s)| Ds + F?q) ;./til(ti_s)q1|09(n)(s)_09(s)|ds
k = t
+ izzl‘]ign(ti) —Iie(ti)| + 7F(q— ) FZI |t — ti| Ll (& _S)q—2|o,9(n)(s) _ Ug(s)| ds

k-1
+ Z |t — 63l |10 (8:) — 16 (t:) |
i-1
1 < t
f—_ |t—tk|/ (t; - 5)72|6"(s) — 0 (s)| ds
r(g-1 Zl i o)

, !
AF(‘I) ty

k
+ Y1t — tl[L0.(8) ~ Ti0 (2)| (1-9)70,"(s) - oy(s)| ds
i=1
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b
e ”Z [ el -0l s+ Kl -2 Ylaoste - o)
b i=1

5|3|~((1 2l Z|(tb L‘)|/ (t; = 9)T2| 0" (s) — 0y (s)| ds

b-1
|£1(1 - ) . .
+ D Ity — il [Ti6,(8) = 10 (2)]

i=1

L lra
"orig- 1)2/ (8 =5)7]0;" () = 0y s) s

b
0w Y e -T06) +
i=1

—g) ! |09(")(s) —0(s)| ds

A by
+ %lﬂ—tblg/;_ (t: - 5)172 |0 (s) — 0y (s)| ds

t|A
lm—mzm (t) -

(15)

where
(m) 0\ _ (n)
0y" () = f (t,0u(t), 05" (1))
and
o(t) =f(2,60(0),00(0)).

In view of (H,), we have

|03 (1) = 06(8)] = |f(£,6.(0), 0" () — £ (£,6(8), 06 (1)) |
< L(|6a(6) - 0(8)] + |0 (0) - 04 (2)])-

Thus

|03 (6) — o0 ()| < lf—L|9n<f> -0

Since 6, — 0, consequently og(")(t) — 0p(t) as n — oo, for each t € J. Applying the
Lebesgue dominated convergent theorem, the right hand side of (15) goes to zero as
n — 00. Hence

’}"(0,1)(15) - .7:(9)(1.‘)‘ — 0, asu— oo.
Thus

|F6) = F0)|pe > 0, asn— oco.

Hence F is continuous.

Page 11 of 27
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Step 2: F maps bounded set into bounded set in PC(/,R). We need to show that, for
any u* > 0, there exists a positive constant p such that, for each 6 € 2« = {# € PC(/,R) :
[10]lpc < u=}, we have || F(0)|lpc < p. Therefore, for each t € J, we have

FO)() = % (t—5)""oy(s)ds + m Z/ (t:— ) op(s) ds + Zl@(t)

k-1 k-1

+ Y= 06 ¢ s > -0 /tvi]a,-—s)q-zaa(s)ds

i=1

1 k t;
a5 [ o
i=1 ti-1

k
+ ) (- t)IO(t) - f (1 -5)"" oy (s) ds
i=1

3F()

= 8)T L oy(s) ds

b-1

t > t(1-A) f -2
- ;wm) P ;m, 1) / -0 ds

£(1—2) 2 }
- ;ub—t,»)w(m

t b t
e

—8)1 oy (s) ds

b
t - tA
- = 1-t)0(¢) —
5 ?:1( b)1i0 (¢:) 5T

b

b ti -
o~ > 0=t / 9+ T m-wiow. 16

i=1

Using (Hs), we have for each t € ]

oo (8)| = |f(£,60(8),00(0))]
a(t) + B0 + v (0)|os (@)

<a(t) + B +y()|os(t)]

* %

where a*, 8%, y* are defined in (Hs).
The last result implies that

* * %
o ()] < AP g (17)
1—y*
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Using (17) in (16), we have

(k-1)M
I'(q)

| FO)0)] < k(M*)16llpc + N*) +

M + +
I'g+1) I'(g+1)
kM M
I'(q) 8r(g+1)

bM b(M*||0]lpc +N*)  (b—1)M (b - 1)(F*||0]lpc + G*)
+ + + +
3r(g+1) 8 3 (q) 8
bM  b(F*||0|pc + G*) M bMx  bA(F*|0]lpc + G¥)
+ + +
8T (q) P) s(g+1)  8I'(q) 8

+(k=1)(F*[0llpc + G*) + +k(F* 10l + G*) +

)[(1 +b)(1+8) +A] + (2b—1)(8 +1) + bA]

M M
< el
SI(g+1 s3I (q)
. b(s + 1)(M*u* + N*) . [2b-1)(8 + 1) + bA](F*u* + G*)
) 1) ’

Thus, we have

M
||]~'(9)||PC < 81"7)[(1 +b)(1 +6) +A] +

(g+1 3 (q)
.\ b(8 + 1)(M*u* + N*) . [(2b-1)(8 +1) + PAJ(F*'u* + G*)
s 8 -

[(2b-1)(8 +1) + bA]

Step 3: F maps bounded set into equi-continuous set. Take t3, £, € J with ¢; < £, and let
£2,,+ be a bounded set of PC(J, R) as in the previous Step 2, then, for 6 € £2,,+, we have

| F(6)(22) - F(0)(11)]

3]

1 1 o
‘F(q) te (=9 Ge(s)ds—ﬁq) N (tr —5)T 0g(s)ds

1 k t;

+

K
> (- 0)I6(t:)
i1

(tr—t1)
§I'(q)

/(1 )T Loy (s) ds| +

(t —;;)(;) /\)Z / o -t (5)ds

(tr— ) (1=2)
| D 6| +

bty k) Z(t,, £) / (6= 5)" 0y (s) ds

= 61"(
(ty—t)(1—2) .
+ %;m—mw(m

(ta—t1

) 1
+ m;(l—tb) /t 71(t,-—s)q"209(s) ds

(th-1) & . t)A
+ 2 5 1 ;(l—tb)lie(ti) (SF(I) /b (n—-s)T" 1O'(Q(S)dS
| b Z( o) + | 2= h Z( 4 / (1~ 1" 204(s) ds .

81"(

Page 13 of 27
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Using inequality (17) and hypotheses (Hy), (H), we have

| F(O)(t2) - FO)(11)]

(—t)?  (t—t)? k(t, - t1) o x
= ‘F(q+ D T+ ‘ rig | KEw G- 0)
‘ (&2 —t1) +M‘ b(t, — 1) ‘b(tz—tl)(M*M*+N*)
5T(q+1) 5T(q+1) 5
M‘ (b-1)(t, —t1) (b—l)(tz—tl)(F*M* +G%) 'b(tZ_tl)
I'(q) ) 8" (q)
.\ ‘b(fz - 0)(F u* + G¥) (B2 = t1)A s ‘b(tz - H)AF u* + GY)
5 5T(q+1) 5
b(t, — t1)A
‘ 5T @) ’ 19

The right hand side of (18) goes to zero as ¢; — t;, consequently
’]—'(0)(@) - .7:(0)(t1)| — 0, ast) — k.

As a result of Steps 1 to 3 together with the Arzela—Ascoli theorem, we see that F is
completely continuous.

Step 4: A priori bound.

Finally, we show that the set £2,+ = {6 € PC(/,R) : 0 = uF(0) for some 0 < p < 1} is
bounded. Let 6 € 2+, then 6 = . F (), for some 0 < p1 < 1, we have for each t € J

0(t) = % (- opls) ds s WZ/ (t: = )"0 (s) ds+,u219(t)
PR ki: 1) / (t; - 5)T Zag(s)ds+,uk2_:(tk £)T0(t)
I'(g-1) ‘=
F(qM 2 t—tk)/ (t; — 5)i Zog(s)ds+/LZ(t—tk)19(t)
tw tu(1-2)

1
61"(q) A (l—s)q og(s)ds — 81"

-l A)Zwtl Z(tb £) / b= 5120y ) ds

/ (¢ — )T Lop(s) ds

b-1

-l DY tlole) s ZU ) f b= 920 (s)ds

——uzl—rb)le(t) mk) (- )70y (5) ds

b t; b
& _ ! L Q)a2 E _ 7. )
Tsrg-1) ;(” tb) A_l(tl $)1 0y (s) ds + aﬂk;(n 1) 101(8).
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Using (17) and (H;)—(H>), we have

@+ B0 k(= (a* + B*16(0))

1-y* * *
lo@)| < T+ D) + e D) +k(M*|0@t)| + N*)
(k = D(i== (@ + B*16(0))) i o kGt + 7100
+ ) +(k-1)(F*|6] + G*) + @
=@+ B*10(0)]) b= (a* + B*0(1)])
* * 1-y 1-y
+]1<§(F ‘9(t)|+G)+ ST+ 1) + ST+ 1)
b |0(8)] + N*) (b= (== (@ + B*10)  (b-1)(F*0(t)| + G*)
* 5 * 5T (q) * 5
b(== (@ + B*10())) L bE+ 6 o (o + B*16(6))A
5I'(q) 8 §I'(g+1)

(== (e + B IO(E))A  bAF*|0()] + G¥)
5T (@) e

+

After rearranging the terms, we get

== (@* + B*[6(2)])
1-y
|0(t)| = 3r(g+1)
@ + 4100
8T (q)
. b(s + 1)(M*u* + N*)  [(2b—-1)(8 + 1) + BA](F*u* + G¥)

+ .

8 8

[(1 +b)(1+6) + A]

[(2b-1)(8 +1) + bA]

Taking the maximum on both sides and using for simplicity the notion

b(s + )(M*u* + N*)  [(2b—1)(§ + 1) + BA](F*u* + G¥)

= +
8 )
and
1 1
*(Ol*+ﬁ* *(Ol*+ﬂ*
1-y -y
= ————[A+Db)1+8) +A[+ ————|(2b-1)(5 +1) +bAr[],
[ sy DL+ a]e = [b -6 + 1)+ ]}
we get
1€]lpc < IT||Olpc + T
From this we have
T
”9||PC < — (19)

—1-IT

This implies that the set §2,,+ is bounded, hence by Schaefer’s fixed point theorem, we can

say that F has at least one fixed point which is a solution of our problem (5). d

Page 15 of 27
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4 UH stability analysis of IBVP (5)
In this section, we develop some adequate conditions under which the proposed problem

(5) satisfies the assumptions of various kinds of UH stability.

Lemma 4.1 Let 1 < q <2, if 0 € PC(J,R) is the solution of the inequality (2), then 6 is a
solution of the following inequality:

b+1)E+1)+1 (2b-1)F+1)+b
+
I'(qg+1) I'(q)

0(t) - F(t)| < 5( +(3Bb-1)@ +1) +b>e.

Proof Since O is a solution of inequality (2) and in view of remark 2.9, we have

CthkQ(t) = O'g(t)(t) + ¢(t)r te (t]kr tk+1],k = 1’21 “oe ’b;
Ae(t)|t:tk = I]ke(t]k) + ¢(t)! k=1,2,...,b; (20)
A0 ()i=r, = 1O t) + (), k=1,2,...,b.

Obviously, the solution of (20) will be

t

o(t) = L (t —8) 1oy (£)(s) ds +

1 ¢ 1
F(q)/t(t_s)q ¢(s)ds

'@ ),
1 & ti
REeTPRY t: -9 "o ds+ (t; —5)T Lo (s) ds
I'(q) Z;ft] o Z/
. - 1 kol t
-2
+ ;Iie(ti) + ;d’; + m ;(tk —t) L_l(ti —8)7 20, (t)(s) ds

+r(ql 1)2 f (ti — )12 ( s)ds+Z(tk—t)19 Z(tk—t)qb,

1 k ki
o L [ oo

k

1 L "
g & /ti_}tt—s)q $(s)ds

i=1

k k
Y (- t)IO(t) + Z(t ~ t)¢i

i=1

5;(,,) t.,(l_s)q Loy (6)(s) ds - Mt() (- 5 g(5) ds

t(1-2) 1 1
T Z/ £ — )T oy (6)(s) ds — - 3r( ) Z/ (ti— )" p(s)ds

——(1 A)Z t)——(l A)qu,

t(1-21) >l 4 .
Torg-1) ;‘“’ ~t) f (=9 oy (e)) ds



Asma et al. Advances in Difference Equations (2019) 20197

) b-1

H1-2) = k _ tH1-A -
T Srg-1) Z(tb - lfi)/til(ti —5)72p(s) ds — ; i_Zl(tb —t)I6)
t(l ny Z(fb Wi~ SFa 1) 4 Z(l tp) f (t = 5)" 0y (t)(s) ds
t b t b
e PR / (=9 66)ds = 300 - l016)
b n
D BT FA( s [ =906 as
i=1
th .
ST@ ), (n—=s8)T"¢p(s)ds

i=1

tA - tA
3 Z(’? —w)0(t) + Z(ﬂ - ty) i,
i=1 i=1

where § =1 -n.

For the sake of simplicity, let us denote the sum of terms free of ¢ by F(¢), that is,

F(t) =

@), (t $)7 o (s) ds + al ); t’til(ti—s)q—loa(t)(S)ds

k-1 k-1

+Zw(t,)+2(tk B0 + (1 5Lt / (& - 57200 (5)

i=1

F(q 5 Z(t t]k)/ (t; — 8)T 204 (£)( s)ds+Z(t t)LO(t;)

b

i, o lae(t)(s)ds‘tglr_(;)); t;il(ti—s)q_lo(;(t)(s)ds

b-1

> -0 / (1~ 91200 (1)) ds

t(1-2)
sI'(g—1) 4

t
-5a —A)Zw(m

t(l 2)

Z(t., t)I0(t;) - Z(l th) / (t: = $)120p(£)(s) dis

b

t - A " 1
-5 - wioe) - 5 /z., (11— 5" 0)(5) ds

i=1

b ti b =
e >0 [ t-oroaas 5 > 0=l

ti-1
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Then we have from the above
|6(2) - F(2)]

lt‘“dlktit‘f*ldk»
< 7 L =97 o) s+F(q);/m(i—s) 09 ds+ 3164

k-1 4 k-1
Stt-til [ -5 ?p)ds+ 3 -t
1 ti-1 i=1

1 k 4 k
e=e0] [ =92 lo]ds+ Y[t~ w0l o
-1 i=1 ti-1 i=1

e f(l—s)ql|¢ ) ds+ 10 ”Z/ (ti— 97 |(5)| ds

It > 1E(1=2)
+ ?(1—)\);|¢i| STa=1) Z(tb /1 (ti - $)72|p(s)| ds

,laa- ’\)Z(t,, )1 + 3 I)Z(l—tbf (t: =5)72|(s)| ds

It & el (" 1
+3§(1—tb)|¢i|+ @ /q, (n —s)7"|p(s)| ds

b

i Zm t|/ (t - 5)7|p(s)] s + 'Aim—tnm
3F(q 1) b i s - bl1¥il-

This upon simplification yields

€ be (b-1)e be
|9(t)—F(t)|§F(q+1)+r(q+1)+be+ ) +(b- 1)e+m+be
€ be be (b-1)¢ (b-1)¢ be
Tsrq+1) erg+D) 8 srg 8 sr(g
be € be be

S "sr(q+1) ol s
From which it implies that

b+1DE+1)+1 @b-1)S+1)+b
po-ro) = 5 (PR

+Bb-1)(§+1) +b)e.

O

(Hs) There exists @y > 0 for the nondecreasing function ¢ € C(J,R), such that, for any
t €], the inequality

I79(t) <@y (t) and consequently 9719 () < w9 (t)

hold.

Page 18 of 27



Asma et al. Advances in Difference Equations (2019) 20197 Page 19 of 27

Lemma 4.2 If0 € PC(J,R) is the solution of the inequality (4), then 6 satisfies the following
inequality:

05 - F®)] < e(9(0) +<p)["’(3“ + 4y + 358+ Y+, -0+ 1)].

Proof From the proof of Lemma 4.1, we have the following inequality:

0() - F(e)| < e )/(t—s)q o) ds+—2/ (& —s)1" 1|¢>(s)|ds+2|¢,
1 k-1 4 k-1
=) =l | (ti=s)" ()| ds+ ) It —till il
I —l>§ ‘ / Z ‘

1 < t :
—— ) |-t [ @G-9T?p)|ds+ Y |- t)]lgil
F( _1); ‘ /t;l ; ’

1 |t|(1_)\) > fi -1
m)/u— 9100 ds + S ;/Mm—sv 16(s)] ds

1t > 14(L=2) :
FU-n Tl Z r)f (8- 52| g(5)| ds

b-1
+ @ D (6~ 1)l

i=1
- .
TSrg-1) ;(1 ) /tl-_l(” =9)7[¢(s)| ds

RS e (7 e
EPXEULET > /tbm—s)q 6(5)] s

|t|A " o2 1t1A
ey |—t.,| (ti = )72 |(s)| ds + Zm—tbnda

By Remark 2.10 and hypothesis (Hg), we get

’(9(15) —F(t)’ < ewyd(t) + bewy?(t) + bep + (b — 1)ewy 9 (¢) + (b—1)eg

cwy (L) A bewy ¥ (¢) s beg
8 1) 1)
(b-1)ewyd(t) (b-1)ep bewyd(t) begp
+ + + + —
8 8 8 8
ewy(t) bewmyd(t) bep
+ + + —.
8 ) 8

+bewy 0 (t) + bep +

This implies that

0~ F()] < e(9(6) + w)[(b(% w434 =0 1)]'
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Theorem 4.3 Assume that the hypotheses (Hy)—(Ha) hold and if

L(1+b)1+8)+A) L((b-1E+1)+b(1+5+21))
[ S1-DI(g+1) 5(1-1)T (q)
m((2b-1)(8 + 1) + bA) + bI(§ + 1)
+ 5 ] <1,

then the IBVP (5) is UH stable and consequently GUH stable.

Proof Let @ € PC(J,R) be any solution of inequality (2) and @ be a unique solution of prob-

lem (5), then we have
0() - 0(t)| = |6(t) - F(t) + F(t) - 0(8)| < |6(t) - F(t)| + |F(2) - (). (21)

In view of Lemma 4.1, from (21) one has

6)-6)|
1/b+1)8+1)+1 (2b-1)+1)+b
EE( I'(g+1) + rQ +(3b—1)(5+1)+b)e
F(Q) tk(t_sq_1|09 (s) =0 (s |ds+ )Z/ (ti—s)T 1|09 —0p(s) |ds

) 1 “l b
iO\L;) = LiO\L; — -t - 42| 5-(q) — d
+;|19(t) 19(t)|+F(q_1);(tk t)/ti_l(t 912 0y(5) — 00 (s)| dis

k-1
+ Y (- )|T0() - 10(8)|

i=1

1 < t
PR | =90 - outo] as

—s5)T” 1|09 (s) - 0'9(5)|d.9

+Z|t—tk||19(t) 16(t)|

|t|(1 )
8I"(q)

b
Z/ (& —s)T 1|o@(s O'g(S)|dS+ 1—A)Z|Ii0_(t,~)—1,r9(ti)|
i=1

ti-

|£1(1-2)

o Z(tb—tl)/ (69" o3(s) ~ 00(5)] ds

b-1
. lﬂ(lsi—m >ty - 0)|T6(6) - 16 (1)

i=1

IR t
*5rg-n 2 / (=5)"?oy(9) - on(9)] s

b
+—= Y (1-w)|L0@t:) - 16(5)|
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t|A
8|1—v|( ) ( _S)q 1‘0‘9(3 O'g(S)|dS
9
51«( -0 Z('}—tb)/ (& —s)T” 2|09(s) oy(s) |ds
812 -
< =1 ilé t; —f,-@ ti)l. 29
+3;(n w)|L6(8) —16(2)] 22)
Using (H,) we have

|l05()(8) — s (t)| = |f(£,0(8),05(2)) —f (£, 0(8), 05 (2))|
< L(|0@) - 6()| + |o5(t)(2) — 09 (2) ).

From this we have

loa(O®) 00 ()] < T Lle(t) 0(2)]. (23)

Using (Hs3), (Hy) and (23), for each ¢ € ], (22) implies that

5<(b+1)(3+1)+1 (2b—1)(8+1)+b+(3b_1)(5+1)+b>6

100 rq+n ' T

+—————[|6 = Olpc + miLHé = 0llpc +bL[|6 - 6]pc
1-L)I'(g+1) (1-L)I'(g+1)

+ u||9_ —6llpc + (b= 1)ml|6 — 6|pc + b—Lllé = Ollpc
(1-L)I'(q) (1-L)I'(q)

+bWl||9_ = 0llpc + G_D(fmné =0lpc

+ I)—L||9_—9||1>C + E||9_—9||1>C + ﬁﬂé—eﬂm
(I-Lprg+1) 5 (1-Lpr (@

(b-1)m - bL ~ bm -
——6-6 ———60-6 —160-6
# 25 =0l + s 10 =l + =10 e

. L bl —2E =0+ 2 G0
(1-L)sT(g+1) T A-L)sr(g) e pe:

Simplifying, we have

1/(b+DE+1D)+1 + (2b— 1)(8+1 (3') 1)(5 + 1) +b)

”9—_9” < § I'(g+1) I'(q) ¢
PC = 1 — (LB h) ) L(b-DG+1) b(Lrd 1)), mi(b-1)E+1)+bA) i3 +1) :
SA-L) (q+1) SA-L)I'(9) s

Therefore, we have

6 -6 <crpe, where

1( (b+1)(8+1)+1 + (2b— 1)(8+1 (3]) 1)(8 + 1) +b)

_ I(g+1) I'(q)
b = 1-[ L(+b)(1+8)+3) | L(b-1)(+1)+b(1+5+1)) | m((2b- 1)(5+1)+bx)+b1(5+1)]‘
S(1-L)I"(g+1) S(I-L)T (q) B

From this we conclude that the problem (5) is UH stable. Further if we set ¥(€) = crp(€);
¥ (0) = 0, then the problem is GUH stable. (|
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Theorem 4.4 Under the hypotheses (H;)—(Ha), (Hg) and if

L(1+b)1+8)+A) L(b-1DGE+1)+b1+5+1))
[ S1-DI(g+1) 5(1-L)T (q)
m((2b—-1)(8 + 1) +bA) + bI(5 + 1)
+ 5 ] <1

is satisfied, then the IBVP (5) is UHR stable with respect to (9, ¢), consequently GUHR
stable.

Proof Let 8 € PC(J,R) be the solution of inequality (4) and let 6 be the unique solution of
the IBVP (5), then, for each ¢ € J, we have

16(8)-6(0)| < |60) - F@)| + |F(2) - 6(8)]. (24)

By Lemma 4.2, we have

(b(38 +4)wy +38 +4) +wy — (8 + 1)
1)

Wm—nmg[ }Wm+@,

and from the proof of Theorem 4.3, we get

L(A+b)(1+8)+A)L((B-1)S+1)+b(1+56+A1)] -
’F“y_m”lf[ S1-L)I(g+1) 51-D)I'(g) ]"e_ehc
. [m((Zb -1)( + 12;+ bA) +bl(8 + 1)] 19— 0.
Hence the inequality (24) becomes
16— 6llpe < [(b(SS +4)wy + 388+ Y+ -0+ D]e(z?(t) . <p)
L(1+b)(1+8)+A) L((b-1)@S+1)+b(1+8+A)) G o
[ S1-DI(g+1) S(1-L) T (q) ]” ~llee
.\ [m((2b - 1)(5 + 1)8+ bA) +bl(8 + 1)] 16— 0lvc.
This implies that
16 - 6llpc

(b(38+4)my +38+4)+wy —(8+1)

[ 3 ] S(¢

L(b-D@E+D+b(8+7) m((2b—1)(8+1)+bk)+bl(a+1)]6( () + ‘/’)'
8(1-L)I(g) §

= 1- [L((1+b)(1+8)+k)

8(1-L)I"(g+1)

+

Hence

16 -6l < crpoe® +9),

Page 22 of 27



Asma et al. Advances in Difference Equations (2019) 20197 Page 23 of 27

where

[ (b(38+4)wy +38+4)+wy —(8+1) ]
)

L((b-1)(5+1)+b(1+6+A))
s1-L)I'(q)

Cfbo = 1 [HOb)0)

m((Zb—l)(6+1)+bA)+bl(5+1)] :
8(1-L)I(g+1) 8

+ +

This shows that the problem (5) is UHR stable.
Consequently, it can easily be shown that the problem (5) is GUHR stable. d

5 Example

To demonstrate our main results, we provide the following examples.

Example 5.1 Consider the BVP given by

3
3 ey 2
2 _ 10(2)] sin|“Dy3 6(¢)| 1
“D2O(t) = WEN ey T e LELtFti=3
6(0) =0, 0(1) = 16(3), (25)
1 3)\ 0(3)l
( )= s (31’ M( )= 2o+\e( o

From (25), we see that g = 2, A = %, n= %, b =1. Set

) sin x|
v = 200+ D1+ V@) 20+ 2

Obviously, the function f is continuous.

Now for any v, ¥,%,x € R, we have
[ (&, v, %) —f(t,,%)| < 21—0(|V(t) - 9(t)| + [x(t) - %(2)]).

Hence (H>) satisfied with L = %. For (H3) and (H,), let

191 and 1(9) = 191

10) = -
©) 40 + 10| 20 + |0

, respectively, & € PC(J,R).

For each 6,6 € PC(J,R), t € J, we have

el
10)-10)| = - — —
| ) -1( )| ‘40+|9| 40 + (0| _40” ”
and
el
16)- 1) =‘ S L )

20+16] 20+19]| ~ 20



Asma et al. Advances in Difference Equations (2019) 20197

Hence (H3) and (H,) are satisfied with m = %, l= %. Alsod=1-n= % Therefore, we

have

[L((l +b)(1+8)+A) L((b-1)E+1)+b(1+5+A))

SA-LTlg+1) S1-L)I'(q)
s m((2b —1)(8 + 1) + bA) + bI(§ + 1):|
5
=0.85395 < 1.

Hence in view of Theorem 3.2, the given impulsive BVP (25) has a unique solution. From
the conditions of Theorem 4.3 it follows that the given IBVP (25) is UH stable and conse-
quently GUH stable.

For 9 (¢) = t, ¢ = 1 we have

3 1 ¢ 82 [t
Itzﬂ(t):—s/‘ (t—S)2 ISdS<_ >
@) Jo 5

1 4
consequently
3_ 1 ¢ 2t
1779 = 37/ (t-5)32sds < —,
ris-1nJ N

hence condition (Hjy) is satisfied with wy = %, therefore, all the conditions of Theorem
4.4 are satisfied, thus the given IBVP (25) is UHR stable with respect to (¢, ¢). Further it
is also obvious that the given IBVP (25) is GUHR stable.

Example 5.2 For the verification we take another example:

3
3 10+16()1+1°D2 6(2)|
“D2O(t) = e, teltf{t=1,
1306”20(1+|9(t)\+\th21G(t)\)

(26)
60)=0,  6(1)=36(3),
1y _ 10l 1y _ 6@l
A0(3) = 25+0(3)1” AV(3) = 50+10(3)]
Hereq:%,kz% éb 1. We set
10 t t
V(t,v,x){: + [v(E)] + |x(2)]

130et20(1 + [v(8)] + |x(8)])”

The continuity of f is obvious.
For any v,x € R, we have

[f(t,v,%)| < @(po + [v(@)| + [x()]).

We see that «(t) = 5w, B(t) = ¥(8) = me
sup,; B(t) = @ and y* = sup,; ¥ (¢) = 130 —= < 1. This satisfies (Hs). Let

1 0 - (1 o
19<—> = L‘ml and 19(—) = Lzml, respectively, 8 € PC(J,R).
4) 25+10(3)] 4/ 50+10(3)l

We see that «* = sup,; a(t) = o B* =

Page 24 of 27
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Then, for any 6 € PC(/,R), t € ], we have

“(3)

1
=5z101+1
25

and

_ (1 1
0(=) <=0 +1.
4)'= 50

The first inequality satisfies (Hs) with M* = 5= > 0, N* = 1 > 0 and the second inequality
satisfies (H,) with F* = 2—15 >0, G* =1 > 0. Therefore, by Theorem 3.3, problem (26) has at
least one solution.

Also for any v, v,x,x € R, we have

[f(t,v,x) —f(&,9,%)| < ﬁ(’v(t) - (O] + [x() - x(2)|).

Hence (H,) satisfied with L = —L

130620

And for any 8,0 € PC(J,R), t € ], we have
16)-16)] = — 9 -]
— 25 '
Similarly
10)-10)| = — 16 |
~ 50 '
The last two inequalities imply that m = % and/= % and hence (H3) and (H,) are satisfied

as well. To find §, we have § =1-n=1- é = %. For these values of L, b, m, [, 1, 8, n and g,
the inequality

L(1+b)(1+8)+A) L((b-1)(@E+1)+b(1+5+A1))

SA-LTg+1) 51-L)I'(q)
m((2b—1)(8 + 1) + bA) + bi(s + 1)
+ 5 <1

holds. Therefore, by Theorem 3.2, the impulsive BVP (26) has a unique solution. From
the conditions of Theorem 4.3 it follows that the given IBVP (26) is UH stable and conse-
quently GUH stable.

6 Conclusion

In this paper we have studied a class of three point BVP of nonlinear implicit FDEs with
impulsive conditions. Using fixed point theory and nonlinear functional analysis, we have
obtained sufficient conditions under which the given problem has at least one solution.
Also in Theorem 3.2, we have obtained sufficient conditions which guarantee the unique-
ness of solution of the given problem. Similarly in Theorem 4.3 and Theorem 4.4, we have
derived some sufficient conditions under which the solutions of the concerned problem is
UH stable and UHR stable, respectively. In the last section we have given two numerical

examples to verify our results.



Asma et al. Advances in Difference Equations (2019) 20197 Page 26 of 27

Acknowledgements
We are very thankful to the anonymous referees for their useful corrections.

Funding
This research work has been financially supported by Higher Education Commission (HEC) of Pakistan under the grant
number 21-1657/SRGP/R&D/HEC/2017.

Abbreviations
FDEs, IBVP, BVP, UH, stability; GUH, stability; GUHR, stability.

Competing interests
There does not exist any competing interest regarding this manuscript.

Authors’ contributions
All authors have equal contribution in this paper. All authors read and approved the final manuscript.

Author details

'Department of Mathematics, COMSATS University Islamabad, Sahiwal, Pakistan. 2Department of Mathematics, University
of Malakand, Khyber Pakhtunkhwa, Pakistan. *Department of Mathematics, Faculty of Arts and Sciences, Cankaya
University, Ankara, Turkey.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 21 October 2018 Accepted: 27 December 2018 Published online: 10 January 2019

References
1. Abbas, S, Benchohra, M., N'Guerekata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science
Publishers, New York (2015)
2. Abbas, S, Benchohra, M., N'Guerekata, G.M.N.: Topics in Fractional Differential Equations. Springer, Berlin (2012)
3. Agarwal, P, Al-Mdallal, Q, Cho, YJ,, Jain, S.: Fractional differential equations for the generalized Mittag-Leffler
function. Adv. Differ. Equ. 2018, 58 (2018)
4. Agarwal, P, Choi, J.: Fractional calculus operators and their image formulas. J. Korean Math. Soc. 53, 1183-1210 (2016)
5. Agarwal, P, Choi, J,, Paris, R.B.: Extended Riemann-Liouville fractional derivative operator and its applications. J.
Nonlinear Sci. Appl. 8, 451-466 (2015)
6. Agarwal, P, Dragomir, S.S., Jleli, M., Samet, B.: Advances in Mathematical Inequalities and Applications (Trends in
Mathematics) (2019)
7. Agarwal, P, Jleli, M., Samet, B.: Fixed Point Theory in Metric Spaces. Recent Advances and Applications (2018)
8. Agarwal, RP, Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving
Riemann-Liouville fractional derivative. Adv. Differ. Equ. 2009, 981728 (2009)
9. Agarwal, R.P, Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear
fractional differential equations and inclusions. Acta Appl. Math. 109, 973-1033 (2010)
10. Ali, A, Rabiei, F, Shah, K: On Ulam'’s type stability for a class of impulsive fractional differential equations with
nonlinear integral boundary conditions. J. Nonlinear Sci. Appl. 10, 4760-4775 (2017)
11. Anastassiou, G.A.: Advances on Fractional Inequalities. Springer, New York (2011)
12. Baleanu, D, Diethelm, K, Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific,
New York (2012)
13. Baleanu, D, Guvenc, Z.B, Machado, J.AT. New Trends in Nanotechnology and Fractional Calculus Applications.
Springer, New York (2010)
14. Benchohra, M, Lazreg, J.E: Nonlinear fractional implicit differential equations. Commun. Appl. Anal. 17, 471-482
(2013)
15. Benchohra, M., Lazreg, J.E.: Existence results for nonlinear implicit fractional deferential equations with impulses.
Commun. Appl. Anal. 19, 413-426 (2015)
16. Feckan, M., Wang, J.: A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 46, 915-933
(2015)
17. Granas, A, Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
18. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)
19. Jung, S.M.: On the Hyers-Ulam stability of the functional equations that have the quadratic property. J. Math. Anal.
Appl. 222, 126-137 (1998)
20. Jung, SM.: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 19, 854-858 (2006)
21. Kilbas, AA, Srivastava, HM.,, Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland
Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
22. Kiymaz, 1.0, Cetinkaya, A, Agarwal, P: An extension of Caputo fractional derivative operator and its applications. J.
Nonlinear Sci. Appl. 9, 3611-3621 (2016)
23. Machado, J.T, Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul.
(2010)
24. Obloza, M.: Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 13, 259-270 (1993)
25. Otigueira, M.D.: Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering. Springer,
Dordrecht (2011)
26. Podlubny, |.: Fractional Differential Equations. Academic Press, San Diego (1999)



Asma et al. Advances in Difference Equations (2019) 20197 Page 27 of 27

27.

28.
29.

30.

31

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

Rogovchenko, Y.V.: Impulsive evolution systems: main results and new trends. Dyn. Contin. Discrete Impuls. Syst. 3,
57-88 (1997)

Rus, LA Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 26, 103-107 (2010)
Ruzhansky, M., Cho, Y.J., Agarwal, P, Area, |.: Advances in Real and Complex Analysis with Applications. Springer,
Singapore (2017)

Shah, K., Ali, A, Bushnag, S.: Hyers—Ulam stability analysis to implicit Cauchy problem of fractional differential
equations with impulsive conditions. Math. Methods Appl. Sci. 41, 1-15 (2018)

Shah, K., Khalil, H., Khan, RA.: Investigation of positive solution to a coupled system of impulsive boundary value
problems for nonlinear fractional order differential equations. Chaos Solitons Fractals 77, 240-246 (2015)

Sun, JX:: Nonlinear Functional Analysis and Its Application. Science Press, Beijing (2008)

Ulam, S.M.: Problems in Modern Mathematics. Wiley, New York (1940)

Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1960)

Wang, G., Zhang, L., Song, G.: Extremal solutions for the first order impulsive functional differential equations with
upper and lower solutions in reversed order. J. Comput. Appl. Math. 235, 325-333 (2010)

Wang, J.R, Feckan, M, Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential
equations. Mediterr. J. Math. 14, 1-21 (2017)

Wang, JR, Fetkan, M., Zhou, Y. Fractional order differential switched systems with coupled nonlocal initial and
impulsive conditions. Bull. Sci. Math. 141, 727-746 (2017)

Wang, J.R, Xuezhu, L.: A uniform method to Ulam-Hyers stability for some linear fractional equations. Mediterr. J.
Math. 13, 625-635 (2016)

Zavalishchin, ST, Sesekin, AN.: Dynamic Impulse Systems. Theory and Applications. Kluwer Academic, Dordrecht
(1997)

Zhang, S.: Positive solutions for boundary value problem of nonlinear fractional differential equations. Electron. J.
Differ. Equ. 2006, 36 (2006)

Zhang, X, Agarwal, P, Liu, Z, Peng, H.: The general solution for impulsive differential equations with
Riemann-Liouville fractional-order g € (1, 2). Open Mathematics 13 (2015)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Ulam-Hyers stability analysis to a class of nonlinear implicit impulsive fractional differential equations with three point boundary conditions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries and background materials
	Main results
	UH stability analysis of IBVP (5)
	Example
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


