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Abstract. We apply the reproducing kernel Hilbert space method to a
nonlinear system in this work. We utilize this technique to overcome the
nonlinearity of the problem. We have obtained accurate results. We have
demonstrated our results by tables and figures. We have proved the effi-
ciency of the method.

1. Introduction

Implementations of the kernel methods have been investigated by many au-
thors [?]. Approximation of stochastic partial differential equations [?], numer-
ical solution of integral equations [?], multiple solutions of nonlinear boundary
value problems [?] and applications to machine learning algorithms [?]. The
reproducing kernel Hilbert space methods have been applied successfully to
several nonlinear problems such as, nonlinear singular Lane–Emden type equa-
tions and singular nonlinear two-point periodic boundary value problem [?].
For more details see [?,?].

The governing equations for mass, momentum and energy in unsteady two-
dimensional flow of a nano-fluid [?,?,?] are:
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2 ESRA KARATAS AKGÜL, ALI AKGÜL, YASIR KHAN, AND DUMITRU BALEANU

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

knf
(ρCp)nf

(
∂2T

∂x2
+
∂2T

∂y2

)

+
µnf

(ρCp)nf

(
4

(
∂u

∂x

)2

+

(
∂u

∂x
+
∂v

∂y

)2
)
, (1.4)

v = vw =
dh

dt
, T = TH at y = h(t),

v =
∂u

∂y
=
∂T

∂y
= 0 at y = 0. (1.5)

Let us define the similarity transform as below:

η =
y

[l(1− αt)1/2]
, u =

αx

[2(1− αt)]
f ′(η),

v = − αl

[2(1− αt)]
f(η), θ =

T

TH

A1 = (1− α) + φ
ρs
ρf
. (1.6)

Eq. (??) easily satisfies Eq. (??). The similarity transformation (??) reduces
the momentum and energy equations, and the boundary conditions (??) re-
spectively to

f iv − SA1(1− φ)2.5(ηf ′′′ + 3f ′′ + f ′f ′′ − ff ′′′) = 0,

θ′′ + PrS

(
A2

A3

)
(fθ′ − ηθ′) +

PrEc

A3(1− φ)2.5
(f ′′2 + 4δ2f ′2) = 0

f(0) = 0, f ′′(0) = 0, f(1) = 1, f ′(1) = 0,

θ′(0) = 0, θ(1) = 1,

where

S =
αl

2vf
, P r =

µf (ρCp)f
ρfKf

Ec =
ρf

(ρCp)f

(
αx

2(1− αt)

)2

, δ =
1

x
.

We investigate the following problem in this paper:
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f (iv) − SA1(1− φ)2.5(ηf ′′′ + 3f ′′ + f ′f ′′ − ff ′′′) = 0,

θ′′ + PrS
(
A2
A3

)
(f − η)θ′ + PrEc

A3(1−φ)2.5 (f ′′2 + 4δ2f ′2) = 0,

f(0) = 0, f ′′(0) = 0, f(1) = 1, f ′(1) = 0,

θ′(0) = 0, θ(1) = 1.

(1.7)

Ordinary differential systems are important for actual–physical problems. These
systems were used for a lot of problems [?,?,?,?]. Biswas et al. investigated
systems by some varied techniques [?].

In this work, we obtain the solutions of (??) by reproducing kernel Hilbert
space method (RKHSM). We assume that (??) has one solution. (??) can be
written as: {

Pu = M(f, θ), 0 ≤ x ≤ 1,

u(0) = 0 = u(1),
(1.8)

where M = (M1,M2)
T , u ∈ V 5

2 [0, 1] ⊕ V 5
2 [0, 1], M ∈ V 1

2 [0, 1] ⊕ V 1
2 [0, 1]. The

space V 5
2 [0, 1]⊕ V 5

2 [0, 1] is defined as

V 5
2 [0, 1]⊕ V 5

2 [0, 1] = {u = (f, θ)T | f, θ ∈ V 5
2 [0, 1]}.

The inner product and norm are presented as:

〈m,n〉 =
2∑
i=1

〈mi, ni〉V 5
2
, ‖m‖ =

(
2∑
i=1

‖mi‖2
) 1

2

, m, n ∈ V 5
2 [0, 1]⊕ V 5

2 [0, 1].

V 5
2 [0, 1]⊕V 5

2 [0, 1] is a reproducing kernel Hilbert space. V 1
2 [0, 1]⊕V 1

2 [0, 1] can
be identified in a similar way.

This work is arranged as: Section 2 gives some reproducing kernel Hilbert
spaces. Solutions in V 5

2 [0, 1]⊕V 5
2 [0, 1] and a related linear operator are shown

in Section 3. Numerical experiments are demonstrated in Section 4. The last
section includes conclusions.

2. Some useful kernels

Definition 1. We define V 5
2 [0, 1] by:

V 5
2 [0, 1] = {m ∈ AC[0, 1] : m′,m′′,m(3),m(4) ∈ AC[0, 1], m(5) ∈ L2[0, 1],

m(0) = m′′(0) = m(1) = m′(1) = 0}.



4 ESRA KARATAS AKGÜL, ALI AKGÜL, YASIR KHAN, AND DUMITRU BALEANU

〈m,n〉V 5
2

=

4∑
i=0

m(i)(0)n(i)(0) +

∫ 1

0
m(5)(t)n(5)(t)dt, m, n ∈ V 5

2 [0, 1]

and

‖m‖V 5
2

=
√
〈m,m〉V 5

2
, m ∈ V 5

2 [0, 1].

are inner product and norm in V 5
2 [0, 1].

Theorem 1. Reproducing kernel Ãy of V 5
2 [0, 1] is acquired as:

Ãy(x) =


∑10

i=1 ci(y)xi−1, x ≤ y,

∑10
i=1 di(y)xi−1, x > y.

(2.1)

Proof. We get〈
v, Ãy

〉
V 5
2

=
4∑
i=0

v(i)(0)Ãy
(i)

(0) +

∫ 1

0
v(5)(x)Ãy

(5)
(x)dx, v, Ãy ∈ V 5

2 [0, 1]

by Definition ??.
We obtain〈

v, Ãy

〉
V 5
2

=v(0)Ãy(0) + v′(0)Ãy
′
(0) + v′′(0)Ãy

′′
(0)

+ v(3)(0)Ãy
(3)

(0) + v(4)(0)Ãy
(4)

(0)

+ v(4)(1)Ãy
(5)

(1)− v(4)(0)Ãy
(5)

(0)− v(3)(1)Ãy
(6)

(1)

+ v(3)(0)Ãy
(6)

(0) + v′′(1)Ãy
(7)

(1)− v′′(0)Ãy
(7)

(0)

− v′(1)Ãy
(8)

(1) + v′(0)Ãy
(8)

(0) + v(1)Ãy
(9)

(1)

− v(0)Ãy
(9)

(0)−
∫ 1

0
v(x)Ãy

(10)
(x)dx.

(2.2)

by integrating by parts.By reproducing property, we have

〈v, Ãy〉V 5
2

= v(y). (2.3)

Since Ãy ∈ V 5
2 [0, 1], we get

Ãy(0) = Ã′′y(0) = Ãy(1) = Ã′y(1) = 0. (2.4)



REPRODUCING KERNEL HILBERT SPACE METHOD 5

If 

Ãy
′
(0) + Ãy

(8)
(0) = 0,

Ãy
(3)

(0) + Ãy
(6)

(0) = 0,

R̃y
(4)

(0)− Ãy
(5)

(0) = 0,

Ãy
(5)

(1) = 0,

Ãy
(6)

(1) = 0,

Ãy
(7)

(1) = 0.

(2.5)

then (??) gives

Ãy
(10)

(x) = −δ(x− y).

When x 6= y,

Ãy
(10)

(x) = 0,

therefore

Ãy(x) =


∑10

i=1 ci(y)xi−1, x ≤ y,

∑10
i=1 di(y)xi−1, x > y.

(2.6)

Since

Ãy
(10)

(x) = δ(x− y),

we get

∂kÃy+(y) = ∂kÃy−(y), k = 0, 1, . . . , 8 (2.7)

and

∂9Ãy+(y)− ∂9Ãy−(y) = −1. (2.8)

ci(y) and di(y) (i = 1, 2, . . . , 10) can be obtained by (??)–(??). So the proof
is completed. �

Definition 2. V 1
2 [0, 1] is described by

V 1
2 [0, 1] = {m ∈ AC[0, 1] : m′ ∈ L2[0, 1]}.

〈m,n〉V 1
2

= m(0)n(0) +

∫ 1

0
m′(t)n′(t)dt, m, n ∈ V 1

2 [0, 1]

and

‖m‖V 1
2

=
√
〈m,m〉V 1

2
, m ∈ V 1

2 [0, 1].

are inner product and the norm in V 1
2 [0, 1].
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Lemma 1. Kernel function Q̃z of V 1
2 [0, 1] is gotten as [?]:

Q̃z(t) =

{
1 + t, 0 ≤ t ≤ z ≤ 1,

1 + z, 0 ≤ z < t ≤ 1.

3. Solutions in V 5
2 [0, 1]⊕ V 5

2 [0, 1]

Lemma 2. P : V 5
2 [0, 1] ⊕ V 5

2 [0, 1] → V 1
2 [0, 1] ⊕ V 1

2 [0, 1] is a bounded linear
operator.

Proof. We get

‖Pu‖ =

 2∑
i=1

‖
2∑
j=1

Pijvj‖2
 1

2

≤

 2∑
i=1

 2∑
j=1

‖Pij‖‖vj‖

2
1
2

≤

 2∑
i=1

 2∑
j=1

‖Pij‖2
 2∑

j=1

‖vj‖2
 1

2

=

 2∑
i=1

2∑
j=1

‖Pij‖2
 1

2

‖v‖.

P is bounded by the boundedness of Pij . �

Now, put

ϕij(x) = Q̃xi(x)−→ej =

{
(Q̃xi(x), 0)T , j = 1,

(0, Q̃xi(x))T , j = 2,

and ψij(x) = P ∗ϕij(x), i = 1, 2, . . . , j = 1, 2. The orthonormal system of

{ψ̂ij(x)}(∞,2)(1,1) of V 5
2 [0, 1]⊕ V 5

2 [0, 1] is acquired as:

ψ̂ij(x) =

i∑
z=1

j∑
q=1

βijzqψzq(x), i = 1, 2, . . . , j = 1, 2.

Theorem 2. Suppose that {pη}∞η=1 is dense in [0, 1]. Thus, {ψητ (p)}(∞,2)(1,1) is

a complete system in V 5
2 [0, 1]⊕ V 5

2 [0, 1].
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Proof. Let 〈v(p), ψητ (p)〉 = 0 (η = 1, 2, . . .). We obtain

〈Pv(p), ϕητ (p)〉 = 0. (3.1)

We have

v(p) =
2∑

τ=1

vτ (p)−→eτ =
2∑

τ=1

〈v(.), Pp(.)
−→eτ 〉−→eτ .

Thus, we get

Av(pη) =

2∑
τ=1

〈Pv(y), ϕητ (y)〉−→eτ = 0 (η = 1, 2, . . .).

We take (Pv)(p) = 0. In conclusion, {ψητ (p)}(∞,2)(1,1) is a complete system in

V 5
2 [0, 1]⊕ V 5

2 [0, 1]. �

Theorem 3. If {pη}∞η=1 is dense in [0, 1], the solution of (??) fulfills

v =

∞∑
η=1

2∑
τ=1

i∑
z=1

τ∑
q=1

βητzqM(pz, f(pz), θ(pz)). (3.2)

Proof. We get

v =

∞∑
η=1

2∑
τ=1

〈v(p), ψ̂ητ (p)〉ψ̂ij(p)

=

∞∑
η=1

2∑
τ=1

〈v(p),

η∑
z=1

τ∑
q=1

βητzq ψ̂zq(p)〉ψ̂ij(p)

=
∞∑
η=1

2∑
τ=1

η∑
z=1

τ∑
q=1

βητzq 〈v(p), P ∗ϕzq(p)〉ψ̂ητ (p)

=
∞∑
η=1

2∑
τ=1

η∑
z=1

τ∑
q=1

βητzq 〈Pv(p), ϕzq(p)〉ψ̂ij(p)

=
∞∑
η=1

2∑
τ=1

η∑
z=1

τ∑
q=1

βητzqM(pz, f(pz), θ(pz))ψ̂ητ (p).

�

The approximate solution vn can be found as:

vn =
n∑
η=1

2∑
τ=1

η∑
z=1

τ∑
q=1

βητzqM(pz, f(pz), θ(pz)). (3.3)
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4. Numerical results

We consider (??) in the reproducing kernel Hilbert space in this paper. After
homogenizing the conditions we obtained the numerical results for different
values of S, Pr,Ec and φ. We showed our results by Figures ??–?? and Table
??.

Heat transfer in the unsteady nano-fluid flow (??) is studied using repro-
ducing kernel method. After homogenizing the conditions we obtained the
numerical results for different values of S, Pr,Ec and φ. We showed our re-
sults by Figures 1-5 and Table 1. To show the influence of inserting physical
parameters on the temperature, Figs. 1-5 have been plotted.
From Fig. 1, we can observe that temperature distribution is decreasing for
increasing values of φ. Fig. 2 shows the effect of positive and negative squeeze
number on the temperature distribution. The aim of squeeze number (S)
describes the movement of the Plates. The effect of increasing the squeeze
number can be described in following ways:

I . decrease in the kinematic viscosity
II . an increase in the distance between the plates

III . an increase in the speed at which the plates move

Fig. 3 demonstrates the effect of Eckert number, squeeze number and volume
fraction on. temperature
The influence of Eckert number and Prandtl number on the temperature θ
are illustrated in Figs. 4 and 5. The small values of Pr (< 1) typify liquid
materials, which have high thermal diffusivity but low viscosity.

Figure 1. Approximate solutions of θ(x) for Pr = 6.2, δ =
0.1, Ec = 0.5, and S = 1.0.

Figure 2. Approximate solutions of θ(x) for Pr = 6.2, δ =
0.1, Ec = 0.5, and φ = 0.06.

Figure 3. Approximate solutions of θ(x) for Pr = 6.2 and δ = 0.1.
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x f(x) θ(x)
0.0 0.000000000 1.033181642
0.1 0.141886354 1.033171580
0.2 0.281700570 1.033086792
0.3 0.417232198 1.032745865
0.4 0.546087818 1.031853184
0.5 0.665616612 1.030014629
0.6 0.772815346 1.026840287
0.7 0.864226829 1.022250044
0.8 0.935830527 1.016245974
0.9 0.982924803 1.008829154
1.0 1.000000000 1.000000000

Table 1. Approximate solutions of f(x) and θ(x) for S =
1, P r = 6.2, Ec = 0.01, φ = 0.02 and δ = 0.01.

Figure 4. Approximate solutions of θ(x) for S = Pr = 1.0
and δ = 0.1.

Figure 5. Approximate solutions of θ(x) for S = Ec = 1.0
and δ = 0.1.

5. Conclusion

We obtained solutions of nonlinear system in this paper. We supplied ev-
idence that the reproducing kernel Hilbert space method is a very powerful
method. Moreover, this method is practical and proper to solve many prob-
lems.

6. Nomenclature

• ρnf Effective density of fluid

• µnf effective dynamic viscosity

• (ρCp)nf effective heat capacity

• knf effective thermal conductivity



10 ESRA KARATAS AKGÜL, ALI AKGÜL, YASIR KHAN, AND DUMITRU BALEANU

• f dimensionless velocity profile

• θ dimensionless temperature

• p pressure

• T Fluid Temperature

• A2 and A3 Dimensionless constants

• u velocity component in x direction

• v velocity component in y direction

• η Independent dimensionless parameter

• S Squeeze number

• Pr Prandtl number

• Ec Eckert number

• φ nanoparticle volume fraction
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