REPRESENTATION FOR THE REPRODUCING KERNEL HILBERT SPACE METHOD FOR A NONLINEAR SYSTEM

ESRA KARATAS AKGÜL, ALI AKGÜL, YASIR KHAN, AND DUMITRU BALEANU

Abstract

We apply the reproducing kernel Hilbert space method to a nonlinear system in this work. We utilize this technique to overcome the nonlinearity of the problem. We have obtained accurate results. We have demonstrated our results by tables and figures. We have proved the efficiency of the method.

1. Introduction

Implementations of the kernel methods have been investigated by many authors [?]. Approximation of stochastic partial differential equations [?], numerical solution of integral equations [?], multiple solutions of nonlinear boundary value problems [?] and applications to machine learning algorithms [?]. The reproducing kernel Hilbert space methods have been applied successfully to several nonlinear problems such as, nonlinear singular Lane-Emden type equations and singular nonlinear two-point periodic boundary value problem [?]. For more details see [?, ?].

The governing equations for mass, momentum and energy in unsteady twodimensional flow of a nano-fluid [?,?,?] are:

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{1.1}\\
\rho_{n f}\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=-\frac{\partial p}{\partial x}+\mu_{n f}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right), \tag{1.2}\\
\rho_{n f}\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=-\frac{\partial p}{\partial y}+\mu_{n f}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right), \tag{1.3}
\end{gather*}
$$

[^0]\[

$$
\begin{align*}
& \frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}=\frac{k_{n f}}{\left(\rho C_{p}\right)_{n f}}\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right) \\
&+\frac{\mu_{n f}}{\left(\rho C_{p}\right)_{n f}}\left(4\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)^{2}\right) \tag{1.4}\\
& v=v_{w}=\frac{d h}{d t}, \quad T=T_{H} \quad \text { at } \quad y=h(t) \\
& v=\frac{\partial u}{\partial y}=\frac{\partial T}{\partial y}=0 \quad \text { at } \quad y=0 \tag{1.5}
\end{align*}
$$
\]

Let us define the similarity transform as below:

$$
\begin{align*}
\eta & =\frac{y}{\left[l(1-\alpha t)^{1 / 2}\right]}, \quad u=\frac{\alpha x}{[2(1-\alpha t)]} f^{\prime}(\eta) \\
v & =-\frac{\alpha l}{[2(1-\alpha t)]} f(\eta), \quad \theta=\frac{T}{T_{H}} \\
A_{1} & =(1-\alpha)+\phi \frac{\rho_{s}}{\rho_{f}} \tag{1.6}
\end{align*}
$$

Eq. (??) easily satisfies Eq. (??). The similarity transformation (??) reduces the momentum and energy equations, and the boundary conditions (??) respectively to

$$
\begin{array}{r}
f^{i v}-S A_{1}(1-\phi)^{2.5}\left(\eta f^{\prime \prime \prime}+3 f^{\prime \prime}+f^{\prime} f^{\prime \prime}-f f^{\prime \prime \prime}\right)=0 \\
\theta^{\prime \prime}+\operatorname{Pr} S\left(\frac{A_{2}}{A_{3}}\right)\left(f \theta^{\prime}-\eta \theta^{\prime}\right)+\frac{\operatorname{Pr} E c}{A_{3}(1-\phi)^{2.5}}\left(f^{\prime \prime 2}+4 \delta^{2} f^{\prime 2}\right)=0 \\
f(0)=0, \quad f^{\prime \prime}(0)=0, \quad f(1)=1, \quad f^{\prime}(1)=0 \\
\theta^{\prime}(0)=0, \quad \theta(1)=1
\end{array}
$$

where

$$
\begin{array}{r}
S=\frac{\alpha l}{2 v_{f}}, \quad \operatorname{Pr}=\frac{\mu_{f}\left(\rho C_{p}\right)_{f}}{\rho_{f} K_{f}} \\
E c=\frac{\rho f}{\left(\rho C_{p}\right)_{f}}\left(\frac{\alpha x}{2(1-\alpha t)}\right)^{2}, \quad \delta=\frac{1}{x}
\end{array}
$$

We investigate the following problem in this paper:

$$
\left\{\begin{array}{l}
f^{(i v)}-S A_{1}(1-\phi)^{2.5}\left(\eta f^{\prime \prime \prime}+3 f^{\prime \prime}+f^{\prime} f^{\prime \prime}-f f^{\prime \prime \prime}\right)=0 \tag{1.7}\\
\theta^{\prime \prime}+\operatorname{Pr} S\left(\frac{A_{2}}{A_{3}}\right)(f-\eta) \theta^{\prime}+\frac{P r E c}{A_{3}(1-\phi)^{2.5}}\left(f^{\prime \prime 2}+4 \delta^{2} f^{\prime 2}\right)=0 \\
f(0)=0, \quad f^{\prime \prime}(0)=0, \quad f(1)=1, \quad f^{\prime}(1)=0 \\
\theta^{\prime}(0)=0, \quad \theta(1)=1 .
\end{array}\right.
$$

Ordinary differential systems are important for actual-physical problems. These systems were used for a lot of problems [?, ?, ?, ?]. Biswas et al. investigated systems by some varied techniques [?].

In this work, we obtain the solutions of (??) by reproducing kernel Hilbert space method (RKHSM). We assume that (??) has one solution. (??) can be written as:

$$
\left\{\begin{array}{l}
P u=M(f, \theta), \quad 0 \leq x \leq 1 \tag{1.8}\\
u(0)=0=u(1)
\end{array}\right.
$$

where $M=\left(M_{1}, M_{2}\right)^{T}, u \in V_{2}^{5}[0,1] \oplus V_{2}^{5}[0,1], M \in V_{2}^{1}[0,1] \oplus V_{2}^{1}[0,1]$. The space $V_{2}^{5}[0,1] \oplus V_{2}^{5}[0,1]$ is defined as

$$
V_{2}^{5}[0,1] \oplus V_{2}^{5}[0,1]=\left\{u=(f, \theta)^{T} \mid f, \theta \in V_{2}^{5}[0,1]\right\}
$$

The inner product and norm are presented as:

$$
\langle m, n\rangle=\sum_{i=1}^{2}\left\langle m_{i}, n_{i}\right\rangle_{V_{2}^{5}}, \quad\|m\|=\left(\sum_{i=1}^{2}\left\|m_{i}\right\|^{2}\right)^{\frac{1}{2}}, \quad m, n \in V_{2}^{5}[0,1] \oplus V_{2}^{5}[0,1] .
$$

$V_{2}^{5}[0,1] \oplus V_{2}^{5}[0,1]$ is a reproducing kernel Hilbert space. $V_{2}^{1}[0,1] \oplus V_{2}^{1}[0,1]$ can be identified in a similar way.

This work is arranged as: Section 2 gives some reproducing kernel Hilbert spaces. Solutions in $V_{2}^{5}[0,1] \oplus V_{2}^{5}[0,1]$ and a related linear operator are shown in Section 3. Numerical experiments are demonstrated in Section 4. The last section includes conclusions.

2. Some useful kernels

Definition 1. We define $V_{2}^{5}[0,1]$ by:

$$
\begin{array}{r}
V_{2}^{5}[0,1]=\left\{m \in A C[0,1]: m^{\prime}, m^{\prime \prime}, m^{(3)}, m^{(4)} \in A C[0,1], m^{(5)} \in L^{2}[0,1],\right. \\
\left.m(0)=m^{\prime \prime}(0)=m(1)=m^{\prime}(1)=0\right\} .
\end{array}
$$

$$
\langle m, n\rangle_{V_{2}^{5}}=\sum_{i=0}^{4} m^{(i)}(0) n^{(i)}(0)+\int_{0}^{1} m^{(5)}(t) n^{(5)}(t) \mathrm{d} t, \quad m, n \in V_{2}^{5}[0,1]
$$

and

$$
\|m\|_{V_{2}^{5}}=\sqrt{\langle m, m\rangle_{V_{2}^{5}}}, \quad m \in V_{2}^{5}[0,1] .
$$

are inner product and norm in $V_{2}^{5}[0,1]$.
Theorem 1. Reproducing kernel $\widetilde{A_{y}}$ of $V_{2}^{5}[0,1]$ is acquired as:

$$
\widetilde{A_{y}}(x)= \begin{cases}\sum_{i=1}^{10} c_{i}(y) x^{i-1}, & x \leq y \tag{2.1}\\ \sum_{i=1}^{10} d_{i}(y) x^{i-1}, & x>y\end{cases}
$$

Proof. We get

$$
\left\langle v, \widetilde{A_{y}}\right\rangle_{V_{2}^{5}}=\sum_{i=0}^{4} v^{(i)}(0) \widetilde{A}_{y}^{(i)}(0)+\int_{0}^{1} v^{(5)}(x){\widetilde{A_{y}}}^{(5)}(x) \mathrm{d} x, \quad v, \widetilde{A_{y}} \in V_{2}^{5}[0,1]
$$

by Definition ??.
We obtain

$$
\begin{align*}
\left\langle v, \widetilde{A}_{y}\right\rangle_{V_{2}^{5}}= & v(0) \widetilde{A_{y}}(0)+v^{\prime}(0){\widetilde{A_{y}}}^{\prime}(0)+v^{\prime \prime}(0) \widetilde{A}_{y}^{\prime \prime}(0) \\
& +v^{(3)}(0){\widetilde{A_{y}}}^{(3)}(0)+v^{(4)}(0){\widetilde{A_{y}}}^{(4)}(0) \\
& +v^{(4)}(1){\widetilde{A_{y}}}^{(5)}(1)-v^{(4)}(0){\widetilde{A_{y}}}^{(5)}(0)-v^{(3)}(1) \widetilde{A}_{y}{ }^{(6)}(1) \\
& +v^{(3)}(0) \widetilde{A}_{y}{ }^{(6)}(0)+v^{\prime \prime}(1) \widetilde{A}_{y}{ }^{(7)}(1)-v^{\prime \prime}(0) \widetilde{A}_{y}{ }^{(7)}(0) \tag{2.2}\\
& -v^{\prime}(1){\widetilde{A_{y}}}^{(8)}(1)+v^{\prime}(0){\widetilde{A_{y}}}^{(8)}(0)+v(1) \widetilde{A}_{y}{ }^{(9)}(1) \\
& -v(0){\widetilde{A_{y}}}^{(9)}(0)-\int_{0}^{1} v(x){\widetilde{A_{y}}}^{(10)}(x) \mathrm{d} x .
\end{align*}
$$

by integrating by parts.By reproducing property, we have

$$
\begin{equation*}
\left\langle v, \widetilde{A_{y}}\right\rangle_{V_{2}^{5}}=v(y) \tag{2.3}
\end{equation*}
$$

Since $\widetilde{A_{y}} \in V_{2}^{5}[0,1]$, we get

$$
\begin{equation*}
\widetilde{A_{y}}(0)=\widetilde{A_{y}^{\prime \prime}}(0)=\widetilde{A_{y}}(1)=\widetilde{A_{y}^{\prime}}(1)=0 . \tag{2.4}
\end{equation*}
$$

If

$$
\left\{\begin{array}{l}
{\widetilde{A_{y}}}^{\prime}(0)+{\widetilde{A_{y}}}^{(8)}(0)=0, \tag{2.5}\\
\widetilde{A_{y}}{ }^{(3)}(0)+{\widetilde{A_{y}}}^{(6)}(0)=0, \\
\widetilde{R_{y}}{ }_{y}^{(4)}(0)-\widetilde{A_{y}}{ }^{(5)}(0)=0, \\
\widetilde{A_{y}}(5) \\
\widetilde{A}_{y}(1)=0, \\
\widetilde{A}_{y}{ }^{(7)}(1)=0, \\
(1)=0 .
\end{array}\right.
$$

then (??) gives

$$
{\widetilde{A_{y}}}^{(10)}(x)=-\delta(x-y) .
$$

When $x \neq y$,

$$
\widetilde{A}_{y}^{(10)}(x)=0
$$

therefore

$$
\widetilde{A_{y}}(x)= \begin{cases}\sum_{i=1}^{10} c_{i}(y) x^{i-1}, & x \leq y \tag{2.6}\\ \sum_{i=1}^{10} d_{i}(y) x^{i-1}, & x>y\end{cases}
$$

Since

$$
{\widetilde{A_{y}}}^{(10)}(x)=\delta(x-y),
$$

we get

$$
\begin{equation*}
\partial^{k} \widetilde{A}_{y^{+}}(y)=\partial^{k} \widetilde{A}_{y^{-}}(y), \quad k=0,1, \ldots, 8 \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial^{9} \widetilde{A}_{y^{+}}(y)-\partial^{9} \widetilde{A}_{y^{-}}(y)=-1 . \tag{2.8}
\end{equation*}
$$

$c_{i}(y)$ and $d_{i}(y)(i=1,2, \ldots, 10)$ can be obtained by (??)-(??). So the proof is completed.
Definition 2. $V_{2}^{1}[0,1]$ is described by

$$
\begin{gathered}
V_{2}^{1}[0,1]=\left\{m \in A C[0,1]: m^{\prime} \in L^{2}[0,1]\right\} . \\
\langle m, n\rangle_{V_{2}^{1}}=m(0) n(0)+\int_{0}^{1} m^{\prime}(t) n^{\prime}(t) \mathrm{d} t, \quad m, n \in V_{2}^{1}[0,1]
\end{gathered}
$$

and

$$
\|m\|_{V_{2}^{1}}=\sqrt{\langle m, m\rangle_{V_{2}^{1}}}, \quad m \in V_{2}^{1}[0,1] .
$$

are inner product and the norm in $V_{2}^{1}[0,1]$.

Lemma 1. Kernel function $\widetilde{Q_{z}}$ of $V_{2}^{1}[0,1]$ is gotten as [?]:

$$
\widetilde{Q_{z}}(t)=\left\{\begin{array}{l}
1+t, \quad 0 \leq t \leq z \leq 1 \\
1+z, \quad 0 \leq z<t \leq 1
\end{array}\right.
$$

3. Solutions in $V_{2}^{5}[0,1] \oplus V_{2}^{5}[0,1]$

Lemma 2. P : $V_{2}^{5}[0,1] \oplus V_{2}^{5}[0,1] \rightarrow V_{2}^{1}[0,1] \oplus V_{2}^{1}[0,1]$ is a bounded linear operator.

Proof. We get

$$
\begin{aligned}
\|P u\| & =\left(\sum_{i=1}^{2}\left\|\sum_{j=1}^{2} P_{i j} v_{j}\right\|^{2}\right)^{\frac{1}{2}} \\
& \leq\left[\sum_{i=1}^{2}\left(\sum_{j=1}^{2}\left\|P_{i j}\right\|\left\|v_{j}\right\|\right)^{2}\right]^{\frac{1}{2}} \\
& \leq\left[\sum_{i=1}^{2}\left(\sum_{j=1}^{2}\left\|P_{i j}\right\|^{2}\right)\left(\sum_{j=1}^{2}\left\|v_{j}\right\|^{2}\right)\right]^{\frac{1}{2}} \\
& =\left(\sum_{i=1}^{2} \sum_{j=1}^{2}\left\|P_{i j}\right\|^{2}\right)^{\frac{1}{2}}\|v\| .
\end{aligned}
$$

P is bounded by the boundedness of $P_{i j}$.
Now, put

$$
\varphi_{i j}(x)=\widetilde{Q}_{x_{i}}(x) \overrightarrow{e_{j}}= \begin{cases}\left(\widetilde{Q}_{x_{i}}(x), 0\right)^{T}, & j=1, \\ \left(0, \widetilde{Q}_{x_{i}}(x)\right)^{T}, & j=2,\end{cases}
$$

and $\psi_{i j}(x)=P^{*} \varphi_{i j}(x), i=1,2, \ldots, j=1,2$. The orthonormal system of $\left\{\widehat{\psi}_{i j}(x)\right\}_{(1,1)}^{(\infty, 2)}$ of $V_{2}^{5}[0,1] \oplus V_{2}^{5}[0,1]$ is acquired as:

$$
\widehat{\psi}_{i j}(x)=\sum_{z=1}^{i} \sum_{q=1}^{j} \beta_{z q}^{i j} \psi_{z q}(x), \quad i=1,2, \ldots, j=1,2 .
$$

Theorem 2. Suppose that $\left\{p_{\eta}\right\}_{\eta=1}^{\infty}$ is dense in $[0,1]$. Thus, $\left\{\psi_{\eta \tau}(p)\right\}_{(1,1)}^{(\infty, 2)}$ is a complete system in $V_{2}^{5}[0,1] \oplus V_{2}^{5}[0,1]$.

Proof. Let $\left\langle v(p), \psi_{\eta \tau}(p)\right\rangle=0(\eta=1,2, \ldots)$. We obtain

$$
\begin{equation*}
\left\langle P v(p), \varphi_{\eta \tau}(p)\right\rangle=0 . \tag{3.1}
\end{equation*}
$$

We have

$$
v(p)=\sum_{\tau=1}^{2} v_{\tau}(p) \overrightarrow{e_{\tau}}=\sum_{\tau=1}^{2}\left\langle v(.), P_{p}(.) \overrightarrow{e_{\tau}}\right\rangle \overrightarrow{e_{\tau}} .
$$

Thus, we get

$$
A v\left(p_{\eta}\right)=\sum_{\tau=1}^{2}\left\langle P v(y), \varphi_{\eta \tau}(y)\right\rangle \overrightarrow{e_{\tau}}=0(\eta=1,2, \ldots) .
$$

We take $(P v)(p)=0$. In conclusion, $\left\{\psi_{\eta \tau}(p)\right\}_{(1,1)}^{(\infty, 2)}$ is a complete system in $V_{2}^{5}[0,1] \oplus V_{2}^{5}[0,1]$.
Theorem 3. If $\left\{p_{\eta}\right\}_{\eta=1}^{\infty}$ is dense in [0, 1], the solution of (??) fulfills

$$
\begin{equation*}
v=\sum_{\eta=1}^{\infty} \sum_{\tau=1}^{2} \sum_{z=1}^{i} \sum_{q=1}^{\tau} \beta_{z q}^{\eta \tau} M\left(p_{z}, f\left(p_{z}\right), \theta\left(p_{z}\right)\right) \tag{3.2}
\end{equation*}
$$

Proof. We get

$$
\begin{aligned}
v & =\sum_{\eta=1}^{\infty} \sum_{\tau=1}^{2}\left\langle v(p), \widehat{\psi}_{\eta \tau}(p)\right\rangle \widehat{\psi}_{i j}(p) \\
& =\sum_{\eta=1}^{\infty} \sum_{\tau=1}^{2}\left\langle v(p), \sum_{z=1}^{\eta} \sum_{q=1}^{\tau} \beta_{z q}^{\eta \tau} \widehat{\psi}_{z q}(p)\right\rangle \widehat{\psi}_{i j}(p) \\
& =\sum_{\eta=1}^{\infty} \sum_{\tau=1}^{2} \sum_{z=1}^{\eta} \sum_{q=1}^{\tau} \beta_{z q}^{\eta \tau}\left\langle v(p), P^{*} \varphi_{z q}(p)\right\rangle \widehat{\psi}_{\eta \tau}(p) \\
& =\sum_{\eta=1}^{\infty} \sum_{\tau=1}^{2} \sum_{z=1}^{\eta} \sum_{q=1}^{\tau} \beta_{z q}^{\eta \tau}\left\langle P v(p), \varphi_{z q}(p)\right\rangle \widehat{\psi}_{i j}(p) \\
& =\sum_{\eta=1}^{\infty} \sum_{\tau=1}^{2} \sum_{z=1}^{\eta} \sum_{q=1}^{\tau} \beta_{z q}^{\eta \tau} M\left(p_{z}, f\left(p_{z}\right), \theta\left(p_{z}\right)\right) \widehat{\psi}_{\eta \tau}(p) .
\end{aligned}
$$

The approximate solution v_{n} can be found as:

$$
\begin{equation*}
v_{n}=\sum_{\eta=1}^{n} \sum_{\tau=1}^{2} \sum_{z=1}^{\eta} \sum_{q=1}^{\tau} \beta_{z q}^{\eta \tau} M\left(p_{z}, f\left(p_{z}\right), \theta\left(p_{z}\right)\right) . \tag{3.3}
\end{equation*}
$$

4. Numerical Results

We consider (??) in the reproducing kernel Hilbert space in this paper. After homogenizing the conditions we obtained the numerical results for different values of $S, \operatorname{Pr}, E c$ and ϕ. We showed our results by Figures ??-?? and Table ??.

Heat transfer in the unsteady nano-fluid flow (??) is studied using reproducing kernel method. After homogenizing the conditions we obtained the numerical results for different values of $S, \operatorname{Pr}, E c$ and ϕ. We showed our results by Figures 1-5 and Table 1. To show the influence of inserting physical parameters on the temperature, Figs. 1-5 have been plotted.
From Fig. 1, we can observe that temperature distribution is decreasing for increasing values of ϕ. Fig. 2 shows the effect of positive and negative squeeze number on the temperature distribution. The aim of squeeze number (S) describes the movement of the Plates. The effect of increasing the squeeze number can be described in following ways:

I . decrease in the kinematic viscosity
II . an increase in the distance between the plates
III . an increase in the speed at which the plates move
Fig. 3 demonstrates the effect of Eckert number, squeeze number and volume fraction on. temperature
The influence of Eckert number and Prandtl number on the temperature θ are illustrated in Figs. 4 and 5. The small values of $\operatorname{Pr}(<1)$ typify liquid materials, which have high thermal diffusivity but low viscosity.

Figure 1. Approximate solutions of $\theta(x)$ for $\operatorname{Pr}=6.2, \delta=$ $0.1, E c=0.5$, and $S=1.0$.

Figure 2. Approximate solutions of $\theta(x)$ for $\operatorname{Pr}=6.2, \delta=$ $0.1, E c=0.5$, and $\phi=0.06$.

Figure 3. Approximate solutions of $\theta(x)$ for $\operatorname{Pr}=6.2$ and $\delta=0.1$.

x	$f(x)$	$\theta(x)$
0.0	0.000000000	1.033181642
0.1	0.141886354	1.033171580
0.2	0.281700570	1.033086792
0.3	0.417232198	1.032745865
0.4	0.546087818	1.031853184
0.5	0.665616612	1.030014629
0.6	0.772815346	1.026840287
0.7	0.864226829	1.022250044
0.8	0.935830527	1.016245974
0.9	0.982924803	1.008829154
1.0	1.000000000	1.000000000

Table 1. Approximate solutions of $f(x)$ and $\theta(x)$ for $S=$ $1, \operatorname{Pr}=6.2, E c=0.01, \phi=0.02$ and $\delta=0.01$.

Figure 4. Approximate solutions of $\theta(x)$ for $S=\operatorname{Pr}=1.0$ and $\delta=0.1$.

Figure 5. Approximate solutions of $\theta(x)$ for $S=E c=1.0$ and $\delta=0.1$.

5. Conclusion

We obtained solutions of nonlinear system in this paper. We supplied evidence that the reproducing kernel Hilbert space method is a very powerful method. Moreover, this method is practical and proper to solve many problems.

6. Nomenclature

- $\rho_{n f}$ Effective density of fluid
- $\mu_{n f}$ effective dynamic viscosity
- $\left(\rho C_{p}\right)_{n f}$ effective heat capacity
- $k_{n f}$ effective thermal conductivity
- f dimensionless velocity profile
- θ dimensionless temperature
- p pressure
- T Fluid Temperature
- A_{2} and A_{3} Dimensionless constants
- $u \quad$ velocity component in x direction
- $v \quad$ velocity component in y direction
- η Independent dimensionless parameter
- S Squeeze number
- Pr Prandtl number
- Ec Eckert number
- ϕ nanoparticle volume fraction

Siirt University, Faculty of Education, Department of Mathematics, 56100 Siirt, Turkey

E-mail address: esrakaratas@siirt.edu.tr
Siirt University, Art and Science Faculty, Department of Mathematics, 56100 Siirt, Turkey

E-mail address: aliakgul00727@gmail.com
University of Hafr Al-Batin, Department of Mathematics, Hafr Al-Batin 31991, Saudi Arabia

E-mail address: yasirmath@yahoo.com
Çankaya University, Art and Science Faculty, Department of Mathematics and Computer Sciences, TR-06300 Ankara, Turkey, Institute of Space Sciences, Department of Mathematics, Bucharest, Bucharest, Romania

E-mail address: dumitru@cankaya.edu.tr

[^0]: 2010 Mathematics Subject Classification. 47B32, 46E22, 35M32 and 74S30.
 Key words and phrases. Reproducing kernel functions, a nonlinear system, bounded linear operator.

