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ABSTRACT In the present research article, an efficient analytical technique is applied for travelling waves
solutions of fractional partial differential equations. The investigated problems are reduced to ordinary
differential equations, by a variable transformation. The solutions of the resultant ordinary differential
equations are expressed in the term of some suitable polynomials, which provide trigonometric, hyperbolic
and rational function solutions with some free parameters. To confirm the reliability and novelty of the
current work, the proposed method is applied for the solutions of (2+1) and (3+1)-dimensional fractional-
order extended shallow water wave equations.

INDEX TERMS Analytical method, shallow water wave equations, families of solutions.

I. INTRODUCTION
Fractional partial differential equations (FPDEs) are fre-
quently used in different areas of applied sciences such
as engineering, fluid mechanics, solid-state, propagation of
waves, plasma physics, biology, the heat flow phenomena,
quantum mechanics, optical fibers and so on. Due to appli-
cations mentioned above, the researchers have taken keen
interest in the study of FPDEs. In this connection, several
mathematicians have developed different techniques for the
numerical and analytical solutions of FPDEs [1]–[8]. For
example, Xu et al. have extended Homotopy perturbation
method (HPM) to solve PDEs of fractal order [9], [10].
Wu and Baleanu have applied variational iteration
method (VIM) for the fractional order Burgers’s flow equa-
tion [11]. Duan and Baleanu have reviewed the ADM besides
its modifications including the multistage ADM for FPDEs
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with given initial and boundary conditions [12]. To obtain
travelling wave solutions, Raslan et al. have applied modi-
fied tanh method to EW and MEW equations of fractional-
order [13]. To calculate the exact solutions of the fractional
Sharma-Tasso-Olver (STO) equations and generalized reac-
tion Duffing models, Jafari et al. have used the fractional
sub-equation method [14]. Finite element method (FEM)
is used to solve symmetric space-FPDEs with the Riesz
fractional operator [15]. Besides these methods, some math-
ematicians have used other methods such as Jacobi elliptic
expansion method [16], exp-function method [17], fractional
reduced differential transform method (FRDTM) [18], Lie
algebra method [19], finite difference method (FDM) [20],
(G
′

G )-expansion method [21], [22] and many other numerical
and analytical methods.

Among these methods, for constructing exact solu-
tions of nonlinear FPDEs, many researchers have used
(G
′

G )-expansion method [23]–[25]. This simple and efficient
method uses a variable transformation which converts a
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FPDE into nonlinear integer order ordinary differential equa-
tion (ODE). The solution of the resultant ODE is expressed
in the form of a polynomial in G′

G consists of some free
parameters. The function G = G(ξ ) satisfies an arbitrary
ODE. By substituting this polynomial in resultant nonlinear
ODE and by comparing the coefficients of (G

′

G ), a system of
algebraic equations is obtained, which provide trigonometric,
hyperbolic and rational function solutions.

The shallow water wave equations (SWWEs) govern fluid
flow in the seas, oceans, estuaries, channels, rivers and coastal
regions. These equations also arise in debris and atmospheric
flows. SWWEs can also be used to predict storm surge levels,
tides and coastline changes from ocean currents, hurricanes
and to study dredging feasibility. By the variants of the
SWWEs geophysical flows can also be modeled correctly.
The SWWEs describe incompressible flow evaluation, ignor-
ing the change in density along the flow depth. SWWEs are
also applicable to cases where the depth of fluid is much
smaller than horizontal scale of the flow. The (2 + 1) and
(3+ 1)-dimensional extended SWWEs are given as [26]:

vxt + avxy + vxxxy − 2vyvxx − 4vxvxy = 0, (1)

vyt + avxy + vxxxy − 3vyvxx − 3vxvxy = 0, (2)

and

vyzt + avxyz + vxxxyz − 6vxyvxz − 6vxvxyz = 0, (3)

where a is an arbitrary constant. These equations are obtained
by adding the terms avxy and avxyz to SWWEs appear in them.
Equations (1), (2) and (3) are important to study dispersive
waves. These equations can also be reduced to KdV equations
by supposing y = x and a = 0.
The fractional order extended SWWES (FSWWEs) in

(2+ 1) and (3+ 1)-dimensions are obtained by replacing the
integer-order derivatives in (1), (2) and (3) by fractional-order
derivatives and get:

vβαxt + av
βγ
xy + v

3βγ
xxxy − 2vγy v

2β
xx − 4vβx v

βγ
xy = 0, (4)

vγαyt + av
βγ
xy + v

3βγ
xxxy − 3vγy v

2β
xx − 3vβx v

βγ
xy = 0, (5)

Similarly, the (3+1)-dimensional extanded FSWWE is given
as:

vγ δαyzt + av
βγ δ
xyz + v

3βγ δ
xxxyz − 6vβγxy v

βδ
xz − 6vβx v

βγ δ
xyz = 0, (6)

where 0 < α, β, γ, δ ≤ 1. The fractional derivatives
involved in equations (4-6) are defined in Riemann-liouville
derivative’s sense. The definition and some properties of this
derivative of order α are listed as follow [27]:

Dαt v(t) =


1

0(1−α)
d
dt

∫ t
0 (t−τ )

−α(v(τ )−v(0))dτ,

1>α>0,
(v(n)(t))(α−n), n+1 > α≥n, n≥1.

Dαt (m(t)n(t)) = n(t)Dαt m(t)+ m(t)D
α
t n(t)

Dαt t
γ
=

0(1+ γ )
0(1+ γ − α)

tγ−α

Dαt m(n(t)) = m′n[n(t)]D
α
t n(t) = Dαgm[n(t)](g

′(t))α.

Before this research work, mathematicians have solved equa-
tions (1-3) with the help of analytical and numerical methods.
Bekir and Aksoy in [26] have used exp-function method
to solve the equations (1-3) analytically. In [28] Faisal and
Kumar have solved equation (1) and (2) by using extended
form of (G

′

G )-expansion method. Similarly, Bekir and Aksoy
in [29] have used simple (G

′

G )-expansionmethod and obtained
six solutions of equations (1-3). In [30] Alkahtani and Atan-
gana have solved the fractional order SWWEs. Seadawy et al.
have suggested the same method for the solutions of a system
of SWWE [31]. In [32] Ray has solved different FSWWEs by
using a novel method.

The aim of this paper is to solve extended FSWWEs
given in equations (4-6) by using (G

′

G )-expansion method
in extended form. The direct implementation of the present
method to the given problems, makes it superior over other
methods present in literature. That is, problems are solved
without any discretization or linearization and avoid any
unrealistic assumption in providing a number of exact solu-
tions in various families.

The onward representation of the paper is struc-
tured as: Section.2 describes the (G

′

G )-expansion Method.
Section.3 consist exact solutions for the three targeted prob-
lems. In Section.4 the results and graphs are discussed while
Section.5 concludes our whole study.

II. THE ( G′

G )-expansion Method
In this part of the paper, the methodology of (G′

G )-expansion
method for the solutions of FPDEs of the form:

F(v,Dαt v,D
β
x1v,D

γ
x2v, vD

β
x1v, . . .) = 0, 0 < α, β, γ ≤ 1,

(7)

is presented. Where v is a function of x1, x2, x3, xn and t .
The procedure of the present method is as follows:
Step.1: First, we transform equation (7) into a nonlinear

ODE of the form:

T (V ,V ′,V ′′,VV ′, . . .) = 0, (8)

the derivatives of V are w.r.t ξ . The complex transformation is
an appropriate transformation to use for FPDEs. The general
form of this transformation is given as:

ξ = a
tα

0(α + 1)
+ b

xβ1
0(β + 1)

+ . . .+ ξ0, (9)

where a, b . . . ξ0 are unknown constants.
Step.2: The series form solution, V (ξ ) of equation (8) is

expressed in term of (G
′

G ) polynomial as [21]:

V (ξ ) =
m∑

i=−m

ai(
G′(ξ )
G(ξ )

)i, (10)

where a′is are unknowns and function G(ξ ) is satisfying the
ODE given bellow:

G′′(ξ )+ AG′(ξ )+ BG(ξ ) = 0, (11)

where A and B are unknown constants.
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By the general solution of equation (11) [21]:

(
G′

G
)

=



√
Z
2

D1sinh(

√
Z
2
ξ )+D2cosh(

√
Z
2
ξ )

D1cosh(

√
Z
2
ξ )+D2sinh(

√
Z
2
ξ )

−
A
2

Z > 0

√
−Z
2

−D1sin(

√
−Z
2
ξ )+D2cos(

√
−Z
2
ξ )

D1cos(

√
−Z
2
ξ )+D2sin(

√
−Z
2
ξ )

−
A
2

Z < 0

D2

D1+D2ξ
−
A
2

Z = 0

,

(12)

where D1 and D2 are unknown constants and Z = A2 − 4B.
The number m present in equation (10) called balance

number and can be obtained by taking the homogeneous
balance between derivative of the highest order and nonlinear
term involve in equation (8). To findm, we use following two
formulae [21]:

D(
dqV
dξq

) = m+ q and D(V p(
dqV
dξq

)s) = mp+ s(q+ m),

(13)

where D means degree and m is the degree of V (ξ ) i.e.
D(V (ξ )) = m.
Step.3: By putting (10) into (8) a polynomial in (G

′

G ) is
formed and after coefficients comparison a system of non-
linear algebraic equations in free parameters is obtained.
Step.4: In last step the obtained system of algebraic equa-

tions is solved by using a mathematical software, which pro-
vides the unknown coefficients given in equation (10). Thus,
some exact solutions/families for equation (7) are obtained.

III. PROBLEMS
In present section, the proposed method is applied to the
following examples:
Problem 1: Consider the first extended FSWWE given in

equation (4):

vβαxt + av
βγ
xy + v

3βγ
xxxy − 2vγy v

2β
xx − 4vβx v

βγ
xy = 0, (14)

applying the transformation

v(x, t) = v(ξ ), where

ξ = k1
xβ

0(1+ β)
+ k2

yγ

0(1+ γ )
− c

tα

0(1+ α)
, (15)

we get an ODE, integrating ODE and taking constant of
integration zero, we have

k21k2V
′′′
+ (k2a−c)V ′ − 3k1k2(V ′)2 = 0, (16)

where V ′ = dV
dξ , c represents the speed of the traveling wave

while k1 and k2 are constants.

For homogenous numberm, we consider the homogeneous
balance between highest derivative V ′′′ and (V ′)2 given in
equation (16). So, by using equation (13) we get m = 1.
Now puttingm = 1 in (10) we get the following (G

′

G ) solution
for (14):

V (ξ )=
1∑

i=−1

ai(
G′(ξ )
G(ξ )

)i = a−1(
G′(ξ )
G(ξ )

)−1+a0 + a1(
G′(ξ )
G(ξ )

)1,

(17)

where a1, a0 and a−1 are constants to be calculated later.
Now putting equation (17) in equation (16) and using

equation (11), we get a polynomial in G′(ξ )
G(ξ ) , equating the

coefficients of same power of (G
′

G ), a system of algebraic
equations is obtained and after solving it by using Maple,
we get the following two solutions.
Case 1:

a0 = a0, a−1 = 2k1B, a1 = 0 and

c = −4k21k2B+ k2a+ k
2
1k2A

2 (18)

Case 2:

a0 = a0, a−1 = 0, a1 = −2k1 and

c = −4k21k2B+ k2a+ k
2
1k2A

2 (19)

Considering case.1 and suppose that Z = A2 − 4B for
simplicity in calculation, we get the following families of
solutions

Family1: When Z < 0 then equations (17) and (12)
implies the following periodic solitary wave solutions:

(i) When D1 6= 0 and D2 = 0

V1(x, y, t)=a0 − 2k1B

(√
−Z
2

tan(

√
−Z
2
ξ )+

A
2

)−1
, (20)

(ii) When D1 = 0 and D2 6= 0

V2(x, y, t)=a0+ 2k1B

(√
−Z
2

cot(

√
−Z
2

ξ )−
A
2

)−1
, (21)

where ξ = (k1 xβ
0(β+1)+k2

yγ

0(γ+1)−
(−4 k21 k2 B+k2 a+k21 k2 A2)tα

0(α+1) )
Family2: When Z > 0 then equations (17) and (12)

implies the following hyperbolic solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V3(x, y, t)=a0+2k1B

(√
Z
2
tanh(

√
Z
2
ξ )−

A
2

)−1
, (22)

(ii) When D1 = 0 and D2 6= 0

V4(x, y, t)=a0+2k1B

(√
Z
2
coth(

√
Z
2
ξ )−

A
2

)−1
, (23)

where ξ = (k1 xβ
0(β+1)+k2

yγ

0(γ+1)−
(−4 k21 k2 B+k2 a+k21 k2 A2)tα

0(α+1) )
Family3: When Z = 0 then equations (17) and (12)

implies the following rational solitary wave solutions:
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(i) When D1 6= 0 and D2 = 0

V5(x, y, t) = a0 + 2k1B
(
−
A
2

)−1
, (24)

(ii) When D1 = 0 and D2 6= 0

V6(x, y, t) = a0 + 2k1B
(
1
ξ
−
A
2

)−1
, (25)

where ξ = (k1 xβ
0(β+1)+k2

yγ

0(γ+1)−
(−4 k21 k2 B+k2 a+k21 k2 A2)tα

0(α+1) ).
Now considering case.2 and suppose that Z = A2 − 4B

for simplicity in calculation, we get further two families of
solutions given as:

Family4: When Z < 0 then equations (17) and (12)
implies the following periodic solitary wave solutions:

(i) When D1 6= 0 and D2 = 0

V7(x, y, t)=a0+2k1

(√
−Z
2

tan(

√
−Z
2

ξ )+
A
2

)
, (26)

(ii) When D1 = 0 and D2 6= 0

V8(x, y, t)=a0−2k1

(√
−Z
2

cot(

√
−Z
2

ξ )−
A
2

)
, (27)

where ξ = (k1 xβ
0(β+1)+k2

yγ

0(γ+1)−
(−4 k21 k2 B+k2 a+k21 k2 A2)tα

0(α+1) )
Family5: When Z > 0 then equations (17) and (12)

implies the following hyperbolic solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V9(x, y, t) = a0 − 2k1

(√
Z
2
tanh(

√
Z
2
ξ )−

A
2

)
, (28)

(ii) When D1 = 0 and D2 6= 0

V10(x, y, t) = a0 − 2k1

(√
Z
2
coth(

√
Z
2
ξ )−

A
2

)
, (29)

where ξ = (k1 xβ
0(β+1)+k2

yγ

0(γ+1)−
(−4 k21 k2 B+k2 a+k21 k2 A2)tα

0(α+1) )
Family6: When Z = 0 then equations (17) and (12)

implies the following rational solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V11(x, y, t) = a0 + 2k1

(
A
2

)
, (30)

(ii) When D1 = 0 and D2 6= 0

V12(x, y, t) = a0 − 2k1

(
1
ξ
−
A
2

)
, (31)

where ξ = (k1 xβ
0(β+1)+k2

yγ

0(γ+1)−
(−4 k21 k2 B+k2 a+k21 k2 A2)tα

0(α+1) )
Problem 2: Consider the second extended FSWWE given

in equation (5):

vγαyt + av
βγ
xy + v

3βγ
xxxy − 3vγy v

2β
xx − 3vβx v

βγ
xy = 0, (32)

applying transformation of the form:

v(x, t) = v(ξ ), where

ξ = k1
xβ

0(1+ β)
+ k2

yγ

0(1+ γ )
− c

tα

0(1+ α)
, (33)

we get an ODE, integrating ODE and considering constant of
integration zero, we have

k31V
′′′
+ (k1a−c)V ′ − 3k21 (V

′)2 = 0, (34)

where V ′ = dV
dξ , c represents the speed of the traveling wave

while k1 and k2 are constants.
For homogenous numberm, we consider the homogeneous

balance between highest derivative V ′′′ and (V ′)2 given in
equation (34). So, by using equation (13) we get m = 1.
Now puttingm = 1 in (10) we get the following (G

′

G ) solution
for (32):

V (ξ )=
1∑

i=−1

ai(
G′(ξ )
G(ξ )

)i = a−1(
G′(ξ )
G(ξ )

)−1+a0 + a1(
G′(ξ )
G(ξ )

)1,

(35)

where a1, a0 and a−1 are unknown constants.
By putting equation (35) with the help of (11) in equa-

tion (34) a polynomial in G′(ξ )
G(ξ ) is formed, equating the coef-

ficients of same power of (G
′

G ) to 0 the system of non-linear
equations is formed. By using Maple, this system provides
two solutions given as:
Case 1:

a0=a0, a−1=2k1B, a1=0 and c=−4k31B+ k1a+ k
3
1A

2

(36)

Case 2:

a0=a0, a−1=0, a1=−2k1 and c=−4k31B+ k1a+ k
3
1A

2

(37)

Considering case.1 and suppose that Z = A2 − 4B for
simplicity in calculation, we get the following families of
solutions

Family1: When Z < 0 then equation (35) and (12) implies
the following periodic solitary wave solutions:

(i) When D1 6= 0 and D2 = 0

V1(x, y, t)=a0 − 2k1B

(√
−Z
2

tan(

√
−Z
2

ξ )+
A
2

)−1
, (38)

(ii) When D1 = 0 and D2 6= 0

V2(x, y, t)=a0 + 2k1B

(√
−Z
2

cot(

√
−Z
2

ξ )−
A
2

)−1
, (39)

where ξ = (k1 xβ
0(β+1) + k2

yγ

0(γ+1) −
(−4 k31 B+k1 a+k31 A2)tα

0(α+1) )
Family2: When Z > 0 then equation (35) and (12) implies

the following hyperbolic solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V3(x, y, t)=a0 + 2k1B

(√
Z
2
tanh(

√
Z
2
ξ )−

A
2

)−1
, (40)

(ii) When D1 = 0 and D2 6= 0

V4(x, y, t)=a0 + 2k1B

(√
Z
2
coth(

√
Z
2
ξ )−

A
2

)−1
, (41)

where ξ = (k1 xβ
0(β+1) + k2

yγ

0(γ+1) −
(−4 k31 B+k1 a+k31 A2)tα

0(α+1) )
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Family3: When Z = 0 then equation (35) and (12) implies
the following rational solitary wave solutions:

(i) When D1 6= 0 and D2 = 0

V5(x, y, t) = a0 + 2k1B
(
−
A
2

)−1
, (42)

(ii) When D1 = 0 and D2 6= 0

V6(x, y, t) = a0 + 2k1B
(
1
ξ
−
A
2

)−1
, (43)

where ξ = (k1 xβ
0(β+1) + k2

yγ

0(γ+1) −
(−4 k31 B+k1 a+k31 A2)tα

0(α+1) ).
Now considering case.2 and suppose that Z = A2 − 4B

for simplicity in calculation, we get further two families of
solutions given as:

Family4: When Z < 0 then equation (35) and (12) implies
the following periodic solitary wave solutions:

(i) When D1 6= 0 and D2 = 0

V7(x, y, t) = a0 + 2k1

(√
−Z
2

tan(

√
−Z
2

ξ )+
A
2

)
, (44)

(ii) When D1 = 0 and D2 6= 0

V8(x, y, t) = a0 − 2k1

(√
−Z
2

cot(

√
−Z
2

ξ )−
A
2

)
, (45)

where ξ = (k1 xβ
0(β+1) + k2

yγ

0(γ+1) −
(−4 k31 B+k1 a+k31 A2)tα

0(α+1) )
Family5: When Z > 0 then equation (35) and (12) implies

the following hyperbolic solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V9(x, y, t) = a0 − 2k1

(√
Z
2
tanh(

√
Z
2
ξ )−

A
2

)
, (46)

(ii) When D1 = 0 and D2 6= 0

V10(x, y, t) = a0 − 2k1

(√
Z
2
coth(

√
Z
2
ξ )−

A
2

)
, (47)

where ξ = (k1 xβ
0(β+1) + k2

yγ

0(γ+1) −
(−4 k31 B+k1 a+k31 A2)tα

0(α+1) )
Family6: When Z = 0 then equation (35) and (12) implies

the following rational solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V11(x, y, t) = a0 + 2k1

(
A
2

)
, (48)

(ii) When D1 = 0 and D2 6= 0

V12(x, y, t) = a0 − 2k1

(
1
ξ
−
A
2

)
, (49)

where ξ = (k1 xβ
0(β+1) + k2

yγ

0(γ+1) −
(−4 k31 B+k1 a+k31 A2)tα

0(α+1) )
Problem 3: Consider the third extended FSWWE given in

equation (6):

vγ δαyzt + av
βγ δ
xyz + v

3βγ δ
xxxyz − 6vβγxy v

βδ
xz − 6vβx v

βγ δ
xyz = 0, (50)

applying transformation of the form:

v(x, t) = v(ξ ), where ξ = k1
xβ

0(1+ β)
+ k2

yγ

0(1+ γ )

+ k3
zδ

0(1+ δ)
+ c

tα

0(1+ α)
(51)

we get the following ODE:
(k2k3c+ ak1k2k3)V ′′′ + k31k2k3V

′′′′′
− 6k21k2k3(V

′V ′′′

+ (V ′′)2) = 0, (52)

where V ′ = dV
dξ , c represents the speed of the traveling wave

while k1, k2 and k3 are constants.
For homogeneous numberm, we consider the homogenous

balance between highest derivative V ′′′′′ and (V ′′)2 given in
equation (52). So, by using equation (13) we getm = 1. Now
putting m = 1 in (10) we get the following (G

′

G ) solution
for (50):

V (ξ )=
1∑

i=−1

ai(
G′(ξ )
G(ξ )

)i=a0+a−1(
G′(ξ )
G(ξ )

)−1+a1(
G′(ξ )
G(ξ )

)1,

(53)

where a1, a0 and a−1 are unknown constants. By putting
equation (53) with the help of (11) in equation (52) a poly-
nomial in G′(ξ )

G(ξ ) is formed, equating the coefficients of same

power of (G
′

G ) to 0 the system of non-linear equations is
formed. By using Maple, this system provides two solutions
given as:
Case 1:
a−1 = 2k1B, a0 = a0, a1 = 0, k1 = k1, k2 = k2,

k3 = k3 and c = 4k31B−k1a− k
3
1A

2 (54)

Case 2:
a−1 = 0, a0 = a0, a1 = −2k1, k1 = k1, k2 = k2,

k3 = k3 and c = 4k31B− k1a− k
3
1A

2 (55)

Case 3:

a0 = a0, k1 = k1, a−1 = a−1, k2 = k2, a1 = a1,

k3 = 0 and c = c (56)

Case 4:

a0 = a0, k1 = k1, a−1 = a−1, k2 = 0, a1 = a1,

k3 = k3 and c = c (57)

Case 5:

a0 = a0, k1 = 0, a−1 = a−1, k2 = k2, a1 = a1,

k3 = k3 and c = 0 (58)

Considering case.1 and suppose that Z = A2 − 4B for
simplicity in calculation, we get the following families of
solutions

Family1: When Z < 0 then equation (53) and (12) implies
the following periodic solitary wave solutions:

(i) When D1 6= 0 and D2 = 0

V1(x, y, t)=a0 − 2k1B

(√
−Z
2

tan(

√
−Z
2

ξ )+
A
2

)−1
, (59)

(ii) When D1 = 0 and D2 6= 0

V2(x, y, t)=a0 + 2k1B

(√
−Z
2

cot(

√
−Z
2

ξ )−
A
2

)−1
, (60)
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where ξ = k1 xβ
0(β+1) + k2

yγ

0(γ+1) + k3 zδ
0(δ+1) +

(4 k31 B−k1 a−k31 A2)tα

0(α+1)
Family2: When Z > 0 then equation (53) and (12) implies

the following hyperbolic solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V3(x, y, t) = a0 + 2k1B

(√
Z
2
tanh(

√
Z
2
ξ )−

A
2

)−1
, (61)

(ii) When D1 = 0 and D2 6= 0

V4(x, y, t) = a0 + 2k1B

(√
Z
2
coth(

√
Z
2
ξ )−

A
2

)−1
, (62)

where ξ = k1 xβ
0(β+1) + k2

yγ

0(γ+1) + k3 zδ
0(δ+1) +

(4 k31 B−k1 a−k31 A2)tα

0(α+1)
Family3: When Z = 0 then equation (53) and equa-

tion (12) implies the following rational solitary wave solu-
tions:

(i)When D1 6= 0 and D2 = 0

V5(x, y, t) = a0 + 2k1B
(
−
A
2

)−1
, (63)

(ii) When D1 = 0 and D2 6= 0

V6(x, y, t) = a0 + 2k1B
(
1
ξ
−
A
2

)−1
, (64)

where ξ = k1 xβ
0(β+1) + k2

yγ

0(γ+1) + k3 zδ
0(δ+1) +

(4 k31 B−k1 a−k31 A2)tα

0(α+1) .
Now considering case.2 and suppose that Z = A2 − 4B

for simplicity in calculation, we get further two families of
solutions given as:

Family4: When Z < 0 then equation (53) and (12) implies
the following periodic solitary wave solutions:

(i) When D1 6= 0 and D2 = 0

V7(x, y, t) = a0 + 2k1

(√
−Z
2

tan(

√
−Z
2

ξ )+
A
2

)
, (65)

(ii) When D1 = 0 and D2 6= 0

V8(x, y, t) = a0 − 2k1

(√
−Z
2

cot(

√
−Z
2

ξ )−
A
2

)
, (66)

where ξ = k1 xβ
0(β+1) + k2

yγ

0(γ+1) + k3 zδ
0(δ+1) +

(4 k31 B−k1 a−k31 A2)tα

0(α+1)
Family5: When Z > 0 then equation (53) and (12) implies

the following hyperbolic solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V9(x, y, t) = a0 − 2k1

(√
Z
2
tanh(

√
Z
2
ξ )−

A
2

)
, (67)

(ii) When D1 = 0 and D2 6= 0

V10(x, y, t) = a0 − 2k1

(√
Z
2
coth(

√
Z
2
ξ )−

A
2

)
, (68)

where ξ = k1 xβ
0(β+1) + k2

yγ

0(γ+1) + k3 zδ
0(δ+1) +

(4 k31 B−k1 a−k31 A2)tα

0(α+1)
Family6: When Z = 0 then equation (53) and (12) implies

the following rational solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V11(x, y, t) = a0 + 2k1

(
A
2

)
, (69)

(ii) When D1 = 0 and D2 6= 0

V12(x, y, t) = a0 − 2k1

(
1
ξ
−
A
2

)
, (70)

where ξ = k1 xβ
0(β+1) + k2

yγ

0(γ+1) + k3 zδ
0(δ+1) +

(4 k31 B−k1 a−k31 A2)tα

0(α+1) .
Now considering case.3 and suppose that Z = A2 − 4B

for simplicity in calculation, we get further two families of
solutions given as:

Family7: When Z < 0 then equation (53) and (12) implies
the following periodic solitary wave solutions:

(i) When D1 6= 0 and D2 = 0

V13(x, y, t) = a−1

(√
−Z
2

tan(

√
−Z
2

ξ )+
A
2

)−1

+ a0 + a1

(√
−Z
2

tan(

√
−Z
2

ξ )+
A
2

)
, (71)

(ii) When D1 = 0 and D2 6= 0

V14(x, y, t) = a−1

(√
−Z
2

cot(

√
−Z
2

ξ )+
A
2

)−1

+ a0 + a1

(√
−Z
2

cot(

√
−Z
2

ξ )+
A
2

)
, (72)

where ξ = k1 xβ
0(β+1) + k2

yγ

0(γ+1) + c
tα

0(α+1)
Family8: When Z > 0 then equation (53) and (12) implies

the following hyperbolic solitary wave solutions: (i) When
D1 6= 0 and D2 = 0

V15(x, y, t) = a−1

(√
Z
2
tanh(

√
Z
2
ξ )+

A
2

)−1

+ a0 + a1

(√
−Z
2

tanh(

√
Z
2

(ξ ))+
A
2

)
, (73)

(ii) When D1 = 0 and D2 6= 0

V16(x, y, t) = a−1

(√
Z
2
coth(

√
Z
2
ξ )+

A
2

)−1

+ a0 + a1

(√
Z
2
coth(

√
Z
2

(ξ ))+
A
2

)
, (74)

where ξ = k1 xβ
0(β+1) + k2

yγ

0(γ+1) + c
tα

0(α+1)
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Family9: When Z = 0 then equation (53) and (12) implies
the following rational solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V17(x, y, t) = a−1

(
A
2

)−1
+ a0 + a1

(
A
2

)
, (75)

(ii) When D1 = 0 and D2 6= 0

V18(x, y, t) = a−1

(
1
ξ
−
A
2

)−1
+ a0 + a1

(
1
ξ
−
A
2

)
, (76)

where ξ = k1 xβ
0(β+1) + k2

yγ

0(γ+1) + c
tα

0(α+1) .
Now considering case.4 and suppose that Z = A2 − 4B

for simplicity in calculation, we get further two families of
solutions given as:

Family10: When Z < 0 then equation (53) and (12)
implies the following periodic solitary wave solutions:

(i) When D1 6= 0 and D2 = 0

V19(x, y, t) = a−1

(√
−Z
2

tan(

√
−Z
2

ξ )+
A
2

)−1

+ a0 + a1

(√
−Z
2

tan(

√
−Z
2

ξ )+
A
2

)
, (77)

(ii) When D1 = 0 and D2 6= 0

V20(x, y, t) = a−1

(√
−Z
2

cot(

√
−Z
2

ξ )+
A
2

)−1

+ a0 + a1

(√
−Z
2

cot(

√
−Z
2

ξ )+
A
2

)
, (78)

where ξ = k1 xβ
0(β+1) + k3

zδ
0(δ+1) + c

tα
0(α+1)

Family11: When Z > 0 then equation (53) and (12)
implies the following hyperbolic solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V21(x, y, t) = a−1

(√
Z
2
tanh(

√
Z
2
ξ )+

A
2

)−1

+ a0 + a1

(√
Z
2
tanh(

√
Z
2
ξ )+

A
2

)
, (79)

(ii) When D1 = 0 and D2 6= 0

V22(x, y, t) = a−1

(√
Z
2
coth(

√
Z
2
ξ )+

A
2

)−1

+ a0 + a1

(√
Z
2
coth(

√
Z
2
ξ )+

A
2

)
, (80)

where ξ = k1 xβ
0(β+1) + k3

zδ
0(δ+1) + c

tα
0(α+1)

Family12: When Z = 0 then equation (53) and (12)
implies the following rational solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V23(x, y, t) = a−1

(
A
2

)−1
+ a0 + a1

(
A
2

)
, (81)

(ii) When D1 = 0 and D2 6= 0

V24(x, y, t) = a−1

(
1
ξ
−
A
2

)−1
+ a0 + a1

(
1
ξ
−
A
2

)
, (82)

where ξ = k1 xβ
0(β+1) + k3

zδ
0(δ+1) + c

tα
0(α+1) .

Now considering case.5 and suppose that Z = A2 − 4B
for simplicity in calculation, we get further two families of
solutions given as:

Family13: When Z < 0 then equation (53) and (12)
implies the following periodic solitary wave solutions:

(i) When D1 6= 0 and D2 = 0

V25(x, y, t) = a−1

(√
−Z
2

tan(

√
−Z
2

ξ )+
A
2

)−1

+ a0 + a1

(√
−Z
2

tan(

√
−Z
2

ξ )+
A
2

)
, (83)

(ii) When D1 = 0 and D2 6= 0

V26(x, y, t) = a−1

(√
−Z
2

cot(

√
−Z
2

ξ )+
A
2

)−1

+ a0 + a1

(√
−Z
2

cot(

√
−Z
2

ξ )+
A
2

)
, (84)

where ξ = k2
yγ

0(γ+1) + k3
zδ

0(δ+1)
Family14: When Z > 0 then equation (53) and (12)

implies the following hyperbolic solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V27(x, y, t) = a−1

(√
Z
2
tanh(

√
Z
2
ξ )+

A
2

)−1

+a0 + a1

(√
Z
2
tanh(

√
Z
2
ξ )+

A
2

)
, (85)

(ii) When D1 = 0 and D2 6= 0

V28(x, y, t) = a−1

(√
Z
2
coth(

√
Z
2
ξ )+

A
2

)−1

+ a0 + a1

(√
Z
2
coth(

√
Z
2
ξ )+

A
2

)
, (86)

where ξ = k2
yγ

0(γ+1) + k3
zδ

0(δ+1)
Family15: When Z = 0 then equation (53) and (12)

implies the following rational solitary wave solutions:
(i) When D1 6= 0 and D2 = 0

V29(x, y, t) = a−1

(
A
2

)−1
+ a0 + a1

(
A
2

)
, (87)

(ii) When D1 = 0 and D2 6= 0

V30(x, y, t)=a−1

(
1
ξ
−
A
2

)−1
+ a0+a1

(
1
ξ
−
A
2

)
, (88)

where ξ = k2
yγ

0(γ+1) + k3
zδ

0(δ+1) and Z = A2 − 4B.
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FIGURE 1. Graph of (29) for a0 = 3,k1 = 0.8,k2 = 2,a = 5,A = 3,B = 1,
α = β = γ = 1 and y = 0.

IV. DISCUSSION AND GRAPHS
The aim of the present paper is to solve extanded SWWEs in
fractional order by using extended (G

′

G )-expansion method.
Thus we solved and found various families of solutions.
It is concluded that our work is the generalization of the
works present in literature. For example, Faisal and Kumar
have solved equation (1-2) with the help of improved
(G
′

G )-expansion method [28]. The solutions given in [28] are
the special cases of the solutions obtained in the present
research work, that is for α = β = γ = 1 in the
current solutions given in equations (20-31) and (38-49) we
get the solutions given in [28]. Similarly, Bekir in [29] have
used simple (G

′

G )-expansion method and obtained only six
solutions. If, we ignore the portion

∑0
i=−n ai(

G′(ξ )
G(ξ ) )

i in our
proposed method then our solutions coincide with Bekir’s
solutions. Hence, it is concluded that simple (G

′

G )-expansion
the special case of the current method. If, we consider our
solutions in fractional order then the results obtained are
new so far. As compare to differential equations in integer
order, the fractional ordered differential equations can model
any physical phenomena correctly. Therefore, the proposed
method provided distinct exact solutions to physical problems
in non-linear science which explain the inner part mecha-
nism of any physical problem. Moreover, the present method
doesn’t need any linearization process as compare to some
other methods in literature for solving non-linear problems.

The suggested method provide three types of travelling
wave solutions for the problems, periodic, hyperbolic and
rational function solutions. The solutions are further clas-
sified by using different values to parameters in the above
solitary wave solutions. The parameter c in the solutions
obtained the speed of these waves. The balance between lin-
ear and non-linearity effect delivers solitary wave solutions.
By using a Maple software and assigning particular values to
parameters present in the exact solutions, we have shown the
nature of some periodic and solitary solutions in following
figures.

FIGURE 2. Graph of (22) for a0 = 3,k1 = 0.8,k2 = 2,a = 2,A = 3,
B = 1, α = β = γ = 1 and y = 0.

FIGURE 3. Graph of (26) for a0 = 5,k1 = −0.8,k2 = −1,a = 2,
A = 0.2,B = 3, α = β = γ = 1 and y = 0.

FIGURE 4. Graph of (49) for a0 = 3,k1 = 1.5,k2 = −0.5,a = 3,
A = 2,B = 1, α = β = γ = 1 and y = 0.

Remarks 1: The Fig.1 shows soliton profile which is simi-
lar to the figure of equation (21) in [28].
Remarks 2: The Fig.2 shows kink profile which is similar

to the figure of equation (24) in [28].
Remarks 3: The Fig.3 shows periodic profile which is

similar to the figure of equation (28) in [28].
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FIGURE 5. Graph of (86) for a0 = 3,a1 = 1,a−1 = 0,k1 = 1.5,
k2 = 0.5,k3 = 1,a = 3,A = 3,B = 1, δ = γ = 1 and y = 0.

Remarks 4: The Fig.4 shows soliton profile which is simi-
lar to the figure of equation (55) in [28].

V. CONCLUSION
The analytical solutions of extended FSWWEs are obtained
by using extended (G

′

G )-expansion method. These solutions
include hyperbolic, rational and trigonometric function solu-
tion. The free parameters in various solutions, provide the
behaviour of solutions. Moreover, with the help of these
parameters we constructed solutions that may be related to
physical problems in real phenomena.
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