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Abstract. This article addresses the solution of multi-dimensional integro-differential equations
(IDEs) by means of the spectral collocation method and taking the advantage of the properties
of shifted Jacobi polynomials. The applicability and accuracy of the present technique have been
examined by the given numerical examples in this paper. By means of these numerical examples,
we ensure that the present technique is simple and very accurate. Furthermore, an error analysis is
performed to verify the correctness and feasibility of the proposed method when solving IDE.
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1 Introduction

Recently, the studies of IDEs were developed very intensively and speedily. Numerical
solutions of the IDEs have received considerable attention not only in mathematics, but
also in computational physics. These equations are combinations of the unknown func-
tions that appear under the sign of integration and derivatives. In addition, IDEs are used
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in many problems of mechanics, engineering, chemistry, physics, biology, astronomy,
potential theory, electrostatics, etc. [3, 12, 22, 25, 31–33, 37–39, 45].

In few years, many published papers (e.g., [13, 16, 31, 35]) were devoted for solving
IDEs. Maleknejad et al. [30] implemented the Bernstein operational matrix to study a sys-
tem of linear Volterra–Fredholm IDEs. The nonlinear IDEs were studied by means of the
meshless method in [17]. Zarebnia [47] developed and proposed an efficacious numerical
solution for the Volterra IDEs by using sinc method. Recently, variational iteration method
were applied by Nadjafi et al. [36] to numerically solve the system of IDEs. More recently,
Yüzbaşı [46] proposed the collocation approach for solving Fredholm–Volterra IDEs.

In last years, there are high level of interest of the spectral methods for solving many
kinds of differential and IDEs due to their ease of application for finite and infinite
domains [1, 2, 28, 34, 40, 44]. The speed of convergence is one of the great feature of
the spectral method. Besides, the spectral methods have enormous rates of convergence,
they also have high level of reliability. The spectral method were divided into four clas-
sifications: collocation [5, 6, 26, 27], tau [8, 20, 24, 41], Galerkin [14, 15, 23] and Petrov–
Galerkin [4, 29] method. The main idea of the spectral methods is to express the solution
of the problem as a finite sum of given basis of functions (orthogonal polynomials or
combination of orthogonal polynomials) and then to choose the coefficients in order to
minimize the difference between the exact and the numerical solutions.

Our motivation in this paper is to develop spectral approximation of IDEs. We propose
the shifted Jacobi–Gauss collocation (SJGC) method to find the solution uN (x) by means
of the shifted Jacobi polynomial. The IDEs is collocated at the selected points. For con-
venient, we use the nodes of the shifted Jacobi–Gauss (SJG) interpolation as collocation
points. These equations together with the initial conditions produces a system of linear
algebraic equations, which can be easily solved. This scheme is one of the most suitable
methods for solving system of algebraic equations.

The outlines of the present paper are arranged as follows. We present few revelent
properties of shifted Jacobi polynomials in the following section. In Section 3, we propose
the SJGC scheme to solve one-dimensional IDEs. In Section 4, we solve linear two-
dimensional Volterra IDEs with the initial conditions. While in Section 5, we present some
useful lemmas and error analysis of the IDEs. In Section 6, several numerical examples
and comparisons between our numerical results and those of other methods are discussed.
Finally, Section 7 outlines the conclusions.

2 Properties of shifted Jacobi polynomials

By means of the main properties of Jacobi polynomials, we conclude the following:

P(α,β)
k (−x) = (−1)kP(β,α)

k (x), P(α,β)
k (−1) =

(−1)kΓ(k + β + 1)

k!Γ(β + 1)
, (1)

where α, β > −1, x ∈ [−1, 1].
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Furthermore, the rth derivative of P(α,β)
j (x) is computed as

DrP(α,β)
j (x) =

Γ(j + α+ β + r + 1)

2rΓ(j + α+ β + 1)
P(α+r,β+r)
j−r (x),

where r is an integer. Let the shifted Jacobi polynomial P(α,β)
L,k (x) on the interval [0, L]

be denoted by P(α,β)
L,k (x) = P(α,β)

k (2x/L− 1), L > 0, thus

P(α,β)
L,k (x) =

k∑
j=0

(−1)
k−j Γ(k + β + 1)Γ(j + k + α+ β + 1)

Γ(j + β + 1)Γ(k + α+ β + 1)(k − j)!j!Lj
xj

=

k∑
j=0

Γ(k + α+ 1)Γ(k + j + α+ β + 1)

j!(k − j)!Γ(j + α+ 1)Γ(k + α+ β + 1)Lj
(x− L)j .

Thereby

P(α,β)
L,k (0) = (−1)

kΓ(k + β + 1)

Γ(β + 1) k!
, P(α,β)

L,k (L) =
Γ(k + α+ 1)

Γ(α+ 1) k!
,

DrP(α,β)
L,k (0) =

(−1)k−rΓ(k + β + 1)(k + α+ β + 1)r
LrΓ(k − r + 1)Γ(r + β + 1)

,

DrP(α,β)
L,k (L) =

Γ(k + α+ 1)(k + α+ β + 1)r
LrΓ(k − r + 1)Γ(r + α+ 1)

, (2)

DrP(α,β)
L,k (x) =

Γ(r + k + α+ β + 1)

LrΓ(k + α+ β + 1)
P(α+r,β+r)
L,k−r (x).

Taking w(α,β)
L (x) = (L− x)αxβ , we list the following inner product and norm related to

the weighted space L2

w
(α,β)
L

[0, L] as

(u, v)
w

(α,β)
L

=

L∫
0

u(x)v(x)w
(α,β)
L (x) dx, ‖v‖

w
(α,β)
L

= (v, v)
1/2

w
(α,β)
L

.

A complete L2

w
(α,β)
L

[0, L]-orthogonal system is consisted of a set of shifted Jacobi poly-

nomials, where

∥∥P(α,β)
L,k

∥∥2
w

(α,β)
L

=

(
L

2

)α+β+1

h
(α,β)
k = h

(α,β)
L,k ,

where [7, 9, 18]

h
(α,β)
k =

2α+β+1Γ(k + α+ 1)Γ(k + β + 1)

(2k + α+ β + 1)k!Γ(k + α+ β + 1)
.
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We used x(α,β)N,j and $(α,β)
N,j , 0 6 j 6 N , as the nodes and Christoffel numbers of

the standard Jacobi–Gauss interpolation in the interval [−1, 1]. For shifted Jacobi–Gauss
interpolation on [0, L], we find

x
(α,β)
L,N,j =

L

2

(
x
(α,β)
N,j + 1

)
,

$
(α,β)
L,N,j =

(
L

2

)α+β+1

$
(α,β)
N,j , 0 6 j 6 N.

For any positive integer N , φ ∈ S2N+1[0, L] and by means of Jacobi–Gauss quadrature
property,

L∫
0

(L− x)αxβφ(x) dx =

(
L

2

)α+β+1
1∫
−1

(1− x)α(1 + x)βφ

(
L

2
(x+ 1)

)
dx

=

(
L

2

)α+β+1 N∑
j=0

$
(α,β)
N,j φ

(
L

2

(
x
(α,β)
N,j + 1

))

=

N∑
j=0

$
(α,β)
L,N,jφ

(
x
(α,β)
L,N,j

)
.

3 One-dimensional IDEs

3.1 Volterra IDEs with the initial condition

In this subsection, we use the spectral collocation method to solve the following Volterra
IDEs:

m∑
i=0

γiu
(i)(x) = f(x) +

x∫
0

k(x, s)u(s) ds, x ∈ [0, L], (3)

subject to
u(i)(0) = di, i = 0, . . . ,m− 1, (4)

where k(x, s) and f(x) are given functions and γi (i = 0, . . . ,m) are constants, while
u(x) is unknown function.

We using the SJGC algorithm to transform the previous IDEs into system of algebraic
equations. Thus, we approximate the independent variable using the SJGC algorithm at
x
(θ,ϑ)
L,N,j nodes. The nodes are the set of points in a specified domain, where the dependent

variable values are approximated. In general, the choice of the location of the nodes are
optional, but taking the roots of the shifted Jacobi polynomials referred to as SJG points,
gives particularly accurate solutions for the spectral methods.
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Now, we outline the main step of the SJGC method for solving one-dimensional IDEs.
We choose the approximate solution to be of the form

uN (x) =

N∑
j=0

ajP(θ,ϑ)
L,j (x). (5)

Then

u
(i)
N (x) =

N∑
j=0

aj
di(P(θ,ϑ)

L,j (x))

dxi
=

N∑
j=0

ajΨ
(θ,ϑ)
L,j,i (x), i = 1, . . . ,m,

where

Ψ
(θ,ϑ)
L,j,i (x) =

j−i∑
r=0

Ci(j, i, θ, ϑ)P(θ,ϑ)
L,r (x).

Equation (3) can be written as

m∑
i=0

γi

N∑
j=0

ajΨ
(θ,ϑ)
L,j,i (x) = f(x) +

x∫
0

(
k(x, s)

N∑
j=0

ajP(θ,ϑ)
L,j (s) ds

)
. (6)

In the proposed SJGC method, the residual of (6) is set to zero at (N −m + 1) of SJG
points. Then, adopting (5)–(6), we can be write (3) in form:

N∑
j=0

m∑
i=0

γiajΨ
(θ,ϑ)
L,j,i

(
x
(θ,ϑ)
L,N,n

)

= f
(
x
(θ,ϑ)
L,N,n

)
+

x
(θ,ϑ)
L,N,n∫
0

(
k
(
x
(θ,ϑ)
L,N,n, s

) N∑
j=0

ajP(θ,ϑ)
L,j (s) ds

)
, n = m, . . . , N.

Then

N∑
j=0

aj

(
m∑
i=0

γiΨ
(θ,ϑ)
L,j,i

(
x
(θ,ϑ)
L,N,j

)
−

x
(θ,ϑ)
L,N,j∫
0

k(x
(θ,ϑ)
L,N,j , s)P

(θ,ϑ)
L,j (s) ds

)

= f
(
x
(θ,ϑ)
L,N,n

)
, n = m, . . . , N. (7)

Using Eqs. (5) and (4), we obtain

N∑
j=0

aj
(−1)j−iΓ(j + ϑ+ 1)(j + θ + ϑ+ 1)i

LiΓ(j − i+ 1)Γ(i+ ϑ+ 1)
= di, i = 1, . . . ,m. (8)

Finally, from (7) and (8) we obtain (N + 1) algebraic equations, which can be easily
solved for the unknown coefficients aj . So, uN (x) given in Eq. (5) can be estimated.
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3.2 System of Volterra IDEs with the initial conditions

In the current subsection, we apply the technique discussed in Section 3.1 to solve system
of Volterra IDEs in the form

m∑
i=0

γiu
(i)(x) = f1(x) +

x∫
0

k1(x, s)
(
u(s) + v(s)

)
ds,

m∑
i=0

ζiv
(i)(x) = f2(x) +

x∫
0

k2(x, s)
(
u(s) + v(s)

)
ds, x ∈ [0, L],

(9)

subject to
u(i)(0) = di, v(i)(0) = δi, i = 0, . . . ,m− 1, (10)

where f1(x), f2(x), k1(x, t) and k2(x, t) are given function, and γi, ζi (i = 0, . . . ,m)
are constants, while u(x), v(x) are unknown functions.

In the SJGC method, the approximate solution can be introduced as a truncated shifted
Jacobi series:

uN (x) =

N∑
j=0

ajP(θ,ϑ)
L,j (x), vN (x) =

N∑
j=0

bjP(θ,ϑ)
L,j (x), (11)

and, in virtue of (11), we deduce that

u
(i)
N (x) =

N∑
j=0

ajΨ
(θ,ϑ)
L,j,i (x), v

(i)
N (x) =

N∑
j=0

bjΨ
(θ,ϑ)
L,j,i (x), i = 1, . . . ,m.

In the proposed SJGC method, the residual of (9) is set to be zero at 2(N − m + 1) of
SJG points, thus we find

N∑
j=0

m∑
i=0

γiajΨ
(θ,ϑ)
L,j,i

(
x
(θ,ϑ)
L,N,n

)

= f
(
x
(θ,ϑ)
L,N,n

)
+

x
(θ,ϑ)
L,N,n∫
0

(
k1
(
x
(θ,ϑ)
L,N,n, s

)( N∑
j=0

ajP(θ,ϑ)
L,j (s)+

N∑
j=0

bjP(θ,ϑ)
L,j (s)

))
ds,

N∑
j=0

m∑
i=0

ζibjΨ
(θ,ϑ)
L,j,i

(
x
(θ,ϑ)
L,N,n

)

= f2
(
x
(θ,ϑ)
L,N,n

)
+

x
(θ,ϑ)
L,N,n∫
0

(
k2
(
x
(θ,ϑ)
L,N,n, s

)( N∑
j=0

ajP(θ,ϑ)
L,j (s)+

N∑
j=0

bjP(θ,ϑ)
L,j (s)

))
ds,

(12)
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where n = m, . . . , N . Using (2), Eq. (10) can be reformulated as
N∑
j=0

aj
(−1)j−iΓ(j + ϑ+ 1)(j + θ + ϑ+ 1)i

LiΓ(j − i+ 1)Γ(i+ ϑ+ 1)
= di, i = 1, . . . ,m,

N∑
j=0

bj
(−1)j−iΓ(j + ϑ+ 1)(j + θ + ϑ+ 1)i

LiΓ(j − i+ 1)Γ(i+ ϑ+ 1)
= δi, i = 1, . . . ,m.

(13)

Equations (12) and (13) give a system of algebraic equations, which can be solved for the
unknown coefficients aj and bj . So, uN (x) and vN (x) given in Eq. (11) can be estimated.

3.3 Mixed of Volterra–Fredholm IDEs with the initial conditions

This section present an efficient spectral algorithm by means of the SJGC method to
numerically solve linear mixed Volterra–Fredholm IDEs in the form

m∑
i=0

γiu
(i)(x) = f(x) +

x∫
0

k(x, s)u(s) ds+

L∫
0

k(x, s)u(s) ds, x ∈ [0.L],

subject to
u(i)(0) = di i = 0, . . . ,m− 1.

Similar steps to that given in the previous subsections, enable one to write Eq. (3.3) in the
form

m∑
i=0

γiajΨ
(θ,ϑ)
L,j,i (x) = f(x) +

x∫
0

k(x, s)

N∑
j=0

ajP(θ,ϑ)
L,j (s) ds

+

L∫
0

k(x, s)

N∑
j=0

ajP(θ,ϑ)
L,j (s) ds, x ∈ [0, L].

Based on the information in the previous section, we get the following system of algebraic
equations:

m∑
i=0

γiajΨ
(θ,ϑ)
L,j,i

(
x
(θ,ϑ)
L,N,n

)
=

x
(θ,ϑ)
L,N,n∫
0

k
(
x
(θ,ϑ)
L,N,n, s

) N∑
j=0

ajP(θ,ϑ)
L,j (s) ds

+

L∫
0

k
(
x
(θ,ϑ)
L,N,n, s

) N∑
j=0

ajP(θ,ϑ)
L,j (s) ds

+ f
(
x
(θ,ϑ)
L,N,n

)
, n = m, . . . , N,

N∑
j=0

aj
(−1)j−iΓ(j + ϑ+ 1)(j + θ + ϑ+ 1)i

LiΓ(j − i+ 1)Γ(i+ ϑ+ 1)
= di, i = 1, . . . ,m.
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The previous linear system of algebraic equations can be easily solved. After determining
the coefficients aj , it is straightforward to compute the approximate solution uN (x) at
any value of x ∈ [0, L] in the given domain from the following equation

uN (x) =

N∑
j=0

ajP(θ,ϑ)
L,j (x).

4 Two-dimensional IDEs

In this section, we extend the above analysis to solve the following two-dimensional linear
Volterra IDEs:

∂2u(x, t)

∂t2
+ u(x, t)

= f(x, t) +

t∫
0

x∫
0

k(x, t, y, z)u(s, y) dy dz, (x, t) ∈ [0, L]× [0, τ ], (14)

subject to

u(x, 0) = g0(x),
∂u

∂t
(x, 0) = g1(x), (15)

where k(x, t, y, z) and f(x, t) are given functions, while u(x, t) is unknown function.
Therefore, the SJGC method will be applied to transform the previous two-dimensional

Volterra IDEs into system of algebraic equations.
Let us expand the dependent variable in the form

uN,M (x, t) =

M∑
i=0

N∑
j=0

aijP(θ2,ϑ2)
τ,i (t)P(θ1,ϑ1)

L,j (x). (16)

The partial derivatives of the approximate solution uN,M (x, t) is then estimated as

∂uN,M (x, t)

∂t
=

N∑
i=0

M∑
j=0

ai,jφi,j(x, t),

∂2uN,M (x, t)

∂t2
=

N∑
i=0

M∑
j=0

ai,jϕi,j(x, t),

(17)

where

φi,j(x, t) =
dP(θ2,ϑ2)

τ,i (t)

dt
P(θ1,ϑ1)
L,j (x),

ϕi,j(x, t) =
d2P(θ2,ϑ2)

τ,i (t)

dt2
P(θ1,ϑ1)
L,j (x).
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From (14), (16) and (17) we can write Eq. (14) as

N∑
i=0

M∑
j=0

ai,jϕi,j(x, t)

=

t∫
0

x∫
0

k(x, t, y, z)

M∑
i=0

N∑
j=0

aijP(θ2,ϑ2)
τ,i (z)P(θ1,ϑ1)

L,j (y) dy dz + f(x, t)

−
M∑
i=0

N∑
j=0

aijP(θ2,ϑ2)
τ,i (t)P(θ1,ϑ1)

L,j (x), (x, t) ∈ [0, L]× [0, τ ]. (18)

In the proposed SJGC algorithm, the residual of (18) is set to zero at (N + 1)(M − 1)
of SJC point. Furthermore, the initial conditions in (15) will be collocated at SJG points.
Firstly, we have (N+1)(M−1) algebraic equations for (M+1)(N+1) unknown of ai,j

N∑
i=0

M∑
j=0

ai,jϕi,j
(
x
(θ1,ϑ1)
L,N,l , t

(θ2,ϑ2)
L,N,m

)

=

t
(θ2,ϑ2)

L,N,m∫
0

x
(θ1,ϑ1)

L,N,l∫
0

k
(
x
(θ1,ϑ1)
L,N,l , t

(θ2,ϑ2)
L,N,m , y, z

) M∑
i=0

N∑
j=0

aijP(θ2,ϑ2)
τ,i (z)P(θ1,ϑ1)

L,j (y) dy dz

+ f
(
x
(θ1,ϑ1)
L,N,l , t

(θ2,ϑ2)
L,N,m

)
−

M∑
i=0

N∑
j=0

aijP(θ2,ϑ2)
τ,i

(
t
(θ2,ϑ2)
L,N,m

)
P(θ1,ϑ1)
L,j

(
x
(θ1,ϑ1)
L,N,l

)
,

l = 0, . . . , N , m = 1, . . . ,M − 1. The previous equations can be rearranging as

M∑
i=0

N∑
j=0

aijη
l,m
i,j = f

(
x
(θ1,ϑ1)
L,N,l , t

(θ2,ϑ2)
L,N,m

)
, l = 0, . . . , N, m = 0, . . . ,M,

where

ηl,mi,j = ϕi,j
(
x
(θ1,ϑ1)
L,N,l , t

(θ2,ϑ2)
L,N,m

)

−

t
(θ2,ϑ2)

L,N,m∫
0

x
(θ1,ϑ1)

L,N,l∫
0

k
(
x
(θ1,ϑ1)
L,N,l , t

(θ2,ϑ2)
L,N,m , y, z

)
P(θ2,ϑ2)
τ,i (z)P(θ1,ϑ1)

L,j (y) dy dz

+ P(θ2,ϑ2)
τ,i

(
t
(θ2,ϑ2)
L,N,m

)
P(θ1,ϑ1)
L,j

(
x
(θ1,ϑ1)
L,N,l

)
.
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Combining Eqs. (16) and (17), we obtain

N∑
i=0

M∑
j=0

ai,jP(θ2,ϑ2)
τ,i (0)P(θ1,ϑ1)

L,j

(
x
(θ1,ϑ1)
L,N,l

)
= g0

(
x
(θ1,ϑ1)
L,N,l

)
, l = 0, . . . , N,

N∑
i=0

M∑
j=0

ai,jDtP(θ2,ϑ2)
τ,i (0)P(θ1,ϑ1)

L,j

(
x
(θ1,ϑ1)
L,N,l

)
= g1

(
x
(θ1,ϑ1)
L,N,l

)
, l = 0, . . . , N,

finally, the linear system of (N + 1)(M + 1) algebraic equations produced automatically
and can be easily solved. Therefore, uN,M (x, t) can be determined in closed form.

5 Lemmas and error analysis

Some useful lemmas and a discussion about the error analysis of the algorithm presented
in Section 3.1.

5.1 Lemmas

Definition 1. Let PN : L2(I)→ XN be the L2 orthogonal projection, defined by

(PNu− u, v) = 0 ∀v ∈ XN .

Definition 2. Some weighted Hilbert spaces will be presented here.
For a nonnegative integer m, define [10, 11, 42]

Hm
wα,β (−1, 1) =

{
υ: ∂ixυ ∈ L2

wα,β (−1, 1), 0 6 i 6 m
}
,

where ∂ixυ(x) = ∂iυ(x)/∂xi related to the following seminorm and the norm:

|υ|m,wα,β =
∥∥∂mx υ∥∥wα,β ,

‖υ‖m,wα,β =

(
m∑
i=0

∥∥∂ixυ∥∥2wα,β
)1/2

.

Lemma 1. Assume that u ∈ Hm(I), I ≡ (−1, 1). The interpolation of u (Iα,βN u) com-
puted at any points of Jacobi–Gauss points (Gauss or Gauss–Radau or Gauss–Lobatto
points) stasifies the following estimates [11]:∥∥u− Iα,βN u

∥∥
L2

wα,β
(I)

6 CN−m|u|Hm,N
wα,β

(I),∥∥u− Iα,βN u
∥∥
L∞(I)

6 CN1/2−m|u|Hm,N
wα,β

(I),∥∥u′(x)−
(
Iα,βN u(x)

)′∥∥
L2

wα,β
(I)

6 CN1−m|u|Hm,N
wα,β

(I).
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5.2 Error analysis

The main goal is to estimate the accuracy of the solutions we obtained. In this section, er-
ror analysis for the introduced technique (3) will be discussed. We provided error analysis
for the proposed method to indicate its exponential rate of convergence, provided that the
source and kernel functions are sufficiently smooth. In order to do that, some properties
of Banach algebras and Sobolev inequality are taken into account.

Theorem 1. Let u(x) the exact solution of the Volterra IDEs (3) and assume that
Iα,βN (u(x)) = uN (x) be the spectral collection approximation defined by Eq. (7), there-
fore, we have∥∥u(x)− uN (x)

∥∥
L2

wα,β
(I)

6 CN−m
(
N |u|Hm,N

wα,β
(I) + γN1/2|u|Hm,N

wα,β
(I)

+ |f |Hm,N
wα,β

(I) +
∣∣k(x, s)

∣∣
Hm,N
wα,β

(I)
‖u‖L2

wα,β
(I)

)
.

Proof. Let the equation of linear Volterra IDEs in (3), where m = 1,

u′(x) + u(x) = f(x) +

x∫
0

k(x, s)u(s) ds,

u(x) = −u′(x) + f(x) +

x∫
0

k(x, s)u(s) ds, (19)

while using the approximate solution, we have

(
Iα,βN u(x)

)′
+ uN (x) = Iα,βN f(x) +

x
(θ,ϑ)
L,N,n∫
0

Iα,βN,Nk
(
x
(θ,ϑ)
L,N,n, s

)
Iα,βN u(s) ds,

uN (x) = −
(
Iα,βN u(x)

)′
+ Iα,βN f(x) +

x
(θ,ϑ)
L,N,n∫
0

Iα,βN,Nk
(
x
(θ,ϑ)
L,N,n, s

)
Iα,βN u(s) ds. (20)

Subtracting (20) from (19), we get

u(x)− uN (x) =
((
Iα,βN u(x)

)′ − u′(x)
)

+
(
f(x)− Iα,βN f(x)

)
+

x
(θ,ϑ)
L,N,n∫
0

k
(
x
(θ,ϑ)
L,N,n, s

)
u(s) ds

−

x
(θ,ϑ)
L,N,n∫
0

Iα,βN,N

(
k
(
x
(θ,ϑ)
L,N,n, s

))
Iα,βN u(s) ds,
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then

eN (x) =
((
Iα,βN u(x)

)′ − u′(x)
)

+
(
f(x)− Iα,βN f(x)

)
+

x
(θ,ϑ)
L,N,n∫
0

eN,Nk
(
x
(θ,ϑ)
L,N,n, s

)
Iα,βN u(s) ds

+

x
(θ,ϑ)
L,N,n∫
0

(
k
(
x
(θ,ϑ)
L,N,n, s

))
u(s) ds

−

x
(θ,ϑ)
L,N,n∫
0

k
(
x
(θ,ϑ)
L,N,n, s

)
Iα,βN u(s) ds,

eN (x) =
((
Iα,βN u(x)

)′ − u′(x)
)

+
(
f(x)− Iα,βN f(x)

)
+

x
(θ,ϑ)
L,N,n∫
0

eN,Nk
(
x
(θ,ϑ)
L,N,n, s

)
Iα,βN u(s) ds

+

x
(θ,ϑ)
L,N,n∫
0

k
(
x
(θ,ϑ)
L,N,n, s

)(
u(s)− Iα,βN u(s)

)
ds,

where eN,N = k(x
(θ,ϑ)
L,N,n, s)− I

α,β
N,N (k(x

(θ,ϑ)
L,N,n, s)). Then

eN (x) = J1 + J2 + J3 + J4

J1 =
(
Iα,βN u(x)

)′ − u′(x), J2 =

x
(θ,ϑ)
L,N,n∫
0

k
(
x
(θ,ϑ)
L,N,n, s

)(
u(s)− Iα,βN u(s)

)
ds,

J3 = f(x)− Iα,βN f(x), J4 =

x
(θ,ϑ)
L,N,n∫
0

eN,Nk
(
x
(θ,ϑ)
L,N,n, s

)
Iα,βN u(s) ds.

From Gronwall inequality [43] we can write∥∥eN (x)
∥∥
L2

wα,β

6 ‖J1‖L2

wα,β
+ ‖J2‖L2

wα,β
+ ‖J3‖L2

wα,β
+ ‖J4‖L2

wα,β
. (21)

From Lemma 1 [11] we can write

‖J1‖L2

wα,β
(I) =

∥∥(Iα,βN u(x)
)′

(x)− u′(x)
∥∥ 6 C1N

1−m|u|Hm,N
wα,β

(I). (22)
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‖J2‖L2

wα,β
(I) =

∥∥∥∥∥
x
(θ,ϑ)
L,N,n∫
0

k
(
x
(θ,ϑ)
L,N,n, s

)(
u(s)− Iα,βN u(s)

)
ds

∥∥∥∥∥
L2

wα,β
(I)

6

∥∥∥∥∥
x
(θ,ϑ)
L,N,n∫
0

k
(
x
(θ,ϑ)
L,N,n, s

)(
u(s)− Iα,βN u(s)

)
ds

∥∥∥∥∥
∞

6 γ
∥∥(u(s)− Iα,βN u(s))

∥∥
∞,

where the value of γ is given as [19]

γ = max
a6x(θ,ϑ)

L,N,n6b

∣∣k(x, s)
∣∣.

Therefore from Lemma 1 [11]

‖J2‖L2

wα,β
(I) 6 γC2N

1/2−m|u|Hm,N
wα,β

(I). (23)

From Lemma 1 [11] and [21] we can write

‖J3‖L2

wα,β
(I) =

∥∥f − Iα,βN f‖ 6 C3N
−m|f |Hm,N

wα,β
(I). (24)

Finally, by using Cauchy–Schwartz inequality we write

‖J4‖L2

wα,β
6
∥∥eN,Nk(x

(θ,ϑ)
L,N,n, s)

∥∥
L2

wα,β

∥∥Iα,βN u(s)
∥∥
L2

wα,β

. (25)

Now from [11, 19] we have∥∥eN,Nk(x(θ,ϑ)L,N,n, s
)∥∥
L2

wα,β
(I)

6
∥∥k(x

(θ,ϑ)
L,N,n, s)− I

α,β
N,Nk(x

(θ,ϑ)
L,N,n, t)

∥∥
L2

wα,β
(I)

6 C4N
−m∣∣k(x, s)

∣∣
Hm,N
wα,β

(I)
. (26)

Now an upper bound for (25) follows from (26) and using equation (5.5.3) in [11]:

‖J4‖L2

wα,β
(I) 6

(
C4N

−m|k(x, s)|Hm,N
wα,β

(I)

)(
C5‖u‖L2

wα,β
(I)

)
.

Then
‖J4‖L2

wα,β
(I) 6 C6N

−m∣∣k(x, s)
∣∣
Hm,N
wα,β

(I)
‖u‖L2

wα,β
(I). (27)

From Eqs. (21)–(24), (27),∥∥u(x)− uN (x)
∥∥
L2

wα,β
(I)

6 C1N
1−m|u|Hm,N

wα,β
(I) + γC2N

1/2−m|u|Hm,N
wα,β

(I) + C3N
−m|f |Hm,N

wα,β
(I)

+ C6N
−m∣∣k(x, s)

∣∣
Hm,N
wα,β

(I)
‖u‖L2

wα,β
(I).
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Then ∥∥u(x)− uN (x)
∥∥
L2

wα,β
(I)

6 N−m
(
C1N |u|Hm,N

wα,β
(I) +2 γN

1/2|u|Hm,N
wα,β

(I) + C3|f |Hm,N
wα,β

(I)

+ C6

∣∣k(x, s)
∣∣
Hm,N
wα,β

(I)
‖u‖L2

wα,β
(I)

)
,

the proof is complete.

6 Numerical results

We listed several examples to illustrate the powerful and effectiveness of the proposed
method. The mentioned comparisons of the numerical results detect that the previous
algorithms are very appropriate and effective.

The difference between the exact solution and the value of the approximate solution
is define as the absolute error (AE) given by

E(x) =
∣∣u(x)− uN (x)

∣∣,
where u(x) and uN (x) are the exact solution and the approximate solutions at the point x,
respectively. Moreover, the maximum absolute errors (MAE) is given by

MAE = max
{
E(x): x ∈ [0, L]

}
.

Example 1. Firstly, we introduce the linear Volterra IDEs in the form [47]

u′(x)− u(x) =

x∫
0

x

1 + s
u(s) ds− ln(1 + x)

(
x

2
ln(1 + x) + 1

)

+
1

1 + x
, x ∈ [0, 1],

with the initial condition
u(0) = 0,

knowing that the exact solution given by u(x) = ln(x+ 1).
A comparison between the MAE using the proposed method and the sinc method [47]

is summarized in Table 1 with several choices of θ and ϑ. The numerical results presented
in the Table 1 show that results are vary accurate for small value of N .

Figure 1 compares graphically the curves of numerical and exact solutions of prob-
lem (1). Moreover, we represent the logarithmic graphs of ME (i.e., log10ME) obtained
by the novel algorithm with different values of N in Fig. 2.
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Table 1. The MAE for Example 1.

Our method
N Method [47] N θ = ϑ = −1/2 θ = ϑ = 0 θ = 0, ϑ = 1/2

5 1.75 · 10−3 2 7.02 · 10−2 6.93 · 10−2 7.59 · 10−2

10 1.06 · 10−4 4 2.72 · 10−3 3.20 · 10−3 4.32 · 10−3

20 1.85 · 10−6 6 8.00 · 10−5 1.10 · 10−4 1.70 · 10−4

30 8.03 · 10−8 8 2.34 · 10−6 3.63 · 10−6 6.23 · 10−6

40 5.87 · 10−9 10 6.86 · 10−8 1.17 · 10−7 2.20 · 10−7

50 5.80 · 10−10 12 2.01 · 10−9 3.73 · 10−9 7.54 · 10−9

60 7.09 · 10−11 14 5.90 · 10−11 1.18 · 10−10 2.53 · 10−10

70 1.02 · 10−11 15 1.01 · 10−11 2.08 · 10−11 4.62 · 10−11

80 1.67 · 10−12 16 1.73 · 10−12 3.67 · 10−12 8.38 · 10−12

90 3.09 · 10−13 18 5.10 · 10−14 1.14 · 10−13 2.74 · 10−13

100 6.26 · 10−14 20 1.66 · 10−15 3.78 · 10−15 9.10 · 10−15

Figure 1. Comparison between the approximate
uN (x) and the exact u(x) solutions of Example 1
for N = 20, θ = ϑ = −1/2.

Figure 2. ME convergence for Example 1.

Example 2. Let us, consider the system Volterra IDEs in the form [30]

u′′1(x) + 2xu′1(x)− u1(x)−
x∫

0

(
u1(s)− u2(s)

)
ds

= 2 + x− ex + 2xex − cos(x),

u′′2(x) + u′2(x)− 2xu2(x)−
x∫

0

(
u1(s) + u2(s)

)
ds

= 2 cos(x)− 3x− (1 + 2x) sin(x)− ex, x ∈ [0, 1],

with the condition

u1(0) = 1, u′1(0) = 1, u2(0) = 1, u′2(0) = 1,

knowing that the exact solution given by u1(x) = ex and u2(x) = 1 + sin(x).
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Table 2. The AE for Example 2.

Bernstein operational matrix [30]
x u1(x) u2(x)

N = 5 N = 10 − N = 5 N = 10 −
0 8.88 · 10−16 8.88 · 10−16 − 7.77 · 10−16 8.88 · 10−16 −
0.1 6.75 · 10−7 1.49 · 10−13 − 1.45 · 10−7 9.03 · 10−14 −
0.2 1.36 · 10−6 2.88 · 10−13 − 2.87 · 10−7 1.66 · 10−13 −
0.3 1.82 · 10−6 4.28 · 10−13 − 3.61 · 10−7 2.37 · 10−13 −
0.4 2.42 · 10−6 5.64 · 10−13 − 4.55 · 10−7 3.02 · 10−13 −
0.5 3.04 · 10−6 6.97 · 10−13 − 5.50 · 10−7 3.63 · 10−13 −
0.6 3.32 · 10−6 8.28 · 10−13 − 5.64 · 10−7 4.22 · 10−13 −
0.7 4.35 · 10−6 9.52 · 10−13 − 7.67 · 10−7 4.76 · 10−13 −
0.8 1.21 · 10−5 1.10 · 10−12 − 2.69 · 10−6 5.43 · 10−13 −
0.9 4.27 · 10−5 4.45 · 10−13 − 1.06 · 10−5 3.43 · 10−13 −
1.0 1.30 · 10−4 3.09 · 10−11 − 3.36 · 10−5 1.74 · 10−11 −

Our method for θ = ϑ = −1/2

x u1(x) u2(x)

N = 5 N = 10 N = 12 N = 5 N = 10 N = 12

0 0 0 0 0 0 0
0.1 5.60 · 10−8 1.28 · 10−15 1.07 · 10−16 1.03 · 10−8 8.74 · 10−16 6.94 · 10−17

0.2 2.97 · 10−7 2.60 · 10−16 3.45 · 10−17 5.28 · 10−8 1.11 · 10−16 2.22 · 10−16

0.3 2.00 · 10−7 8.12 · 10−15 9.97 · 10−18 2.32 · 10−8 5.16 · 10−15 1.67 · 10−16

0.4 3.29 · 10−7 7.17 · 10−15 1.71 · 10−16 9.79 · 10−8 5.16 · 10−15 1.67 · 10−16

0.5 4.16 · 10−7 1.09 · 10−14 9.15 · 10−17 1.14 · 10−7 6.27 · 10−15 5.55 · 10−17

0.6 9.78 · 10−7 1.60 · 10−14 1.24 · 10−16 2.23 · 10−7 9.88 · 10−15 1.11 · 10−16

0.7 2.76 · 10−6 3.43 · 10−14 2.56 · 10−16 6.60 · 10−7 2.16 · 10−15 1.11 · 10−16

0.8 2.27 · 10−6 8.32 · 10−14 3.57 · 10−16 5.85 · 10−7 4.82 · 10−14 0
0.9 3.32 · 10−5 2.01 · 10−13 4.55 · 10−16 8.42 · 10−6 1.15 · 10−13 1.11 · 10−16

1.0 1.29 · 10−4 8.63 · 10−12 5.10 · 10−15 3.31 · 10−5 4.85 · 10−12 3.00 · 10−15

Figure 3. AE curve of u1(x) versus x in Example 2
for N = 12 and θ = ϑ = −1/2.

Figure 4. AE curve of u2(x) versus x in Example 2
for N = 12 and θ = ϑ = −1/2.

Applying the technique described in Section 3.2 with different choice of N , the
present method is more accurate than Bernstein operational matrix [30], see Table 2. The
curves of the AE E1 (AE of u1) and E2(x) (AE of u2) of Example 2 for N = 12, are
displayed in Figs. 3 and 4, respectively. In Fig. 5, we depict the logarithmic graphs of the
MAE (i.e., log10M1, log10M2) for various values of N . This demonstrates that the new
algorithm provides accuracy approximation and product exponential convergence rates.
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Figure 5. ME convergence for Example 2.

Example 3. Consider the following mixed Volterra–Fredholm IDEs in the form [46]

u′′(x) + xu′(x)− xu(x)

= ex − sinx+
1

2
x cosx+

1∫
0

sinx e−su(s) ds− 1

2

x∫
0

cosx e−su(s) ds,

where x ∈ [0, L], with the initial condition

u(0) = 1, u′(0) = 1,

knowing that the exact solution is given by u(x) = ex.
In order to confirm the high accuracy of the novel algorithm for mixed Volterra–

Fredholm IDEs problem, Table 3 introduce a comparison between the maximum absolute
errors obtained in [46] and the results obtained in this paper with various choices of N .
We observed that a good approximation of the mixed Volterra–Fredholm IDEs is achieved
for small of N .

In Fig. 6, we see the matching of the value of the AE in these figures and find in
Table 3. Moreover, we represent the logarithmic graphs of ME (i.e., log10ME) obtained
by the proposed method with several values of N in Fig. 7.

Figure 6. AE curve versus x in Example 3 forN =
14 and θ = 0, ϑ = −1/2.

Figure 7. ME convergence for Example 3.
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Table 3. MAE for Example 3.

Method [47]
N Our method θ = −1/2, ϑ = 1/2 θ = ϑ = 0 θ = 0, ϑ = 1/2

3 2.37 · 10−2 1.54 · 10−2 1.80 · 10−2 2.35 · 10−2

7 1.21 · 10−6 1.72 · 10−7 2.63 · 10−7 4.70 · 10−7

10 8.23 · 10−10 5.32 · 10−12 9.28 · 10−12 1.94 · 10−11

14 − 1.21 · 10−15 7.43 · 10−16 3.93 · 10−16

Example 4. Finally, we consider the two-dimensional Volterra IDEs

∂2u(x, t)

∂t2
+ u(x, t) = f(x, t) +

t∫
0

x∫
0

(sinx+ cos t+ 2y cos z)2u(y, z) dy dz,

where (x, t) ∈ [0, 1]× [0, 1], subject to

u(x, 0) = 0,
∂u

∂t
(x, 0) = x,

the f(x, t) is given such that the exact solution is u(x) = x sin(t).

Table 4 lists the AE for several choices ofN andM of Example 4. We observed a good
approximation of linear two-dimensional space Volterra IDEs. The AE for Example 4 was
displayed in Fig. 8 for N = M = 8.

Table 4. AE for Example 4.

(x, t) N =M = 2 N =M = 4 N =M = 6 N =M = 8

(0, 0) 0 0 0 0
(0.1, 0.1) 1.49 · 10−4 2.45 · 10−6 7.33 · 10−9 9.35 · 10−12

(0.2, 0.2) 1.07 · 10−3 1.19 · 10−5 2.74 · 10−8 3.11 · 10−11

(0.3, 0.3) 3.17 · 10−3 2.62 · 10−5 5.42 · 10−8 7.61 · 10−11

(0.4, 0.4) 6.50 · 10−3 4.13 · 10−5 9.98 · 10−8 1.36 · 10−10

(0.5, 0.5) 1.07 · 10−2 5.83 · 10−5 1.67 · 10−7 1.96 · 10−10

(0.6, 0.6) 1.53 · 10−2 8.34 · 10−5 2.35 · 10−7 2.85 · 10−10

(0.7, 0.7) 1.81 · 10−2 1.50 · 10−4 3.35 · 10−7 4.34 · 10−10

(0.8, 0.8) 2.09 · 10−2 1.74 · 10−4 3.89 · 10−7 5.04 · 10−10

(0.9, 0.9) 1.94 · 10−2 2.09 · 10−4 5.48 · 10−7 6.64 · 10−10

(1.0, 1.0) 1.27 · 10−2 1.58 · 10−4 4.64 · 10−7 6.45 · 10−10

Figure 8. AE curve of Example 4 for N =M = 8.
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7 Conclusion

In this paper, the SJGC method was applied to solve the IDEs with the initial conditions.
This method is very straight forward technique to solve the IDEs. SJGC method converts
the IDE equation to a system of algebraic equations, which can be solved by usual nu-
merical methods. In addition, the collocation treatments were introduced for the nonlocal
condition. From the tables, numerical examples were given to confirm the rightness and
reliability of the our method. The results display the SJC method is accurate.
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