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In this paper, the residual power series method is used to study the numerical ap-
proximations of a model of oscillating base temperature processes occurring in a 
convective rectangular fin with variable thermal conductivity. It is shown that the re-
sidual power series method is efficient for examining numerical behavior of non-lin-
ear models. Further, the conservation of heat is studied using the multiplier method.
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Introduction

It is well-known that the majority of the real-world physical phenomena are modeled 
by mathematical equations, especially PDE [1]. The investigations of the exact and numerical 
solutions of various PDE have become a very important practice by different scholars. The best 
test of a numerical method is whether it gives the exact solution at lower cost than its compet-
itors. It is also worthwhile to remember that a single numerical method may not be the best for 
all problems [2]. So, for assessing the accuracy of a numerical method, comparison with the 
exact solution of the problem (which includes any errors due to model inaccuracy) is a better 
test than comparison with experiments. Errors are useful in statistics, computer programming, 
advanced mathematics and much more [3]. We observe many new progresses in this field [4-
19]. The residual power series method (RPSM) is constituted with a repeated series algorithm 
to derive the residual power series (RPS) solutions of PDE. It has been successfully used to 
handle the approximate solutions of many non-linear models [4, 5]. The model that will be 
studied in this paper is given by [6, 7]

 2 2 2 (1 )= − + + +t x xxu K u u u uε ε  (1)

where K  depends on the physical properties and design parameters, and where ( , )u x t  has the 
domain of definition [0,1]∈x , [0,1]∈t , and subject to a mixed set of homogeneous Neumann 
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and inhomogeneous Dirichlet boundary conditions, which includes a sinusoidally varying 
boundary value: 

 (1, ) 1 cos (( ),     00, )= + =xu B u tt s t  (2)

The parameter u  represent the dimensionless temperature, x  – the distance, t  – the 
time, ε  – the thermal conductivity, K  – the fin parameter, S  – the amplitude of oscillation, and 
B  – the frequency of oscillation [8]. Further details in regard to the derivation and design lim-
itations of the model can be found in [6].

This study is aimed at investigating the numerical approximations to the periodic base 
temperature of convective longitudinal fins in thermal conductivity using the RPSM [12].

Numerical approximation using the RPSM

The RPSM is effective and easy to derive power series solutions of non-linear equa-
tions. The method does not require perturbation, discretization or linearization from which the 
numerical results can be investigated. The RPSM converge to the exact solution with only few 
iterations taken into consideration. To apply the RPSM [4], we consider: 

 
0

, 0 ,
=

= ≤ ≤ ∈∑ n
n

n
u f t t R x I

∞
 (3)

Let ku  to represent the kth series of u :

 
0

, 0 ,
=

= ≤ ≤ ∈∑
k

n
k n

n
u f t t R x I  (4)

with 0 ( ).=u f x  
To derive the value of ( )nf x , 1,2,...,=n k  in series expansion of eq. (1), we use the 

residual function, Res, for eq. (1) as:

 2 21 2 ( ) 0
2

= − − − =t xx x xRes u uu u u u  (5)

and the kth residual series kRes  is given:

 2 21( ) ( ) 2( ) ( ) ( ) 0
2

= − − − =k k t k k xx k k x k xRes u u u u u u  (6)

With initial condition: 

 0 )1 cos( ),    (1, = + xu Bt u ts  (7)

where (1, )u t  is to be obtained from a known exact solution eq. (1).
 – To find first approximation solution 1,u  we set 1=k  in eq. (6):

 ( )2 2 2
1 1 1 1 1 1( ) ( ) 1 ( ) 0= − − + + + =t x xxRes K u u u u uε ε  (8)

where

 1 1( , ) 1 cos( )= + +u x t s Bt tf  (9)

From eq. (8), we conclude that 1 0/{ } =∂ ∂ tRes t  and we get:

 2 2
1 (1 )= − +f K s t  (10)
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The 1st approximate RPS solution is given:

 2 2
1( , ) 1 cos( ) (1 )= + − +u x t s Bt K s t  (11)

 – To find first approximation solution 2 ,u  we set 2=k  in eq. (6):

 2 2 2
2 2 2 2 2 2( ) ( ) (1 )( ) 0= − − + + + =t x xxRes K u u u u uε ε  (12)

where

 2 2 2
2 2( , ) 1 cos( ) (1 )= + − + +u x t s Bt K s t t f  (13)

From eq. (12), and using the fact that 2 0/{ } =∂ ∂ tRes t , we get:

 
4 2 4 4 2 4 3

2
2 6 6 2

2
+ + + +

=
K B s K s K s K sf  (14)

The 2nd approximate RPS solution solution is given:

 
4 2 4 4 2 4 3

2 2 2
2

2 6 6 2( , ) 1 cos( ) (1 )
2

 + + + +
= + − + +  

 

K B s K s K s K su x t s Bt K s t t  (15)

 – To find first approximation solution 3 ,u  we set 3=k  in eq. (6):

 2 2 2
3 3 3 3 3 3( ) ( ) (1 )( ) 0= − − + + + =t x xxRes K u u u u uε ε  (16)

where

 
4 2 4 4 2 4 3

2 2 2 3
3 3

2 6 6 21 cos( ) (1 )
2

 + + + +
= + −

 
 


+ + + 
  

K B s K s K s K su s Bt K s t t t f  (17)

From eq. (16), and using the fact that 3 0/{ } =∂ ∂ tRes t , we get:

 
6 6 6 2 6 3 6 4

3
6 24 36 24 6

6
− − − − −

=
K K s K s K s K sf  (18)

The 3rd approximate RPS solution solution is given:

 

4 2 4 4 2 4 3
2 2 2

3

6 6 6 2 6 3 6 4
3

2 6 6 21 cos( ) (1 )
2

6 24 36 24 6
6

 + + + +
= + − + + + 

 
 − − − − −

+ 
 

K B s K s K s K su s Bt K s t t

K K s K s K s K s t  (19)

 – To find first approximation solution 4 ,u  we set 4=k  in eq. (6):

 2 2 2
4 4 4 4 4 4( ) ( ) (1 )( ) 0= − − + + + =t x xxRes K u u u u uε ε  (20)

where

 ( )
4 2 2 4 2 2

2 2
4

2 (1 ) 2 (1 )
1 cos (1 )

2

 + + + + = + − + + +
K s s B K s t

u s Bt K s t  
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6 6 6 2 6 3 6 4

3 4
4

6 24 36 24 6
6

 − − − − −
+ + 
 

K K s K s K s K s t f t  (21)

From eq. (20), and using the fact that 4
0{ } =

∂
∂ t

Res
t

, we get:

 
8 4 8 8 2 8 3 8 4 8 5

4
24 120 240 240 120 24

24
 − + + + + +

=  
 

K B s K s K s K s K s K sf  (22)

The 4th approximate RPS solution solution is given:

 

4 2 2 4 2 2
2 2

4

6 4 2 2 4 2 2 4 2
3

8 4 8 8 2 8 3 8 4 8 5
4

2 (1 ) [ 2 (1 ) ]( , ) 1 cos( ) (1 )
2

2 (1 ) 2 1 2 (1 ) [ 2 (1 ) ]
6
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( }

2
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4
4

+ + + +
= + − + + +

 + + + − + + + + +
+ + 
 
 − + + + + +

+ 
 

K s s B K s tu x t s Bt K s t

K s K s B s K s s B K s t

K B s K s K s K s K s K s t  (23)

Numerical results and discussion

This section provide the solutions by numerical simula-
tions. Table 1 showed the error observed in the numerical com-
putations making comparison with the exact solution eq. (2) and 
the 4th approximate RPS solution eq. (23) at different times. It is 
clear that, the RPSM is accurate and provides efficient results 
and a rapidly convergent series. It is observed that the numerical 
solutions are in close agreement with the exact solutions. Fig-
ures 1-4 showed 3-D and contour surfaces of the fourth iteration 

4 ( , )u x t  for the exact solutions and RPS at small time. In the 
numerical computation, we set the constants 0.1,=s  0.006=K , 
and 0.1.=B  And we considered the test points for t
(0.01,0.02,0.03,...,0.09)  to illustrate the convergence of the 
RPS solutions. 

Table 1. The absolute error
t exact RPSM| |u u−

0.01 3.856∙10−7

0.02 6.71199∙10−7

0.03 8.56799∙10−7

0.04 9.4298∙10−7

0.05 9.27998∙10−7

0.06 8.13599∙10−7

0.07 5.99202∙10−7

0.08 2.84806∙10−7

0.09 1.29587∙10−7

Figure 1. The 3-D surface of the exact 
solution eq. (2)

Figure 2. The 3-D surface of the 
 RPS eq. (23)
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Conservation Laws

In this section, the class of eq. (1) will be studied using the multiplier technique 
[10, 11]. Let 1 2( , ,..., )= nx x x x  and 1 2( , ,..., )= mu u u u  be a set of n  independent variables and 
m  dependent variables. Consider the following r  PDE of kth-order [10]:

 [ ] ( ) ( ) ( )( )1 2, , , ,..., ,     1,2,...,= =kP u P x u u u u rα α α  (24)

with

 ( ) ( ){ } ( ) ( ){ } ( ){ } ( ){ }
2

1 2, , , ,...∂ ∂
= = = =

∂ ∂ ∂
i

i ij i ij
i i j

u uu u u u u u
x x x

α α
α α α α

Let 2 2( , ,..., )= Nu u u u  represents functions of the independent variables x and denot-
ing partial derivatives /∂ ∂ ix  by subscripts .i  [10], i. e, 2/ , ,/= ∂ ∂ = ∂ ∂i i ij i ju u x u u x xσ σ σ σ , etc.:

– ...∂ ∂ ∂ ∂
= + + + +
∂ ∂ ∂ ∂i i ij ijk

i i i jk
D u u u

x u u u
α α α

α α α  (25)

where , , ,... 1,2,...,=i j k m
– Multipliers of eq. (24) are the functions { ]}[Λ uα  which satisfy:

 ] [ [ ] Λ = 
i

iu P u D T uα
α  (26)

for some certain functions ].[iT u  If ( )=u u xσ σ  is solution of eq. (24), from eq. (26), we ac-
quire the class [10]:

 [ ] 0=i
iD T u  (27)

of eq. (42) and for each i, [ ]iT u  is a flux. 
– The Euler operators w.r.t the differential function jU  and the derivatives ,i

ju  
1 2

j
i iu ... are de-

fined:

Figure 3. Contour surface of the exact 
solution eq. (2)

Figure 4. Contour surface of the RPS 
eq. (23)

u(x,t) u(x,t)
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1

1...

... ( 1) ...∂ ∂ ∂
= − + + −
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s

j s
u i i ij j j

i i i

E D D D
u u u

 (28)

for each 1,2,..., ,=j m  { ]}[Λ uα  gives a the multipliers of class of eq. (24) iff each operator in 
eq. (29) annihilates the left-hand side of eq. (26):

 ] [( ) 0,     1,..., Λ ≡ = 
j

uE u P u j nα
α  (29)

for arbitrary , , ...i iju u u  etc.
To construct the class of eq. (1) using the previous described technique, we apply eq. 

(26) to get the following determining equations:

 
2 22 2, , 0Λ − Λ

Λ = Λ = Λ =xx t
K K
ε ε

 (30)

Solving eq. (30), we acquire the following multiplier ( , , )Λ x t u  given:

 
22 2 2

1 2e e e
−−  Λ = + 

  

K tKx Kx
c cε ε ε  (31)

where 1c  and 2c  are arbitrary constants. We derive the following multipliers for four fluxes 
based on the constants 1 c  and 2c  follows: 
– If 1 21, 0,= =c c  then we have the following multipliers:

 
3
2

2 2

e

−
−

Λ =

K t xε ε

ε  
Subsequently, we obtain the following fluxes: 

 
( )

3
2

3
2

2 2

1

2 2
3

22
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1 e

1 2 2 e
2

K t x

x
x

K t x

t
x x
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T uu Ku u
K

ε ε

ε

ε ε

ε

ε

ε ε ε

−
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−
−
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= − + +  

 

 (32)

– If 2 11, 0,= =c c  then we have the following multipliers: 

 
3
2

2 2

e

+
−

Λ =

K t xε ε

ε

Subsequently, we obtain the following fluxes: 
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= − − + −  

 

 (33)
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Concluding remarks

In this paper, we have successfully applied the RPSM to study the numerical ap-
proximations to a model of oscillating base temperature processes occurring in a convective 
rectangular fin with variable thermal conductivity. We showed that the RPSM is efficient for 
examining numerical behavior of non-linear models. Some interesting figures are shown to 
show the reliability of the method. We have confirmed the conservation of heat and temperature 
using the multiplier method of conservation laws. 
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