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Abstract: The analysis of Homotopy Perturbation Method (HPM) for the solution of fractional partial
differential equations (FPDEs) is presented. A unified convergence theorem is given. In order to validate
the theory, the solution of fractional-order Burger-Poisson (FBP) equation is obtained. Furthermore, this
work presents the method to find the solution of FPDEs, while the same partial differential equation
(PDE) with ordinary derivative i.e., for α = 1, is not defined in the given domain. Moreover, HPM is
applied to a complicated obstacle boundary value problem (BVP) of fractional order.

Keywords: Burger-Poisson equation of fractional order; HPM; fractional derivatives

1. Introduction

Fractional models have an important role in many fields of engineering and science, for instance,
fluid flows, solute transport, electromagnetic theory, signal processing, biology, economics, physics,
and geology, etc. [1–6]. Fractional theory has many applications in wireless networks [7,8]. Moreover,
fractional modeling has been applied in micro-grids [9], and decentralized wireless networks [10].

Fractional differential equations (FDEs) involve real or complex order derivatives [11]. Various
researchers contributed on fractional derivatives during the 18th and 19th centuries, for example,
Abel [12], Caputo [13], Euler [14], Fourier [15], Laplace [16], Liouville [17], or Ross [18]. In 1974,
Oldham and Spanier presented fractional operators with mass and heat transfer applications [19].
In this paper, the analytical technique to solve fractional order partial differential equations (PDEs) is
described. In order to obtain analytical solution, HPM is used to solve fractional order PDEs. Fractional
order PDEs do not have closed form exact solutions in most problems, therefore, it is required to
develop efficient and accurate analytical and numerical methods. HPM is well known for its accuracy
and simplicity [20,21]. HPM has been widely used to obtain approximate series solutions of fractional
order linear and nonlinear PDEs [22–27].

The Burger Poisson equation is widely used to express different physical phenomena, for instance,
mathematical models for shallow water and shock waves in a viscous fluid [28]. Tian and Gao proved
the existence of the uni-dimensional viscous equation in 2009 [29]. Moreover, Abidi and Omrani
obtained the solution of Burger Poisson equation using homotopy analysis method [30].

The obstacle problem plays a role of bridge in the field of variational inequalities and differential
equations. It is originated from the study of elasticity theory. In elasticity theory, it is required to
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obtain the equilibrium position of elastic membrane with fixed boundaries. Obstacle problems occur in
diffusion equation and signals processing while determining heat flux at the boundary of semi-infinite
rod [31].

The focus of the paper is to generalize the convergence theorem, in the sense that the mapping is
nonself and only Y is complete. Theorem is applied to the solution of FBP equation acquired by HPM.
Furthermore, this work presents the method to get the solution of FPDEs, while the same PDE with
ordinary derivative i.e., for α = 1 is not defined in the given domain. Moreover, the proposed HPM
method is applied to complex obstacle BVP.

Beside the introduction, the distribution of the article is as under: Section 2 comprises of important
definitions and properties, Section 3 contains the implementation of HPM to solve FPDEs and
convergence theorem, Section 4 comprises of results and discussion of FBP, Section 5 contains solutions
of obstacle BVP, and Section 6 includes the conclusion of the paper.

2. Preliminaries

Fractional calculus is a developing area in mathematical analysis. Several definitions of fractional
operators have been propounded like Riemann-Liouvlle, Caputo, and Grunwald-Letnikov [13,17].
These definitions have some limitations, for instance Dα

a (1) 6= 0, do not satisfy the product, quotient
and chain rules of derivatives. Recently, Khalil et al. published a definition uses for fractional
derivatives called conformable [32,33]. Conformable is simpler and natural extension of the usual
derivatives as it satisfies the aforementioned properties of derivatives.

Definition 1. A function g : [0, ∞)→ R. The fractional derivative of g for order α is given below:

Dα(g)(t) = lim
ε→0

g(t + εt1−α)− g(t)
ε

, for all t > 0, α ∈ (0, 1). (1)

If g is α-differentiable in (0, b), b > 0. If limt→0+ exists, then gα(0) = limt→0+ gα(t).
The definition given in Equation (1) is known as conformable [33].

Using the above mentioned definition given in Equation (1), we obtain the following useful results:
Let g, f are α-differentiable and α ∈ (0, 1], then

1. If a function g : [0, ∞]→ R is α-differentiable at t0 > 0, α ∈ (0, 1], then g is continuous at t0.
2. Dα(c f + dg) = cDα( f ) + dDα(g), for all c, d ∈ R.
3. Dα(tp) = ptp−α, for all p ∈ R.
4. Dα(ξ) = 0, for all constant function f (t) = ξ.
5. Dα(g f ) = gDα( f ) + f Dα(g).
6. Dα(

f
g ) =

gDα( f )− f Dα(g)
g2 .

7. If g is differentiable, then Dα(g)(t) = t1−α dg(t)
dt .

Fractional integral: The fractional integral of order α can be defined below:

Ja
α(g)(t) =

∫ t

a

g(x)
x1−α

dx, for all t > 0, α ∈ (0, 1). (2)

Here, Jα is the Riemann improper integral.
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3. Application of HPM to FBP Equation

Consider the time-dependent operator equation

B (w (s, t))− h (s, t) = 0,

where B denotes a differential operator and w (s, t) is an unknown function. Moreover, we assume
h(s, t) is an analytic function, we can decompose the operator B as;

B = L + N

where L is linear and N is nonlinear or sometimes the complicated part to handle. Let Ω ⊆ R×R the
homotopy H : Ω× [0, 1]→ R, is defined as:

H (w, p) = (1− p) [L (w)− L (w0)] + p [B (w)− g] = 0, p ∈ [0, 1] , w ∈ Ω.

Note that the function w0 (s, t) is the initial guess which satisfies the given operator equation.
The choice of p from zero to one provide us the deformation from w0 (s, t) to the solution w (s, t). Clearly

H (w, 0) = 0 implies L (w)− L (w0) = 0

and
H (w, 1) = 0 implies B (w)− g = 0

which is the given operator equation. Using perturbation method, we suppose the solution in power
series as;

w (s, t) = w0 (s, t) + p · w1 (s, t) + p2 · w2 (s, t) + ...

=
∞

∑
n=0

pn · wn (s, t) .

For p = 1,
w (s, t) = w0 (s, t) + w1 (s, t) + w2 (s, t) + ...

is an approximate solution to the given operator equation.

Remark 1. The Banach contraction type theorem about the convergence of the solution stated in [34]. Here the
generalized, corrected, and unified form is presented in which the completeness of X is not required and Y must
be a subset of X. If Y 6⊆ X, we cannot say about the sequence xn+1 = Nn (x0) = N (xn) is contained in Y or
not. On the basis of above discussion, a unified theorem is presented as follows:

Theorem 1. Let X be a normed space and Y ⊆ X be a Banach space, N : X → Y be a mapping such that for all
x, y ∈ X

‖N (x)− N (y)‖Y ≤ k ‖x− y‖X (C)

for some k ∈ [0, 1), then the sequence

xn+1 = Nn (x0) = N (xn)

for any x0 ∈ X converges to a unique fixed point of N.

Proof. We consider the picard sequence xn+1 = N (xn) ⊆ Y, it will be shown that this sequence (xn)

is Cauchy in Y. For integers m ≥ n consider,

‖xn − xm‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − xn+2‖+ ‖xn+2 − xn+3‖+ ... + ‖xm−1 − xm‖ .
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Using the contractive condition (C) , and induction on n, is given as

‖xn − xn+1‖ ≤ kn ‖x0 − x1‖ ,

this implies,

lim
m→∞

‖xn − xm‖ ≤
kn

1 + k
‖x0 − x1‖ → 0, as n→ ∞.

This shows that (xn) is Cauchy sequence in Y, completeness of Y allows us to find z ∈ Y, such that

lim
n→∞

(xn) = z ∈ Y.

Clearly, (C) ensures the continuity of N, thus

z = lim
n→∞

xn+1 = lim
n→∞

N (xn) = N
(

lim
n→∞

xn

)
= N (z) .

This completes the proof, the uniqueness of z is obvious. The proof of Theorem 1 is similar to
the proof given in [34,35], but our case is generalized, in the sense that the mapping is nonself and
only Y is complete. Now, the extended HPM using conformable is presented to solve space-time
FBP equation.

4. Test Problem 1

The partial differential FBP equation in unidirectional propagation water waves can be described
as follows [36,37]:

Dα
t w− Dα

t wxx + wx + wwx − (3wxwxx + wwxxx) = 0, α ∈ (0, 1], (3)

with w(x, 0) = −x.

In order to apply HPM, the constructed homotopy is given below:

(1− p)Dα
t w + p(Dα

t w− Dα
t wxx + wx + wwxx − 3(wxwxx + wwxxx)) = 0,

or
Dα

t w + p(−Dα
t wxx + wx + wwx − (3wxwxx + wwxxx)) = 0. (4)

Here p is a parameter that lies between 0 and 1. The solution w(x, t) is given as follows:

w(x, t) = w0(x, t) + pw1(x, t) + p2w2(x, t) + p3w3(x, t) + ..... (5)

Setting p = 1 gives,

w(x, t) = w0(x, t) + w1(x, t) + w2(x, t) + w3(x, t) + .....

Now, substitute Equation (5) into Equation (3), and collect the similar powers of p, gives

p0 : Dα
t w0 = 0, w0(x, 0) = −x;

p1 : Dα
t w1 − Dα

t w0xx + w0x + w0w0x − 3w0xw0xx − w0w0xxx = 0, w1(x, 0) = 0;

p2 : Dα
t w2 − Dα

t w1xx + w1x + w0w1x + w1w0x − 3(w0xw1xx + w1xw0xx) (6)

− (w0w1xxx + w1w0xxx) = 0, w2(x, 0) = 0;

p3 : Dα
t w3 − Dα

t w2xx + w2x + (w0w2x + w1w1x + w2w0x)− 3(w0xw2xx + w1xw1xx + w2xw0xx)

− (w0w2xxx + w1w1xxx + w2w0xxx) = 0, w3(x, 0) = 0.
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Afterwards, the fractional integral operator Jα with conformable derivative definition
(c.f. Equation (2)) is applied on both sides of Equation (6), we have

w0(x, t) = −x;

w1(x, t) =
tα

α
(1− x);

w2(x, t) =
t2α

α
(1− x); (7)

w3(x, t) =
t3α

α
(1− x)

...

In order to calculate next terms, we have

wl = w(l−1)xx +
∫ t

a

1
t1−α

(
3

l−1

∑
i=0

wixw(l−i−1)xx +
l−1

∑
i=0

wiw(l−i−1)xxx − w(l−1)x −
l−1

∑
i=0

wiw(l−i−1)x

)
dt (8)

wl(x, 0) = 0, for l ≥ 4.

If we define N : C (Ω)→ C (Ω) , with iterative sequence as,

N (wl) = w(l−1)xx +
∫ t

a

1
t1−α

(
3

l−1

∑
i=0

wixw(l−i−1)xx +
l−1

∑
i=0

wiw(l−i−1)xxx − w(l−1)x −
l−1

∑
i=0

wiw(l−i−1)x

)
dt

Then for any w0 ∈ C (Ω) , by Theorem 1, the sequence wl+1 = N (wl) converges to the unique
solution w of the given FBP.

The Equation (8) can be calculated with the help of symbolic softwares, for instance, Mathematica
and Maple. The HPM solution is given below:

w(x, t) = −x +
tα

α
(1− x) +

t2α

α2 (1− x) +
t3α

α3 (1− x) +
t4α

α4 (1− x) + ... (9)

=
−xα + tα

α− tα
(10)

The HPM solution of FBP equation when α = 1 is as follows:

w(x, t) = −x + (1− x)t + (1− x)t2 − (1− x)t3 + ... (11)

=
−x + t
1− t

. (12)

Remark 2. It is remarked that the exact and HPM solution of FBP equation when α = 1, given in Equation (12)
does not exist at t = 1, while for any α ∈ (0, 1) , the solution given in Equation (10) of FBP equation exists.
This shows the importance of fractional derivative and its way of dealing these types of the situations where
solution of some ordinary PDEs fail to exist.

Convergence of solution: The FBP equation is as follows:

Dα
t w− Dα

t wxx + wx + wwx − (3wxwxx + wwxxx) = 0, α ∈ (0, 1], (13)

with w(x, 0) = −x.

The approximate first four term solution of FBP equation for p = 1 is given by

w(x, t) = w0(x, t) + w1(x, t) + w2(x, t) + w3(x, t),
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where,

w0(x, t) = −x;

w1(x, t) =
tα

α
(1− x);

w2(x, t) =
t2α

α2 (1− x); (14)

w3(x, t) =
t3α

α3 (1− x).

The sequence generated by HPM will be regarded as

Vk = N(Vk−1), Vk−1 =
k−1

∑
i=1

wi, k = 1, 2, 3.....

We assume that V0 = w0.
According to theorem for non-linear mapping N, a sufficient condition for convergence of HPM

is strictly contraction N. Therefore, we have

‖V0 − w‖ =
∥∥∥∥−x− −xα + tα

α− tα

∥∥∥∥ =

∥∥∥∥ (x− 1)tα

α− tα

∥∥∥∥
Now for tα

α 6 γ, 0 < γ < 1, we have

‖V1 − u‖ = ‖w0 + w1 − w‖ =
∥∥∥∥ t2α(x− 1)

α(α− tα)

∥∥∥∥ 6 γ

∥∥∥∥ (x− 1)tα

α− tα

∥∥∥∥ = γ ‖V0 − w‖

‖V2 − w‖ = ‖w0 + w1 + w2 − w‖ =
∥∥∥∥ t3α(x− 1)

α2(α− tα)

∥∥∥∥ 6 γ2
∥∥∥∥ (x− 1)tα

α− tα

∥∥∥∥ = γ2 ‖V0 − w‖

‖Vn − w‖ =
∥∥∥∥∥ n

∑
j=1

wj − w

∥∥∥∥∥ =

∥∥∥∥ (−1)ntnα+α(x− 1)
αn(α− tα)

∥∥∥∥ 6 γn
∥∥∥∥ (x− 1)tα

α− tα

∥∥∥∥ = γn ‖V0 − w‖ .

Therefore, limn→∞ ‖Vn − w‖ 6 γn ‖V0 − w‖ = 0, that is, w(x, t) = limn→∞ Vn = −xα+tα

α−tα , which is
an exact solution.

Discussion

In this section, results obtained by HPM are discussed. Analytical series solution of space-time
FBP equation is given in Equation (9). In Figure 1, a solution is presented for different values of
α, such as (0.1, 0.3, 0.5, 0.7). Figure 1 shows a big difference in smaller and larger values of α. For larger
values of α, w(x, t) attains height and for values closer to 0, height of w(x, t) reduces. In Figure 2,
results are presented for α = 0.8 and α = 0.9, respectively. Exact solution of FBP model for α = 1 is
given in Equation (12). Equation (12) shows discontinuity at t = 1 which is clearly depicted in Figure 2.
As value of α approaches to 1, the shock is produced in the vicinity of t = 1.
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5. Test Problem 2

Consider the fractional second-order obstacle BVP:

Dαv =


v3

3!
+

v2

2!
+ v + 1, f or 1 ≤ x <

3
2

and
5
2
≤ x ≤ 3

v3

3!
+

v2

2!
+ 2v, f or

3
2
≤ x <

5
2

(15)

with boundary conditions
v(−1) = v(1) = 0

In order to apply HPM, we construct homotopy in three different domains:

Case I: 1 ≤ x <
3
2

(1− p)Dαv + p
(

Dαv−
(v3

3!
+

v2

2!
+ v + 1

))
= 0

or

Dαv + p
(

v3

3!
+

v2

2!
+ v + 1

)
= 0 (16)

Here p is parameter that lies between 0 and 1. The solution v(x) is given as follows:

v(x) = v0(x) + pv1(x) + p2v2(x) + p3v3(x) + ... (17)

Setting p = 1 provides,

v(x) = v0(x) + v1(x) + v2(x) + v3(x) + ... (18)

Now, substitute Equation (3) in Equation (2), and comparing the coefficients of similar powers of
p, we get

p0 : Dαv0 = 0, v0(0) = 0

p1 : Dαv1 +
v3

0
3!

+
v2

0
2!

+ v0 + 1 = 0, v1(0) = 0

p2 : Dαv2 +
3v2

0v1

3!
+

2v0v1

2!
+ v1 = 0, v2(0) = 0

p3 : Dαv3 +
3v0v2

1
3!

+
3v2

0v2

3!
+

v2
1

2!
+

2v0v2

2!
+ v2 = 0, v3(0) = 0

(19)

Now, the fractional integral operator Jα with comfortable derivative definition is applied on both
sides of Equation (5), we get

v0(x) = c1x + c2,

v1(x) = c1x + c2 +
1

24
x4+αc3

1 +
1
6

x3+αc2
1 +

1
6

x3+αc2
1c2 +

1
2

x2+αc1c2 +
1
2

x2+αc1

+
1
4

x2+αc1c2
2 +

1
2

x1+αc2
2 + x1+α +

1
6

x1+αc3
2 +

1
6

x4+αc3
1 + x1+αc2,

.

.

.

(20)
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Case II:
3
2
≤ x <

5
2

(1− p)Dαv + p
(

Dαv−
(v3

3!
+

v2

2!
+ 2v

))
= 0

or

Dαv + p
(

v3

3!
+

v2

2!
+ 2v

)
= 0 (21)

Now, substitute Equation (3) in Equation (7), and comparing the coefficients of similar powers of
p, we get

p0 : Dαv0 = 0, v0(0) = 0

p1 : Dαv1 +
v3

0
3!

+
v2

0
2!

+ 2v0 = 0, v1(0) = 0

p2 : Dαv2 +
3v2

0v1

3!
+

2v0v1

2!
+ 2v1 = 0, v2(0) = 0

p3 : Dαv3 +
3v0v2

1
3!

+
3v2

0v2

3!
+

v2
1

2!
+

2v0v2

2!
+ 2v2 = 0, v3(0) = 0

(22)

Now, the fractional integral operator Jα with comfortable derivative definition is applied on both
sides of Equation (8), we get

v0(x) = c3x + c4

v1(x) = c3x + c4 +
1

24
x4+αc3

3 +
1
6

x3+αc2
3 +

1
6

x3+αc2
3c4 +

1
2

x2+αc3c4 +
1
2

x2+αc3

+
1
4

x2+αc3c2
4 +

1
2

x1+αc2
4 + x1+α +

1
6

x1+αc3
4 +

1
6

x4+αc3
3 + x1+αc4

.

.

.

(23)

Case III:
5
2
≤ x ≤ 3

In this case, the constructed homotopy will be same as in Case I. After substituting Equation (3)
in Equation (2), we get

v0(x) = c5x + c6

v1(x) = c5x + c6 +
1

24
x4+αc3

5 +
1
6

x3+αc2
5 +

1
6

x3+αc2
5c6 +

1
2

x2+αc5c6 +
1
2

x2+αc5

+
1
4

x2+αc5c2
6 +

1
2

x1+αc2
6 + x1+α +

1
6

x1+αc3
6 +

1
6

x4+αc3
5 + x1+αc6

.

.

.

(24)

We calculate the results by taking α = 1.25, 1.5 and 1.75.
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1. For α = 1.25

v(x) =



c1x + c2 + 0.04166666667x
21
4 c3

1 + 0.1666666666x
17
4 c2

1 + 0.1666666666x
17
4 c2

1c2

+0.500000000x
13
4 c1c2 + 0.500000000x

13
4 c1 + .250000000x

13
4 c1c2

2 + 0.5000000000x
9
4 c2

2

+x
9
4 + 0.1666666667x

9
4 c3

2 + x
9
4 c2, f or 1 ≤ x <

3
2

c3x + c4 + 0.04166666667x
21
4 c3

3 + 0.1666666666x
17
4 c2

3 + 0.1666666666x
17
4 c2

3c4

+0.500000000x
13
4 c3c4 + 1.000000000x

13
4 c3 + 0.250000000x

13
4 c3c2

4 + 0.5000000000x
9
4 c2

4

+0.1666666667x
9
4 c3

4 + 2x
9
4 c4, f or

3
2
≤ x <

5
2

c5x + c6 + 0.04166666667x
21
4 c3

5 + 0.1666666666x
17
4 c2

5 + 0.1666666666x
17
4 c2

5c6

+0.500000000x
13
4 c5c6 + 0.500000000x

13
4 c5 + 0.250000000x

13
4 c5c2

6 + 0.5000000000x
9
4 c2

6

+x
9
4 + 0.1666666667x

9
4 c3

6 + x
9
4 c6, f or

5
2
≤ x ≤ 3

(25)

Now by applying the continuity conditions at x =
3
2

and x =
5
2

and BCs, we get a system
of six nonlinear equations. By using Newton’s method for nonlinear system, we obtain the values
of constants:

c1 = −1.3295886370, c2 = 0.4580256818, c3 = −0.00096246893

c4 = 0.0247772323, c5 = −0.4962384877, c6 = −0.5257196774 (26)

By substituting values of constants from Equation (12) into Equation (11), we get the analytical
solution of system of second-order fractional BVPs subject to obstacle problem given in Equation (1).

v(x) =



−1.3295886370x + 0.4580256818− 0.09793561230x
21
4 + 0.4295844110x

17
4

−1.039019967x
13
4 + 1.578934123x

9
4 , f or 1 ≤ x <

3
2

−0.0096246893x + 0.0247772323− 3.714915284× 10−8x
21
4

+1.582164570× 10−5x
17
4 − 0.009745403058x

13
4

+0.0498639553x
9
4 , f or

3
2
≤ x <

5
2

−0.4962384877x− 0.5257196774− 0.005091668167x
21
4 + 0.01946546333x

17
4

−0.1519658196x
13
4 + 0.5882544081x

9
4 , f or

5
2
≤ x ≤ 3

(27)

In similar manners, we can find the solution of problem mentioned in Equation (1) for α = 1.5
and α = 1.75.

2. For α = 1.5
We get the following analytical solution of system given in Equation (1) for α = 1.5.

v(x) =



−1.5493863800 + 0.6139530788− 0.15497725350x
11
2 + 0.6457421302x

9
2

−1.396324258x
7
2 + 1.840992684x

5
2 , f or 1 ≤ x <

3
2

−0.0191553809x + 0.0400302957− 2.928607263× 10−7x
11
2

+6360281305× 10−5x
9
2 − 0.01954645244x

7
2

+0.08087249461x
5
2 , f or

3
2
≤ x <

5
2

−0.4940057367x− 0.5879890892− 0.005023249330x
11
2 + 0.01675797164x

9
2

−0.1444661720x
7
2 + 0.5509954694x

5
2 , f or

5
2
≤ x ≤ 3

(28)
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3. For α = 1.75
We obtain the following analytical solution of the considered problem given in Equation (1) for

α = 1.75 is as follows:

v(x) =



−1.7503932530x + 0.7531819483− 0.2234578677x
23
4 + 0.8952555066x

19
4

−1.782621032x
15
4 + 2.108034697x

11
4 , f or 1 ≤ x <

3
2

−0.0345683146x + 0.0637056320− 1.721168446× 10−6x
23
4

+0.000211849098x
19
4 − 0.03570448584x

15
4

+0.1294835584x
11
4 , f or

3
2
≤ x <

5
2

−0.4976869784x− 0.6267857182− 0.005136385271x
23
4 + 0.01540705241x

19
4

−0.1417523126x
15
4 + 0.5286045753x

11
4 , f or

5
2
≤ x ≤ 3

(29)

Discussion

Figures 3–5 present the solution of obstacle problem for different values of α = 1.25, α = 1.50,
α = 1.75, respectively. Figure 6 shows the comparison between different values of α. In Figure 6,
obstacle achieves more height for larger values of α and vice versa.

Figure 3. Analytical solution of the problem (c.f. Equation (1)) by homotopy perturbation method
(HPM) for α = 1.25.

Figure 4. Analytical solution of the problem (c.f. Equation (1)) by HPM for α = 1.50.
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Figure 5. Analytical solution of the problem (c.f. Equation (1)) by HPM for α = 1.75.

Figure 6. Analytical solution of the problem (c.f. Equation (1)) for different values of α by using HPM.

6. Conclusions

The analysis of HPM for the solution of FPDEs was given. A unified convergence theorem was
proved and results were validated for the solution of FBP equation. The method to solve FPDEs was
presented, while the same partial differential equation with ordinary derivative i.e., for α = 1 fails to
exist. This study demonstrated the importance of fractional derivative and the technique of dealing
with these types of PDEs where solution of some ordinary PDEs does not exist. Moreover, HPM was
applied to solve complex obstacle BVP. The suggested method can be applied to find solutions of other
PDEs (both linear and nonlinear) of fractional order. The present study can be useful to analyze other
traditional analytical techniques, such as Adomian Decomposition Method and Homotopy Analysis
Method, to solve nonlinear differential equation of non- integer order. Furthermore, the present work
may be extended to solve practical fractional models, for example wireless networks and nonlinear
obstacle problems.
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