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Abstract: Inverse dynamics control is considered for flexible-joint parallel manipulators in order to obtain a good
trajectory tracking performance in the case of modeling error and disturbances. It is known that, in the absence
of modeling error and disturbance, inverse dynamics control leads to linear fourth-order error dynamics, which is
asymptotically stable if the feedback gains are chosen to make the real part of the eigenvalues of the system negative.
However, when there are modeling errors and disturbances, a linear time-varying error dynamics is obtained whose
stability is not assured only by keeping the real parts of the frozen-time eigenvalues of the system negative. In this
paper, the stability of such systems is investigated and it is proved that the linear time-varying system can be rendered
stable by selecting the feedback gains such that the variation of the system becomes sufficiently slow. To illustrate the
performance of the control method, deployment motion of a 3-RPR planar parallel manipulator subject to impact is
simulated. For the impact model, the impulse-momentum and the coefficient of restitution equations for the system are
derived.
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1. Introduction
Owing to their closed-loop structure, parallel manipulators have been widely popular for many years, especially
for applications that demand precise positioning and high load-carrying capacity. Some examples of real-time
applications are flight simulators, space manipulators, and robots used in medical applications.

In order to carry high loads with high motion accuracy, flexibilities in the manipulator structure should
also be considered in the control system design. Joint flexibility is an important type of flexibility, which takes
place due to transmission elements like couplings and harmonic drives. Good et al. [1] showed experimen-
tally that if joint flexibility is ignored in controller design of industrial manipulators, significant performance
degradation occurs.

For the motion control of parallel manipulators involving joint flexibility in their drives, the following
studies can be mentioned. Liu et al. [2] designed an acceleration feedback controller to suppress the elastic
vibration caused by harmonic drives. Zhao et al. [3] performed kinematic analysis of a planar flexible-joint
parallel 3-RRR manipulator. Rong et al. [4] proposed a flexible spherical joint for parallel manipulators and
derived its kinematic equations. Ider and Korkmaz [5] proposed an inverse dynamics control law for flexible-joint
∗Correspondence: kider@cankaya.edu.tr
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parallel manipulators by using feedback of velocities and positions of the rotors and actuated joints. Korkmaz
and Ider [6] extended this approach to hybrid motion/force control of parallel robots working in a constrained
environment.

The main objective of this study is to address the stability of inverse dynamics control of flexible-joint
parallel manipulators in the presence of modeling error and disturbances for which a fourth-order, linear time-
varying, nonhomogeneous error dynamics is obtained. It is known that stability is not assured by merely having
the real parts of the poles negative at all times. In this paper it is analytically proved that stability can be
achieved by a proper selection of the feedback gains such that the magnitude of the real part of the most
dominant eigenvalue is kept in time sufficiently large. The requirements for reducing the steady-state errors are
also derived.

The performance of the algorithm is demonstrated by simulations of a 3-RPR planar parallel manipulator.
The case study includes impact with an object as a challenging control application, since it is a dynamic loading
that causes jumps in system velocities and induces severe vibrations. In real life, collisions can take place in
many applications like surgical manipulations and payload capturing operations of space robots. The adverse
effects of impact on the motion accuracy are even more pronounced due to the flexibilities in the system. In
order to simulate the feedback variables during impact, an impact dynamics model of the system is needed.
Although there are many studies in the literature on modeling and simulation of serial robotic manipulator
collisions, with or without link or joint flexibility [7–10], impact dynamics of parallel manipulators has not been
addressed before. Impact dynamics of flexible-joint parallel manipulators is modeled by deriving the impulse-
momentum equations of the system and the equation involving the coefficient of restitution of impact. At the
impact time, the velocity jump, the impulse of the impact force, and the impulses of the loop closure constraint
forces are obtained and the states of the system are updated accordingly to generate the effects of the impact
on the manipulator motion.

2. Dynamic equations of flexible-joint parallel manipulator

Let an n degree of freedom parallel manipulator be transformed into an m degree of freedom open-loop structure
by separating a necessary and sufficient number of unactuated joints. Then the parallel manipulator has m−n

independent loop closure constraint equations, which are obtained by reconnecting the separated joints. One
can denote the joint variable vector of the open-loop system as:

η̄=
[
η̄a

T

η̄u
T

]T
(1)

where η̄a is the (n× 1)vector of the actuated joint variables and η̄u is the (m− n)×1 vector of the unactuated
joint variables.

At an actuated joint, joint elasticity of the power transmission elements is modeled as a torsional spring
[5,11]. Due to elastic transmission between the actuators and the links, additional degrees of freedom appear.
At each actuator the rotor is modeled as a fictional link and so n degrees of freedom are added to the system.
The ith actuator variable ϕi is the rotor angle of the ith actuator divided by the speed reducer ratio ri of
that actuated joint. ϕ̄= [ϕ1, . . . .,ϕn]

T represents the vector of the actuator variables. Actuator torques at the
reducer output are denoted as Ti , i= 1, . . . .,n and the torsional spring constant reduced to the speed reducer
output is denoted as ki , i= 1, . . . .n .

The loop closure equations of the disconnected joints can be expressed in the form gi (η1, . . . ., ηm)= 0 ,
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i= 1, · · · ,m− n . The closed-loop constraints at velocity level are:

B̂ ˙̄η= B̂a ˙̄ηa+B̂u ˙̄ηu=0̄ (2)

where B̂=
[
B̂a B̂u

]
is an (m− n)×m constraint Jacobian matrix with Bij=

∂gi
∂ηj

, j= 1, . . . ,m, i= 1, . . . ,m−

n , and B̂a and B̂u are (m− n)× n and (m− n)× (m− n) matrices, respectively.
The gear reduction ratio is assumed to be large enough so that the rotor kinetic energy is generally due

to its own rotation [5,11]. This assumption eliminates the inertia coupling between η̄ and ϕ̄ . Also neglecting
the frictional losses in the system, the resulting equations of motion are obtained:

M̂ ¨̄η+Q̄+F̄ s+B̂T λ̄=0̄ (3)

Îr ¨̄ϕ−K̂
(
η̄a−ϕ̄

)
=T̄ (4)

Here M̂ (η̄) is the m × m positive definite and symmetric generalized inertia matrix and Q̄(η̄, η̇) is the m×1

vector of gravitational, centrifugal, and Coriolis terms. Q̄ and M̂ are the same as those of the rigid joint
open-loop system, where the rotors are considered as parts of the links on which they are mounted. F̄ s is an

m×1 vector that contains joint spring forces such that F̄ s=

[
K̂

(
η̄a−ϕ̄

)
0̄

]
, where K̂ is an n × n diagonal

stiffness matrix with Kii=ki i= 1, . . . , nÎr is an n × n diagonal matrix of the rotor inertias reduced to the
reducer output, i.e. Irii=Iri r

2
i , where Iri is the moment of inertia of the ith rotor about its rotation axis. T̄ is

the n×1 vector of the actuator torques after the speed reduction. B̂T λ̄ is the vector of generalized loop closure
constraint forces where λ̄ represents the (m− n)×1 vector of the joint reaction forces at the disconnected
joints.

One can reduce the manipulator equations of motion by eliminating the unactuated joint accelerations
¨̄ηu and the constraint forces λ̄ in Eq. (3). To this end, ¨̄ηu is obtained by differentiating Eq. (2) as:

¨̄ηu= −
(
B̂u

)−1 [
B̂a ¨̄ηa+

˙̂
Ba ˙̄ηa+

˙̂
Bu ˙̄ηu

]
. (5)

Using adequate partitioning of M̂ and Q̄ according to η̄a and η̄u as M̂=

[
M̂aa M̂au

M̂auT M̂uu

]
and Q̄=

[
Q̄a

Q̄u

]
in

Eq. (3), substituting Eq. (5), and eliminating λ̄ yields the following n -dimensional equation for the closed-loop
system [5]:

M̂⋆ ¨̄ηa+Q̄⋆+K̂
(
η̄a−ϕ̄

)
=0̄, (6)

where:

M̂⋆= −B̂aT
(
B̂u−1

)T [
M̂auT

−M̂uuB̂u−1

B̂a
]
+
[
M̂aa−M̂auB̂u−1

B̂a
]

(7)

Q̄⋆=

[
−M̂auB̂u−1 ˙̂

Ba+B̂aT
(
B̂u−1

)T

M̂uuB̂u−1 ˙̂
Ba

]
˙̄ηa

+

[
−M̂auB̂u−1 ˙̂

Bu+B̂aT
(
B̂u−1

)T

M̂uuB̂u−1 ˙̂
Bu

]
˙̄ηu+Q̄a−B̂aT

(
B̂u−1

)T

Q̄u. (8)
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3. Inverse dynamics control of flexible-joint parallel manipulator

The inverse dynamics control technique basically depends on finding the input/output relation. The inputs of
the system are the actuator torques/forces and the outputs are the end-effector position variables.

Let xi, i = 1, . . . , n stand for the Cartesian position variables of the end effector. The task equa-
tions that relate the coordinates of the end effector with the joint coordinates can be expressed in the form
xi=fi (η1, . . . ., ηm) , i= 1, . . . , n . At velocity level, the task equations can be expressed as:

˙̄x=Γ̂ ˙̄η=
[
Γ̂a Γ̂u

]{ ˙̄ηa

˙̄ηu

}
= Γ̂a ˙̄ηa+Γ̂u ˙̄ηu, (9)

where Γ̂a is an n×n matrix and Γ̂u is an n×(m− n) matrix with Γa
ij=

∂fi
∂ηa

j
and Γu

ij=
∂fi
∂ηu

j
.

By making use of Eq. (2), one can eliminate ˙̄ηu in Eq. (9), yielding:

˙̄x=Ĵ ˙̄ηa (10)

where Ĵ=Γ̂a−Γ̂uB̂u−1

B̂a is an n× n robot Jacobian matrix.
In order to find the relation between the output x̄ and input torques T̄ , one can substitute K̂

(
η̄a−ϕ̄

)
obtained from Eq. (6) and ¨̄ϕ obtained from the second derivative of Eq. (6) into Eq. (4), and then substitute
....
η̄

a obtained from the third derivative of Eq. (10) into the resulting equation:

Â
....
x̄+B̄=T̄+D̄. (11)

Here,
Â=K̂−1ÎrM̂∗Ĵ−1 (12)

B̄ =− K̂−1ÎrM̂
∗
Ĵ−1

(
3
˙̂
J

...
η̄
a
+3

¨̂
J ¨̄ηa+

...

Ĵ ˙̄ηa
)
+2K̂−1Îr

˙̂
M∗

+K̂−1Îr
¨̂
M

∗
¨̄ηa+K̂−1ÎrK̂ ¨̄ηa+K̂−1Îr ¨̄Q∗+M̂∗ ¨̄ηa+Q̄∗, (13)

and D̄ stands for the generalized disturbance force vector.

When Ĵ is singular the parallel manipulator is at a kinematic singularity at which the manipulator
loses at least one degree of freedom, and when B̂u is singular it is at a drive singularity at which control of
the manipulator is lost by the actuators in some directions [12]. In this study it is assumed that the chosen
trajectory avoids such singular positions so that Ĵ and B̂u are always nonsingular.

Using Eq. (11), an inverse dynamics control law can be formulated by selecting the control torques as
follows:

T̄=Âestū+B̄est, (14)

where ū is an n× 1 control vector, which represents command snaps:

ū=
....
x̄

d
+Ĉ1

(...
x̄
d
−

...
x̄
)
+Ĉ2

(
¨̄xd−¨̄x

)
+Ĉ3

(
˙̄xd− ˙̄x

)
+Ĉ4

(
x̄d−x̄

)
, (15)
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where the superscript d indicates desired values and Ĉi, i= 1, . . . , 4 are constant n×n feedback gain diagonal
matrices with diagonal elements Cij , j = 1, . . . , n . The subscript est in Eq. (14) specifies the estimated values,
which are different than the actual values due to modeling error. Due to the linearizing effect of the control law
expressed by Eq. (14), Eq. (11) is reduced to:

....
x̄=Êū−Â−1

(
B̄ − B̄est

)
+Â−1D̄, (16)

where:
Ê = Â−1Āest. (17)

Substitution of Eq. (15) into Eq. (16) yields the following error dynamics:

....
ē +ÊĈ1

...
ē+ÊĈ2 ¨̄e+ÊĈ3 ˙̄e+ÊĈ4ē=δ̄ , (18)

where ē = x̄d−x̄ and the effective disturbance δ̄ is obtained as

δ̄ = Â−1
(
B̄ − B̄est

)
+
(
Î − Ê

) ....
x̄

d
−Â−1D̄. (19)

The measurements required by the control law are the velocities and positions of the actuator rotors and the

actuated joints, i.e. ˙̄ηa , η̄a , ˙̄ϕ and ϕ̄ . The other unknown variables in the control law are obtained using these
measured variables. In particular, ¨̄ηa and

...
η̄
a are found using Eq. (6) and its derivative where the parameters

may involve modeling error, i.e.

¨̄ηa= −M̂∗−1
est

[
Q̄∗

est+K̂est

(
η̄a−ϕ̄

)]
, (20)

...
η̄
a
= −M̂∗−1

est

[
˙̂
M∗

est

..
η̄a+ ˙̄Q∗

est+K̂est

(
˙̄ηa− ˙̄ϕ

)]
(21)

During the control simulations the measured variables for each sampling time are obtained by forward dynamics

simulation. To this end, substituting the control torques obtained from Eq. (14), ¨̄ηa and ¨̄ϕ are calculated by

making use of Eqs. (6) and (4). Then ˙̄ηa , η̄a , ˙̄ϕ , and ϕ̄ are obtained by numerical integration.

4. Stability of the control system

Since Â is positive definite, using an appropriate positive definite estimate of Â , the matrix Ê defined by Eq.
(17) comes out to be a positive definite matrix, too. On the other hand, Ê ∼= Î provided that Âest

∼= Â .

Eq. (18) represents a linear time-varying system. In the case that there is no modeling error (Ê ∼= Î and
B̄ = B̄est) , Eq. (18) reduces to the following equation that describes the linear time-invariant version of the
same system:

....
ē +Ĉ1

...
ē+Ĉ2 ¨̄e+Ĉ3 ˙̄e+Ĉ4ē= 0 . (22)

Asymptotic stability of the system described by Eq. (22) can be achieved by suitable selection of the feedback
gain diagonal matrices. ITAE, IAE, critically damped, etc. criteria can be used for this purpose. Without losing
generality, let the ITAE criterion be used. In this case the diagonal elements of the feedback gain matrices are
C1j = 2.1ωj , C2j = 3.4ω2

j , C3j = 2.7ω3
j , C4j = ω4

j for all j = 1, . . . , n , where ωj are positive constants.
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Since Ê ∼= Î one can choose ωj large enough such that the real parts of all poles of the system described by
Eq. (18) are still negative. To investigate the stability of the actual linear time-varying system described by
Eq. (18), consider the following state representation based on Eq. (18):

˙̄µ=Υ̂ (t) µ̄, (23)

where:
µ̄T=

[
ēT p̄T q̄T r̄T

]
, (24)

Υ̂ (t)=


0̂ Î 0̂ 0̂

0̂ 0̂ Î 0̂

0̂ 0̂ 0̂ Î

−ÊĈ4 −ÊĈ3 −ÊĈ2 −ÊĈ1

 , (25)

p̄ = ˙̄e, q̄ = ˙̄p, and r̄ = ˙̄q . It is known that asymptotic stability is not assured by only having a stability margin
σo > 0 such that

Reλi (t) ≤ −σo∀i, ∀t ≥ 0, (26)

where λi is the ith eigenvalue (pole) of Υ̂ (t) [13,14]. However, it is known that such a system is asymptotically
stable if the variation of Υ̂ (t) is sufficiently slow. Desoer [13] showed that Eq. (23) is asymptotically stable at
large if

∆M ≤ σ2
o

3m4
, (27)

where
∆M = supt≥0

∥∥∥ ˙̂
Υ (t)

∥∥∥ (28)

and m is a constant that satisfies ∥∥∥eΥ̂(t)
∥∥∥≤me−τ(σo

2 )∀t≥ 0,∀τ≥ 0. (29)

To see how σo affects Eq. (27), consider how ∆M varies with σo . ˙̂
Υ (t) can be expressed as:

˙̂
Υ (t)=


0̂ 0̂ 0̂ 0̂

0̂ 0̂ 0̂ 0̂

0̂ 0̂ 0̂ 0̂

− ˙̂
EĈ4 − ˙̂

EĈ3 − ˙̂
EĈ2 − ˙̂

EĈ1

 . (30)

Since ˙̂
E(t) is independent of λi , i = 1, · · · , n , the effect of λi on ˙̂

Υ (t) is in the order of λi . This is because the
poles of Γ̂ (t) are placed directly by means of Ĉi, i= 1, . . . , 4 . On the other hand, σo = mint≥0 [Reλ1] , where
λ1 is the most dominant eigenvalue. Therefore, the effect of σo on ∆M is in the order of σo , while the effect
of σo on the RHS of Eq. (27) is in the order of σ2

o . Hence, by choosing a sufficiently large σo , the variation of
Υ̂ (t) becomes slow compared to the dynamics of the system and one achieves asymptotic stability in the large.
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Therefore, with larger values of ωj for all j , |ē| can be decreased. This is due to the fact that the effective
disturbance δ̄ is not a function of the natural frequencies of the system described by Eq. (18), and hence one
can choose ωj , j = 1, . . . , n such that δ̄ appears to be changing much more slowly with regard to a signal such
as sin (Ωkt) , where Ωk is the smallest natural frequency of the same system. Hence, after the transient phase,
the error converges to the value given below in Eq. (31), which becomes smaller as the elements of Ĉ4 increase:

ē∗=Ĉ−1
4 Ê−1δ̄. (31)

5. Impact dynamics
Let a particle P of mass mP collide with the manipulator while it is in motion at point Q , which is on the
surface of the end-effector or another link. The impact is assumed to take place in a very short-lived interval of
time τ1≤t≤τ2 , where τ1 , and τ2 are close enough that the system configuration does not undergo a considerable
change during the impact.

The generalized impact force vector F̄P due to the impact force F I (t) generated at contact point Q

can be expressed as:

F̄P=
∂v̄Q
∂ ˙̄η

·F I z̄=L̂QT

z̄F I , (32)

where v̄Q is the velocity vector and L̂Q=
∂v̄Q

∂ ˙̄η
is the velocity influence coefficient matrix of point Q , and z̄ is

the unit vector in the direction of the impact force. Including the generalized impact force represented by Eq.
(32) to the manipulator dynamic equations, Eq. (3) takes the following form:

M̂ ¨̄η+Q̄+F̄ s+B̂T λ̄+L̂QT

z̄F I=0̄. (33)

Similarly, the equation of motion of the colliding particle P during impact can be expressed as below:

mP ¨̄rP−L̂PT

z̄F I=0̄, (34)

where L̂P=∂v̄P
∂ ˙̄rP

is the velocity influence coefficient matrix of particle P . Since v̄P= ˙̄rP , L̂P equals the 2×2

identity matrix Î .
In order to obtain impulse-momentum equations, the dynamic equations of the manipulator ((Eq. 33)

and (4)) and the dynamic equation of the particle (Eq. (34)) are integrated over the time interval τ1≤t≤τ2 as∫ τ2

τ1

(
M̂ ¨̄η+Q̄+F̄ s−B̂T λ̄+L̂QT

z̄F I
)
dt=0̄, (35)

∫ τ2

τ1

[
Îr ¨̄ϕ−K̂

(
η̄a−ϕ̄

)]
dt=

∫ τ2

τ1

T̄ dt, (36)

∫ τ2

τ1

(
mP ¨̄rP−z̄F I

)
dt=0̄. (37)

Assuming that the applied forces are continuous and noting that the positions do not change considerably and

velocities are bounded during the impact period, the terms
∫ τ2
τ1

T̄ dt ,
∫ τ2
τ1

(
Q̄+F̄ s

)
dt , and

∫ τ2
τ1

[
−K̂

(
η̄a−ϕ̄

)]
dt

655



İDER et al./Turk J Elec Eng & Comp Sci

become negligible. Since M̂ , B̂ , L̂Q , and z̄ depend on positions only, they almost remain constant during
impact. Then Eqs. (35)–(37) reduce to:

M̂∆ ˙̄η+B̂T Λ̄+L̂QT

z̄H =0̄, (38)

Îr∆ ˙̄ϕ=0̄, (39)

mP∆ ˙̄rP−z̄H =0̄, (40)

where ∆ ˙̄η , ∆ ˙̄ϕ , and ∆ ˙̄rP represent the jumps in the corresponding velocity vectors due to impact. H is the
impulse of the impact force and Λ̄ is the vector of the impulses of the loop closure constraint reaction forces,
which are given as:

H =

∫ τ2

τ1

F Idt, (41)

Λ̄=

∫ tau2

τ1

λ̄dt (42)

Eq. (39) implies that ∆ ˙̄ϕ=0̄ , i.e. the vector of the rotor velocities, ˙̄ϕ , does not change during the impact.
The conditions that the constraint equations impose on the velocity jump during impact should also be

considered. Using Eq. (2) at τ1 and τ2 , one obtains:

B̂ ˙̄η (τ2)−B̂ ˙̄η (τ1)=B̂∆ ˙̄η=0̄. (43)

It is known that the coefficient of restitution e can be expressed as:

e = −z̄· [v̄Q (τ2)−v̄P (τ2)]/ { z̄· [v̄Q (τ1)−v̄P (τ1)]} . (44)

Using v̄Q=L̂Q ˙̄η and v̄P= ˙̄rP , Eq. (44) takes the following form:

z̄T
(
L̂Q∆ ˙̄η−∆ ˙̄rP

)
= −(e+1)z̄T

[
L̂Q ˙̄η (τ1)− ˙̄rP (τ1)

]
. (45)

Eqs. (38), (40), (43), and (45) represent m+2+ (m− n)+1 = 2m − n+3 linear equations for obtaining the
jump discontinuity in the velocities ˙̄η and ˙̄rP , the impulse vector Λ̄ of the loop closure reaction forces, and the
impactive impulse H . In augmented matrix form these equations are expressed as:

M̂ 0̂ −B̂T L̂QT

z̄

0̂ mP Î 0̂ −z̄

B̂ 0̂ 0̂ 0̄

z̄T L̂Q −z̄T 0̄ 0




∆ ˙̄η

∆ ˙̄rP

Λ̄

H

=



0̄

0̄

0̄

−(e+1)z̄T
[
L̂Q ˙̄η (τ1)− ˙̄rP (τ1)

]


, (46)

where M̂ , B̂ , L̂Q , and z̄ are also evaluated at t=τ1.

The impact model presented in this article is also applicable to object capturing applications. Object
capturing represents a special case of general impact where the relative velocity of the contacting points after
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impact is zero, i.e. impact is fully plastic, and hence the coefficient of restitution e in the above equations
becomes zero.

At impact time, the velocity jump ∆ ˙̄η due to impact is calculated using Eq. (46). The updated velocity
vector ˙̄η (τ2) is obtained by adding ∆ ˙̄η to the velocity vector ˙̄η (τ1) , which is obtained by the forward dynamics

solution. Then ˙̄η (τ2) is used as the new velocity vector for the next step, while ˙̄ϕ and the position vectors
remain the same.

6. Numerical example
The 3-RPR planar parallel manipulator shown in Figure 1 is considered as a case study. The robot has three
legs, each containing two revolute joints and one prismatic joint between the moving platform and the fixed
base. Excluding the extra degrees of freedom of the flexible-joint drives, the manipulator has 3 DOF, i.e. n= 3 .
The base joints whose joint variables are θ1 , θ3 , and θ5 are all actuated. Since the open-loop system obtained
by disconnecting the joints at E and F has 7 DOF, i.e. m= 7 , the joint variable vector takes the following
form:

η̄= [θ1 θ3 θ5 θ7 ξ2 ξ4 ξ6]
T
. (47)

ξ6 

ξ2 
ξ4 

θ1 

θ3 
G1 

G2 

G3 

G4 
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G6 

G5

θ5 
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Q 

x B 

Figure 1. 3-RPR planar parallel manipulator.

Then the relevant actuated and unactuated joint variable vectors are expressed as:

η̄a= [θ1 θ3 θ5]
T
, η̄u= [θ7 ξ2 ξ4 ξ6]

T (48)

The vectors of the rotor variables at the actuated joints are:

ϕ̄= [ϕ1 ϕ2 ϕ3]
T
. (49)

The fixed link dimensions are labeled as AB = AC = CB = L , DE =L7 , DF =L
′

7 , ∠FDE =α , ∠GDE =β ,
DG =g7 , AG1=a1 , DG2=a2 , BG3=a3 , EG4=a4 , CG5=a5 , FG6=a6 . Gi denotes mass center of link i . G

is mass center of link 7.
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There are four constraint equations given by:


g1= ξ2cosθ1+L7cosθ7−L−ξ4cosθ3
g2=ξ2sinθ1+L7sinθ7−ξ4sinθ3
g3= ξ2cosθ1+L

′

7cos (θ7+α)−0.5L−ξ6cosθ5
g4=ξ2sinθ1+L

′

7sin (θ7+α)−0.866L−ξ6sinθ5

=


0

0

0

0

 . (50)

The coordinates xG and yG of point G and the orientation variable θ7 of the moving platform constitute the
end-effector position vector x̄ :

x̄=

 xG

yG

θ7

=

 ξ2cosθ1+g7cos (θ7+β)

ξ2sinθ1+g7sin (θ7+β)

θ7

 . (51)

The link dimensions are L= 2 m, L7 = L
′

7= 0.4 m, ai= 0.3 m, i= 1, · · · , 6 , g7= 0.231 m, α=60
◦
β=30

◦ The
masses of the links are mL

i = 5 kg, i= 1, · · · , 6 , mL
7= 7 kg. The moments of inertia of the links about axes

through mass centers are Izi= 0.15 kg m2 , i= 1, · · · , 6 , Iz7= 0.23 kg m2 . The rotor moments of inertia
about axes are Iri = 2× 10−5 kg m2 , i = 1, 2, 3 . The gear ratios are ri= 100 , i= 1, 2, 3 . Torsional joint spring
constants are ki= 2500 Nm/rad, i= 1, 2, 3 .

Initially the system is at rest, with θ10=45
◦ , θ30=155

◦ , and θ50=255
◦ . The corresponding initial

unactuated joint variables are θ70=−5.38
◦ , ξ20= 0.756 m, ξ40= 1.177 m, and ξ60= 0.901 m. Initial values

of the joint variables result in the following initial position vector of the end-effector:

x̄o=

 xGo

yGo

θ70

=

 0.745m
0.631m
−5.380

 . (52)

The ITAE criterion is considered for the determination of the feedback gains. The diagonal elements of the
feedback gains are C1i= 2.1ωi, C2i= 3.4ω2

i , C3i= 2.7ω3
i , C4i=ω4

i , i= 1, 2, 3, where ωi are positive constants.
The following desired end-effector cycloidal deployment motion is considered:

xd
G=

{
0.70+ 0.35

T

[
t− T

2π sin 2πt
T

]
m 0 ≤t<T

1.05 m t≥T

}
,

ydG=

{
0.60+ 0.20

T

[
t− T

2π sin 2πt
T

]
m 0 ≤t<T

0.80 m t≥T

}
, (53)

θd7=

{
0+ 25

T

[
t− T

2π sin 2πt
T

]
deg.0 ≤t<T

25 deg. t≥T

}
,

where T= 1.0 s, which is the period of deployment motion. Considering Eqs. (52) and (53), there exist initial
position errors in all components of the end-effector position vector. Also, the desired jerks have discontinuities
at the boundaries. In the simulations, modeling error is taken into account such that the robot mass and inertia
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parameters and the stiffness constants are taken to be 10% smaller in the model. The sampling time interval is
taken as h= 0.002 s (sampling frequency is 3142 rad/s).

The impact scenario is set up in such a way that, at time t = 0.25 s, a particle having mass mP= 5

kg hits point Q of link 7 with velocity ˙̄rP=
[
1.5 −1

]T m/s, where DQ =b7= 0.15 m. The coefficient of

restitution is assumed to be e= 0.9 . The velocity influence coefficient matrix L̂Q of point Q takes the following
form:

L̂Q=

[
−ξ2sinθ1 0 0 −b7sin (θ7+α) cosθ1 0 0

ξ2cosθ1 0 0 b7cos (θ7+α) sinθ1 0 0

]
. (54)

The unit vector z̄ along the normal direction is obtained as:

z̄=

{
cos (θ7+α+270o)

sin (θ7+α+270o)

}
. (55)

The closed-loop position and velocity responses, elastic deflections, and actuator torques T ∗
i = Ti/ri , i= 1, 2, 3

are displayed in Figures 2, 3, and 4, for ωi= 50 rad/s. The magnitudes of the velocity jumps due to impact
are visible in Figure 3. Figure 4 reveals the corresponding jumps in the actuator torques. It is assumed
that actuators provide sufficient torques so that there is no saturation. Despite the effects of initial position
errors, modeling error, and velocity jumps due to impact, satisfactory tracking performance is achieved at all
end-effector position variables.
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Figure 2. Position responses: (a) 1. xG , 2.yG ; (b)θ7 .

7. Discussion and conclusions
In this paper, trajectory tracking control of parallel manipulators involving flexible-joint drives is analyzed in
the presence of modeling error and disturbances. Using the fourth-order input (actuator torques)/output (end-
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Figure 3. Velocity responses: (a) 1. ẋG , 2. ẏG ; (b) θ̇7 .
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Figure 4. Deflections and actuator torques: (a) 1.θ1−ϕ1, 2.θ2−ϕ2, 3.θ3−ϕ3 ; (b) 1.T ∗
1 , 2.T

∗
2 , 3.T

∗
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effector displacements) relation obtained by eliminating the intermediate variables, an inverse dynamics control
law is utilized. A fourth-order nonhomogeneous linear time-varying error dynamics is obtained. It is shown that
by proper selection of the feedback gains the relative variations of the system parameters become sufficiently
slow so that the control system becomes stable. Hence, the inverse dynamics control law can be made robust
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to parameter uncertainties and disturbances.
A 3-RPR planar parallel manipulator subject to impact is considered as a case study to illustrate the

performance of the control method in the presence of 10% modeling error. The impact model involves the
impulse momentum equations derived from the dynamic equations and the equation that involves the coefficient
of restitution of impact. As expected, the sudden changes in joint velocities due to impact create jumps in the
end-effector velocity variables, as well. Indeed, these jumps in the joint velocities represent instantaneous
velocity errors that should be compensated by the controller. This, in turn, creates bumps in the position
responses and discontinuities in the control torques.

Due to the inertia coupling between the rotor and joint variables, impact affects, in fact, not only the
manipulator velocities but also the rotor velocities. However, in the flexible-joint model, the gear ratio is taken
sufficiently large, which causes this coupling to be negligible.

Consequently, despite the modeling error, the jump discontinuities that occur because of the impact are
suppressed by the control method and a satisfactory tracking performance is achieved. The tracking errors,
on the other hand, can be further reduced by increasing the control gains at the expense of increased control
torques.

Motor dynamics is neglected in this study in order to focus on the flexible-joint manipulator dynamics
since brushless DC motors can be used without considerable lag in the application of the control torques.

As a future work, the effects of friction nonlinearity, link flexibility, backlash at the joints, and saturation
limits of the motors on the stability and performance of the inverse dynamics control can be investigated.
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