
SCHEDULING IN A THREE-STAGE DEDICATED HYBRID FLOWSHOP

WITH A COMMON THIRD-STAGE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
ÇANKAYA UNIVERSITY

BY

SERDAR SOYSAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

SEPTEMBER 2008

 iv

ABSTRACT

SCHEDULING IN A THREE-STAGE DEDICATED HYBRID FLOWSHOP

WITH A COMMON THIRD-STAGE

SOYSAL, Serdar

M.Sc., Department of Industrial Engineering

Supervisor: Asst. Prof. Dr. Ferda Can ÇETİNKAYA

September 2008, 118 pages

In this study, we consider a scheduling problem of a manufacturing environment

in which there are two manufacturing flow lines, where the third stage of the first

line and the second stage of the second line are common. Each stage in the first

flow line has a single machine whereas the second flow line contains two identical

parallel machines in its first stage. Type-1 jobs are processed in the first flow line,

whereas second flow line is dedicated to type-2 jobs. The last operation, of both

types of jobs, must be processed on a common machine. The problem is to

determine the sequence and schedule of all jobs at all stages of the two flow lines

so that the makespan is minimized. We develop a mathematical model and a

branch-and-bound algorithm with lower and upper bounding procedures to find

optimal solution; we propose heuristic algorithms which provide good quality

solutions at little computational effort when the computational effort to obtain an

exact solution is prohibitive. The effectiveness of our solution approaches are

demonstrated by computational analyses.

Keywords: Hybrid Flowshop Scheduling, Dedicated Machine, Mathematical

Model, Branch-and-bound Algorithm.

 v

ÖZ

ÜÇÜNCÜ AŞAMASI ORTAK ÜÇ AŞAMALI TAHSİSLİ KARMA AKIŞ TİPİ

BİR ATÖLYEDE ÇİZELGELEME

SOYSAL, Serdar

Yüksek lisans, Endüstri Mühendisliği Anabilim Dalı

Tez Yöneticisi: Yrd.Doç. Dr. Ferda Can ÇETİNKAYA

Eylül 2008, 118 sayfa

Bu çalışmada, birincisinin üçüncü aşaması ile ikincisinin ikinci aşaması ortak olan

iki imalat hattını barındıran bir imalat ortamının çizelgelenmesi problemi ele

alınmıştır. Birinci imalat hattının her aşamasında tek makine mevcut iken, ikinci

imalat hattının ilk aşamasında iki tane özdeş parallel makine yer almaktadır.

Birinci tür işler ilk imalat hattında işlenirken ikinci imalat hattı ikinci tip işlere

tahsis edilmiştir. Her iki tür işin son operasyonu ortak makinada işlenmek

durumundadır. Problemimiz, bütün işlerin iki imalat hattının tüm aşamalarındaki

sıra ve çizelgelerini belirlemek ve böylelikle başlangıç ve bitiş arasında geçen

süreyi en aza indirmektir. Problemin optimal çözümünü bulmak için bir

matematiksel model ile alt ve üst sınır işlemleriyle birlikle bir dal-sınır algoritması

geliştirilmiştir; kesin çözümün elde edilemediği durumlarda, makul bir hesaplama

uğraşıyla iyi çözümler sağlamak üzere sezgisel algoritmalar önerilmiştir. Çözüm

yaklaşımlarımızın etkinliği sayısal analizlerle ispat edilmiştir.

Anahtar Kelimeler: Karma Akış Tipi Atölye Çizelgelemesi, Tahsisli Makine,

Matematiksel Model, Dal-Sınır Algoritması.

 vi

ACKNOWLEDGMENTS

I am deeply grateful my thesis supervisor Asst. Prof. Dr. Ferda Can
ÇETİNKAYA for his precious and continual guidance and endless support. It was
a great pleasure for me to have opportunity to study such a great researcher.

I would like to thank my jury members, Prof. Dr. Meral AZİZOĞLU and Prof.
Dr. Levent KANDİLLER for their valuable contributions on this thesis. I am also
thankful to Asst. Prof. Dr. Abdül Kadir GÖRÜR for his kind interest and
supports. I am so lucky to have such a mentor and a friend.

I would like to express my deepest appreciation to my dear family. I am indebted
to my mom Fatma ŞAHİN SOYSAL for her everlasting patience, empathy and
encouragement. I am also grateful to my brother Tufan SOYSAL, my sister-in-
law Belkız TAŞEL SOYSAL, my sister Eda SOYSAL ÖZHAN, and my brother-
in-law Göktuğ ÖZHAN who listened my complaints and motivated me during this
study. This study could not have been completed without their love.

I deem myself as fortunate being a part of ÇANKAYA-IE assistants and I would
like to thank all my friends at the department, namely, Ender YILDIRIM, Engin
TOPAN, İlter ÖNDER, İpek SEYRAN TOPAN, Miray Hanım ASLAN for their
support to my study. I am especially appreciative to Ender YILDIRIM for his
brotherhood.

I also would like to thank my dear friends Murat AKYAR, Sedef ELKER, Murat
BAYAR, Gökhan ÖZHAN and Murat ŞAHİN for their invaluable friendship, help
and moral support throughout this study.

Finally, thanks to TÜBİTAK (The Scientific and Technological Research Council
of Turkey) for its support through a graduate study scholarship.

 vii

 TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM.. iii

ABSTRACT.. iv

ÖZ... v

ACKNOWLEDGEMENTS.. vi

TABLE OF CONTENTS.. vii

LIST OF TABLES... x

LIST OF FIGURES... xi

CHAPTERS:

1. INTRODUCTION... 1

 2. THREE-STAGE DEDICATED HYBRID FLOWSHOP WITH

 A COMMON THIRD-STAGE... 4

 2.1 Problem Definition.. 4

2.2 Mathematical Model.. 7

3. LITERATURE REVIEW.. 15

3.1 Flowshop Scheduling Problem.. 15

3.1.1 Two-Machine Problem....................................... 16

3.1.2 Multi-Machine Problem...................................... 17

3.2 Parallel Machine Scheduling Problem............................... 22

3.2.1 Identical Parallel Machine Problem.................... 22

3.3 Hybrid Flowshop Scheduling Problem.............................. 25

3.3.1 Two-Stage Hybrid Flowshop.............................. 26

3.3.2 Multi-Stage Hybrid Flowshop............................. 28

3.4 Hybrid Flowshop Scheduling Problem with Dedicated

 Machines.. 29

 viii

4. BRANCH-AND-BOUND ALGORITHM FOR THE REVERSED

 PROBLEM... 31

4.1 The Reversed Problem... 31

4.2 Branch-and-Bound Algorithm for the Reversed Problem.. 33

5. PROPOSED HEURISTIC ALGORITHMS..................................... 37

5.1 Sequencing Rules and the Sequencing-rules Based

 Heuristic.. 37

5.1.1 Sequencing Rules... 37

5.1.2 The Sequencing-rules Based Heuristic................ 42

5.2 The Branch-and-bound Based Heuristic............................. 43

5.3 Lower Bounds... 43

5.3.1 Lower Bound 1... 44

5.3.2 Lower Bound 2... 44

5.3.3 Lower Bound 3... 45

5.3.4 Lower Bound 4... 46

5.4 A Numerical Example to Illustrate the Lower Bounds

 and Sequencing-rules Based Heuristic................................ 47

 5.4.1 Lower Bounds.. 48

 5.4.2 Sequencing Rules... 49

6. COMPUTATIONAL EXPERIMENTS AND RESULTS................ 56

 6.1 Design of Experiments.. 56

6.2 Performance Measures.. 59

6.3 Discussion of the Results.. 60

 6.3.1 Global Lower Bound Performance...................... 60

 6.3.2 Heuristic Algorithm Performance........................ 62

 6.3.3 Branch-and-bound Performance.......................... 73

7. CONCLUSION.. 75

REFERENCES... R1

 ix

APPENDICES:

A. NUMERICAL EXAMPLE ON THE BRANCH-AND-BOUND

 BASED HEURISTIC... A1

B. NUMERICAL EXAMPLE ON THE BRANCH AND BOUND

 ALGORITHM... A13

 x

 LIST OF TABLES

TABLES

Table 5.1 Processing Times for the Numerical Example..............................47

Table 6.1 Possible Dominance Cases Between Production Lines/Machines

 and Needed Conditions for These Cases.......................................57

Table 6.2 Size of the Problem Instances in the Computational Study..........58

Table 6.3 Global Lower Bound Performance-Percent Deviation from

 Optimum...61

Table 6.4 Heuristic Algorithms Performance-Percent Deviation from

 Optimum...62

Table 6.5 Heuristic Algorithms Performance-Percent Deviation from

 Global Lower Bound..67

Table 6.6 Heuristic Algorithms Performance-Number of Times Optimal is

 Found..72

Table 6.7 Branch-and-bound Performances...74

Table A.1 Processing Times for the Numerical Example............................A1

Table B.1 Processing Times for the Numerical Example..........................A18

 xi

 LIST OF FIGURES

FIGURES

Figure 2.1 A Three-stage Dedicated Hybrid Flowshop with a Common

 Third-stage Machine 1 2 3(3 | 3, 1, 1, 2)= = = =F k k k T6

Figure 4.1 The Reversed Problem...32

Figure 5.1 Schedule Obtained by Sequencing Rule A...................................50

Figure 5.2 Schedule Obtained by Sequencing Rule B...................................51

Figure 5.3 Schedule Obtained by Sequencing Rule C...................................52

Figure 5.4 Schedule Obtained by Sequencing Rule D...................................53

Figure 5.5 Schedule Obtained by Sequencing Rule E...................................54

Figure 5.6 Schedule Obtained by Sequencing Rule F...................................55

Figure A.1 Branching Scheme of the Numerical Example..........................A17

Figure B.1 Branching Scheme of the Numerical Example..........................A34

 1

CHAPTER 1

INTRODUCTION

Scheduling is defined as the allocation of limited resources over time to perform a

set of tasks. The resources and tasks may take many different forms. Machines,

money, energy, processing units may represent resources, and operations of a

process or part of a program may be considered as tasks.

In both manufacturing and service sectors, competition is getting harder. Time is a

big pressure in such a market on the producers; customers have no tolerance for

long lead times and products come out of fashion quickly. Because of that,

efficient scheduling and sequencing have gained increasing importance in the

enhancement of the productivity, utilization of the scarce resources, and

profitability of the production lines. For high level performance, some production

lines need special configuration and layout to process operations. For example,

slower or overloaded manufacturing resources are duplicated in order to prevent

any bottleneck or obstacle, hence balance the speed of production for all

manufacturing stages as is in hybrid flowshop systems.

Hybrid flowshops are encountered in today’s manufacturing environments quite

often. It is a generalization of the flowshop and parallel machine environments,

since it is a combination of these two systems where at least one stage of the

hybrid flowshop environments contains more than one machine. Some examples

of hybrid flowshop organizations from pharmaceutical industry and from

semiconductor manufacturing industry are given in Artiba (1994) and in

 2

Herrmann and Lee (1992), respectively. Besides, these organizations fit very well

to glass container and glass manufacturing industries (He et al. (1996), Mei

(1996), Paul (1979)), chemistry industry (Artiba and Riane (1998)), and cable

manufacturing industry (Narasimhan and Panwalkar (1984)).

Many optimality criteria, like maximum lateness, total completion time, number

of tardy jobs, total weighted tardiness are used as a measure of the performance in

scheduling literature. The minimization of the makespan, which is the maximum

completion time, is the most common one. Minimum makespan implies high

utilization of the resources, gives room to early arrivals and early satisfaction of

customer demand (Riane et al. (1998)).

Our study is concerned with scheduling two types of jobs on the three-stage

dedicated flow lines where the third stage of the first line and the second stage of

the second line are common. Each stage in the first flow line has a single machine

whereas the second flow line contains two identical parallel machines in the first

stage. Our aim is to minimize the maximum completion time of the jobs which is

called as makespan.

We propose two heuristic algorithms for this NP-hard problem. Besides, we

formulate the problem as a mixed integer program and develop a branch-and-

bound algorithm with its lower and upper bounding procedures.

This thesis contains seven chapters that are organized as follows: In Chapter 2, we

describe our problem and give its mathematical representation. In Chapter 3, we

survey the related literature. The studies in the literature are classified according

to the machine environment, as flowshop environment, identical parallel machine

environment, hybrid flowshop environment with identical parallel machines and

 3

hybrid flowshop environment with dedicated machines. All these machine

environments are reviewed for makespan objective. In Chapter 4, we present our

branch-and-bound algorithm for the reversed problem. This algorithm gives us the

exact solution. In Chapter 5, we propose two heuristic procedures based on the six

different sequencing rules and a branch-and-bound based algorithm to be able to

get a satisfactory; hopefully near optimal solution to our problem. Moreover, we

discuss lower bounding procedures that are developed to evaluate the efficiency of

the proposed heuristics. The sequencing rules are especially based on the well-

known algorithm of Johnson (1954). Also, list scheduling procedures like Longest

Processing Time (LPT) and Shortest Processing Time (SPT) are utilized in these

heuristics. In Chapter 6, we discuss the results of our computational experiments

to highlight the performance of our proposed heuristic, bounding procedures and

the branch-and-bound algorithm. Finally, in Chapter 7, the study ends with some

concluding remarks, together with some areas for future research.

 4

CHAPTER 2

THREE-STAGE DEDICATED HYBRID FLOWSHOP WITH A

COMMON THIRD-STAGE

In this chapter, we first define our problem together with its assumptions, and then

present the associated mathematical model.

2.1 Problem Definition

The scheduling problem considered in this study can be stated as follows:

Consider a manufacturing environment in which there are two flow lines having

two and three stages. The third stage of the first line and the second stage of the

second line are common. Each stage in the first flow line has a single machine

whereas the second flow line contains two identical parallel machines in the first

stage. There are two sets of 1 2n n n= + jobs, which are 1 1{1,2,..., }J n=

and 2 1 1 1 2{ 1, 2,..., }J n n n n= + + + , where 1 2J J J= ∪ , and 1n and 2n are the

number of type-1 and type-2 jobs, respectively. All jobs are simultaneously

available at time zero, and each type-1 job has three operations, 1
jO , 2

jO , and 3
jO ,

with positive processing times ,1jp , ,2jp , and ,3jp ; each type-2 job has two

operations, 1
jO and 3

jO , with positive processing times ,1jp and ,3jp . The first and

second operations of type-1 jobs must be processed at the first two stages of the

first flow line, and the first operation of type-2 jobs must be processed by one of

the identical machines at the first stage of the second flow line. The last operation,

of all type-1 and type-2 jobs, must be processed on a common machine, which is

 5

utilized by the first and second flow lines at their last stage. Each machine at any

stage of any flow line can handle no more than one job at a time. Also, each job

can be processed by at most one machine at a time. Furthermore, we assume that

preemption is not allowed; i.e., any operation once started must be completed

without interruption. The problem, in such manufacturing environment, is to

determine the sequence and schedule of all jobs at all stages of the two flow lines

so that the makespan maxC , which is the completion time of the job processed in

the last position at the third stage, is minimized.

Scheduling problems can be denoted by a three-field notation | |α β γ , where α

specifies the machine environment, β signifies the job and machine

characteristics, and γ denotes the objectives to be optimized. Following the

standard three-field notation, we denote our problem of minimizing the makespan

for a three-stage dedicated hybrid flowshop with a common third-stage by

1 2 3 max3 | 3, 1, 1, 2 |F k k k T C= = = = , where ki denotes number of machines at stage

i and T denotes the number of job types, as illustrated by Figure 2.1.

 6

M1

M3,1

M3,2

M2

M4

Stage 3Stage 2Stage 1

Type-1 Jobs

Type-2 Jobs

Figure 2.1: A Three-stage Dedicated Hybrid Flowshop with a Common Third-stage Machine

(= = = =1 2 33 | 3, 1, 1, 2F k k k T)

As an example of a practical application of this proposed model, consider the

potato chips and pop corn production in the same workshop. In such

environments, there are mainly two types of product families, which are potato

products and corn products. Two separate flow lines are dedicated for each

product family. Each product in a potato products family is processed at the first

two stages of its associated flow line, where peeling and frying operations are

performed, whereas each product in a corn products family is processed by one of

the two identical machines at the first stage of its associated flow line, where

frying operation is performed, and then the products are packed in bags at the last

stage. Another application occurs in a manufacturing environment in which initial

operations of two different product families are processed at two separate flow

lines but each product family must go through a final quality control operation,

which is to be carried out on a common testing machine.

 7

In this thesis, we extend the work of Oğuz et al. (1997). They studied a similar

problem for the two-stage flow lines, where each stage consists of one machine

only, and proved that the two-stage flow line problem belongs to the class of NP-

hard problems. For this reason, they proposed a heuristic algorithm and analyzed

its worst-case error bound. They also derived a global lower bound to

computationally test the performance of their proposed heuristic.

Observe that when all operations 3
jO have zero processing time, the problem

reduces to two separate problems: a classical two-stage flowshop problem which

can be solved in (log)O n n time using the well-known algorithm of Johnson

(1954) and a parallel machine problem with two identical machines which is

proved to be NP-hard by Karp (1972). When operations 1
jO and 3

jO have zero

processing time for type-2 jobs, then the resulting problem is one of scheduling 1n

jobs on three-stage flowshop to minimize the makespan, which is known to be

NP-hard by Garey et al. (1976). Further, when operations 2
jO have zero

processing time for type-1 jobs, and one of the identical parallel machines at the

second flow line is removed, the problem reduces to the dedicated two-stage

flowshop scheduling with a common second-stage machine, which was proved to

be strongly NP-hard by Oğuz et al. (1997). Thus, our problem is also strongly NP-

hard.

2.2 Mathematical Model

The problem addressed in this research can also be expressed as a scheduling

problem for a four-stage hybrid flowshop where the first two stages are for the

first flow line, third stage is for the parallel machines of the second flow line and

the fourth stage is the common stage. In this case, note that the processing times

 8

of type-1 jobs in the third stage and the processing times of type-2 jobs in the first

two stages are all zero. The sequence of jobs on the machines and the completion

time of the jobs at each stage define the decision variables. The indices,

parameters and decision variables are as follows:

Indices

,i r : index for jobs (1 1 1 2, 1,..., , 1,...,i r n n n n= + +)

j : index for stages (4,..,1=j)

Parameters

jip , : processing time of job i at stage j

M : a very large positive number

Decision Variables

jiC , : completion time of job i at stage j

maxC : maximum completion time (makespan)

iY =
1, if job on stage 3 is asigned to machine 1
0, otherwise

i⎧
⎨
⎩

jriX ,, =
1, if job precedes job on stage
0, otherwise

i r j⎧
⎨
⎩

iY and jriX ,, are binary variables. The rest of the variables are continuous that

take integer values when the processing times are given as integers.

 9

Given the above-defined variables and parameters, the scheduling problem of the

three-stage dedicated hybrid flowshop with a common third stage can be

formulated as follows:

Minimize maxC

Subject to

(1) Makespan cannot be smaller than the completion time of any job at the

common stage.

max ,4iC C≥ for 21,...,1 nni += (2.1)

(2) Completion time of any type-1 job at stages 1, 2 and 3 cannot be less than its

completion time at the previous stage.

, , 1 ,i j i j i jC C p−≥ + for 1,...,1 ni = ;

 1, 2,3j = (2.2)

(3) Completion time of any type-2 job at parallel machine environment must be

greater than or equal to the processing time of it in the same stage.

,3 ,3i iC p≥ for 211 ,...,1 nnni ++= (2.3)

(4) Completion time of any job before the common stage cannot be less than its

completion time at the previous stage.

,4 ,3 ,4i i iC C p≥ + for 21,...,1 nni += (2.4)

 10

(5) It is necessary to have non-interference for every pair of jobs i and r , either i

precedes r or the other way around. Hence, the difference between the processing

times of any two jobs at any stage must be such that they do not overlap.

, , , , , i r j i j r j i jM X C C p+ − ≥ for 1,...,1 ni = ;

 1, 2j = ;

 1,...,1 nr = ;

 i r< (2.5)

, , , , , (1)i r j r j i j r jM X C C p− + − ≥ for 1,...,1 ni = ;

 1, 2j = ;

 1,...,1 nr = ;

 i r< (2.6)

(), ,3 ,3 ,3 ,32 i r i r i r iM Y Y X C C p− − + + − ≥ for 211 ,...,1 nnni ++= ;

 211 ,...,1 nnnr ++= ;

 i r< (2.7)

(), ,3 ,3 ,3 ,3i r i r i r iM Y Y X C C p+ + + − ≥ for 211 ,...,1 nnni ++= ;

 211 ,...,1 nnnr ++= ;

 i r< (2.8)

(), ,3 ,3 ,3 ,33 r i i r r i rM Y Y X C C p− − − + − ≥ for 211 ,...,1 nnni ++= ;

 211 ,...,1 nnnr ++= ;

 i r< (2.9)

 11

(), ,3 ,3 ,3 ,31 r i i r r i rM Y Y X C C p+ + − + − ≥ for 211 ,...,1 nnni ++= ;

 211 ,...,1 nnnr ++= ;

 i r< (2.10)

, ,4 ,4 ,4 ,4 i r i r iM X C C p+ − ≥ for 21,...,1 nni += ;

 21,...,1 nnr += ;

 i r< (2.11)

, ,4 ,4 ,4 ,4 (1)i r r i rM X C C p− + − ≥ for 21,...,1 nni += ;

 21,...,1 nnr += ;

 i r< (2.12)

(6) Constraint sets (2.13) and (2.14) enforce the integrality for iY and jriX ,, .

{ }0,1iY ∈ for 211 ,...,1 nnni ++= (2.13)

{ }1,0,, ∈jriX for 21,...,1 nni += ;

 21,...,1 nnr += ;

 4,..,1=j
 i r< (2.14)

(7) Completion time of any job at any stage cannot be negative.

0, ≥jiC for 21,...,1 nni += ;

 4,..,1=j (2.15)

 12

The proposed heuristic algorithm in Section 5.1 can be used to derive an upper

bound for the makespan. Instead of assuming the initial upper bound of infinity,

the makespan value obtained from the heuristic algorithms can used as an upper

bound. Moreover, the global lower bound value in Section 5.3 can also be utilized

as a lower bound. Thus, the following constraint can be added to the above model,

max UBLB C ≤≤ (2.16)

where (){ }maxmin Rule ;UB C k= { },...k A F∈ and { }
1,...,4

max .i
i

LB LB
=

=

Number of constraints, binary variables, and continuous variables in our

mathematical model can be computed as follows:

Constraints

n constraints from equation (2.1) where 1 2= +n n n

13n constraints from equation (2.2)

2n constraints from equation (2.3)

n constraints from equation (2.4)

()()1 11
2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

−
×

n n
 constraints from equation (2.5)

()()1 11
2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

−
×

n n
 constraints from equation (2.6)

()()2 21
2

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−n n constraints from equation (2.7)

()()2 21
2

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−n n constraints from equation (2.8)

 13

()()2 21
2

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−n n constraints from equation (2.9)

()()2 21
2

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−n n constraints from equation (2.10)

()()1
2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−n n constraints from equation (2.11)

()()1
2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−n n constraints from equation (2.12)

2n constraints from equation (2.13)

()()1
4

2
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−
×

n n constraints from equation (2.14)

4n constraints from equation (2.15)

1 constraint from equation (2.16)

Number of constraints = () () ()()1 1 1 2 2 26 3 1 3 2 1 2 1 1+ − + + − + + − +n n n n n n n n n

 = 2 2 2
1 2 13 2 2 3 1n n n n n+ + + + +

Binary Variables

2n binary variables from iY

()()1
4

2
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−n n binary variables from jriX ,,

Number of binary variables = ()2 2 1+ −n n n

 14

Continuous Variables

4n continuous variables from jiC ,

()()1
4

2
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−n n continuous variables from maxC

Number of continuous variables = ()4 2 1+ −n n n = 22 2n n+

 15

CHAPTER 3

LITERATURE REVIEW

Hybrid flowshop systems are encountered in today’s manufacturing environment

quite often. Having a wide area of applicability reveals the importance of the

system and researchers have directed their studies on the hybrid flowshop

scheduling problems. Hybrid flowshop environment is closely related with

flowshop and parallel machine environments, since it is a skillful combination of

these two items in such a manner that at least one stage of the hybrid flowshop

environments contains more than one machine.

We survey the related literature according to the machine environment, as

flowshop environment, identical parallel machine environment, hybrid flowshop

environment with identical parallel machines and dedicated machine hybrid

flowshop environment. All these machine environments are reviewed according to

the objective function makespan.

3.1 Flowshop Scheduling Problem

“In the flowshop scheduling problem, we are given machines M1, M2,…, Mm,

where m ≥ 2 and a set N = {1, 2,…, n} of jobs. Each job has to be processed first

on M1, then on M2, and so on, until it is processed on the last machine Mm” (Chen

et al. (1996)).

 16

3.1.1 Two-Machine Problem

The optimal solution for the makespan problem in the two-machine flowshop is

presented in S. M. Johnson’s (1954) famous paper, which is the pioneer work on

these problems. In this paper, Johnson proposes the following optimizing

algorithm.

Johnson’s Algorithm (1)

Step 1: Find the minimum processing time among unscheduled jobs.

Step 2: If the minimum in Step 1 occurs on machine 1, place the associated

job in the first available position in sequence (Ties may be broken

arbitrarily), and go to Step 3; otherwise, place the associated job in

the last available position in sequence (Ties may be broken

arbitrarily).

Step 3: Remove the assigned job from the list of unscheduled jobs and

return to Step 1 until all sequence positions are filled.

An alternative statement of this algorithm is provided by using a different

perspective (Baker (1995), pp. 8.7-8.8).

Johnson’s Algorithm (2)

Step 1: Partition the jobs into two sets, according to whether the first

operation is shorter or longer than the second operation. In case of

tie, the job can be placed into any set arbitrarily.

Step 2: Sequence the jobs with shorter first operations in nondecreasing

order of their processing time on machine 1, and sequence the jobs

 17

with longer first operations in nonincreasing order of their

processing time on machine 2.

Step 3: Arrange the two sequences in tandem to produce a full sequence for

the solution.

3.1.2 Multi-Machine Problem

Johnson’s Algorithm cannot be generalized for flowshops with more than two

machines. However, there are some special polynomially solvable cases for

flowshops with three machines. Burns and Rooker (1976, 1978) and Szwarc

(1977) discuss these special cases. Smits and Baker (1981) design experiments to

test these special cases on sample problems. They present special conditions that

optimal solutions to three-machine flowshop problem can be found by a

polynomial algorithm. Garey et al. (1976) study the same problem. They show

that the 3 maxF C problem is NP-hard in strong sense.

Several optimizing algorithms have been proposed for scheduling problems with n

jobs on m machines in a flowshop environment to minimize the makespan. In

these algorithms, numerous assumptions are made. Dudek and Teuton (1964)

provide all these assumptions as follows:

A. Assumptions regarding machines:

1. No machine may process more than one job at any given time and each

job, once started, must be processed to completion.

2. A known, finite time, is required to perform each operation and the

time intervals for processing are independent of the order in which the

operations are performed.

B. Assumptions regarding jobs:

 18

1. All jobs are known and are completely organized for processing before

the period under consideration begins.

2. All jobs are considered equal in importance, i.e., there are no due

dates.

3. Jobs are processed by the machines as soon as possible and in a

common order.

C. Other:

1. The time required to transport jobs between machines may be

considered negligible or as a part of the processing time on the

preceding machine.

2. In-process inventory is allowable.

Palmer (1965) studies the maxmF C problem and proposes a heuristic algorithm

which is called as the slope order heuristic. The heuristic is based on the idea that

give precedence to the jobs having the strongest tendency to progress from short

times to long times in the sequence of processes. Campbell et al. (1970) show that

optimal or near-optimal solutions can be produced to the maxmF C problem by

using the heuristic algorithm CDS. The algorithm constructs 1m − artificial two-

machine problems from the original m-machine problem. Then, these artificial

problems are solved by using Johnson’s two-machine algorithm, and the best

solution among them becomes the solution to the original problem. The authors

compare their algorithm with Palmer’s slope order heuristic by solving many

problem instances. Their computational experiments show that computation time

of Palmer’s heuristic is less than the computation time of CDS. However, CDS is

superior to the slope order heuristic in point of producing solutions with less

average error percentage. Page (1961) studies the same problem. He proposes four

heuristics which are mainly based on the sorting techniques. Two of these

heuristics, individual exchange heuristic and group exchange heuristic, are

 19

improvement procedures. They attempt to find better solutions by using initial

solutions. The other ones, merging and pairing heuristics, generate initial

solutions. Computational experiments show the efficiency of these heuristic

algorithms. Gupta (1971) develops a heuristic algorithm, functional heuristic

algorithm, as an extension of Page’s analogy of scheduling and sorting. His

heuristic is capable to solve problems optimal or near optimal. Many experiments

are conducted to compare the performance of the proposed heuristic with Palmer’s

slope order heuristic. The algorithms are compared in point of the two criteria.

One of them is algorithms’ effectiveness in finding better solution and the other

one is computational times required to obtain the solution. Solutions obtained by

this algorithm are better than the Palmer’ slope order heuristic.

Dannenbring (1977) studies the same problem and explores neighborhood search

techniques. He proposes three new heuristics which are rapid access procedure

(RA), rapid access with close order search (RACS), and rapid access with

extensive search (RAES). RA generates a good starting solution quickly and

easily; RACS and RAES take this solution as initial and attempt to find better

solutions. His computational experiments show the efficiency of his algorithms.

Nawaz et al. (1983) propose a heuristic, NEH heuristic, based on the idea that jobs

with more processing time on all the machines should be given priority and

scheduled earlier than the ones with less total processing time on all the machines.

Initially, first two jobs are scheduled in order to minimize makespan; then other

jobs are inserted in the partial schedule one by one to find the best schedule at

every step. And, finally a complete schedule is obtained. Computational

experiments show that the NEH heuristic is capable to solve problems optimal or

near optimal. Framinan et al. (2003) modify the NEH heuristic by using different

initial orders based on the approaches in the literature. Jobs are not only sorted

according to the sum of processing time; also sum of absolute differences of a

 20

job’s processing time on every single machine with other jobs, or sum of absolute

residuals (Stinson and Smith (1982)), etc are used to sort them. Among these

results, the one with the smallest value is accepted as the solution of the proposed

heuristic. Their computational studies show that for the makespan minimization

problem original NEH heuristic is the best solution, but for different objective

functions, better solutions are obtained with different initial orders. Koulamas

(1998) proposes the HFC heuristic for the same problem. His heuristic is based on

the Johnson’s algorithm and has two phases. In the first part, a sequence is

produced by extensive use of Johnson’s algorithm; while in the second part, this

sequence is used as an input and by allowing non-permutation schedules an

improvement is expected. Suliman (2000) proposes a two-phase heuristic for the

problem. In the first phase of the heuristic, well-known heuristics like CDS,

Palmer’s slope index, RA, are used to generate initial job sequence, and in the

second phase, this initial sequence is improved by using a pair exchange

mechanism. The performance of the heuristic is compared with the other heuristic

in the literature, and computational experiments express the efficiency of the

heuristic.

Taillard (1990) applies tabu search technique to the same problem. He addresses

that good solutions are found for the randomly generated instances by using this

technique; however, it needs great calculation times. Computational experiments

demonstrate the efficiency of the algorithm. Ponnambalam et al. (2001) propose

another metaheuristic algorithm, genetic algorithm, to solve the problem. Their

computational experiments report the performance of the algorithm.

Wagner (1959) studies the same problem. He provides a mixed integer

programming model to solve small size problem instances. Computational

experiments show the performance of the model.

 21

Ignall and Schrage (1965) apply the branch-and-bound technique to the three-

machine flowshop problem to minimize the makespan. In order to use this

technique, the problem is described as a tree which each node represents a partial

solution. At the roof of this tree, there is only one node and this node has n

number of branches that equals to the number of jobs in the problem. One of these

branches is chosen and the job that is represented by the node at the end of this

branch is assigned to the first position in the sequence. So, in the next level, there

are only 1n − branches to assign the second position. The tree structure is shaped

in this manner until last job is assigned to the last position in the sequence. The

authors propose a lower bound to be used in branching procedure. At the each

level of the tree, the node with the smallest lower bound is selected and the tree is

branched from this node. Their branch-and-bound algorithm is capable of solving

problem instances with up to 10 jobs. Lomnicki (1965) studies the same problem

and proposes an efficient lower bound for his branch-and-bound algorithm. His

computational experiments show the efficiency of his algorithm.

Lomnicki, Ignall and Schrage obtain their lower bound by considering the total

processing time on one machine. McMahon and Burton (1967) form a new lower

bound that is based on the idea of determining makespan by the total processing

time for a job rather than by the total processing time on one machine. The

authors also propose some methods to improve the efficiency of their algorithm.

By placing the dominant machine, which has the greater total processing time

than the other machine, last the efficiency of the algorithm is increased. The

advantage of the fact that scheduling problems are symmetrical with respect to

time-reversal is taken in that point. They test the performance of their lower

bound with respect to Lomnicki and Ignall and Schrage’s lower bounds and report

that it performs better than the others. Besides, their computational experiments

 22

show that placing dominant machine last increases the performance of the

algorithm.

Ruiz and Maroto (2005) and Hejazi and Saghafian (2005) present a review of the

previous studies. Exact methods, constructive and improvement heuristics are

surveyed and their performances are pointed out.

3.2 Parallel Machines Scheduling Problem

In the classical parallel machines scheduling problem, there are n jobs and m

machines in parallel. Furthermore, each job is processed on one of the m machines

during a fixed processing time with keeping the job on the machine until

completion.

Machines are considered as identical if they have the same speed. On the identical

parallel machines, the processing time of each job are not affected by the machine

processing it, each can be processed on any of the machines.

In the following subsection, identical parallel machines scheduling problems

without preemption, keeping the job on machine until completion, and precedence

among jobs are reviewed for the makespan.

3.2.1 Identical Parallel Machine Problem

Pioneer work on the complexity of the maxmP C problem is done by Karp (1972).

He shows that the 2 maxP C problem is NP-hard. Since there is no way to find

optimization polynomial time algorithm for maxmP C , some approximation

 23

algorithms are used to evaluate the problems’ worst case and mean behavior. One

of the most used approximation algorithm for scheduling problem is list

scheduling. The main idea in list scheduling is forming an ordered list of

processes by giving them priorities. Then, at each step the job with the highest

priority in the list is assigned to the first available machine (Graham (1966)). One

of the well-known list scheduling algorithms is longest processing time (LPT)

algorithm which the jobs are arranged in non-increasing order of processing time.

Graham (1969) shows that Cmax value of the LPT rule is at most 4 1
3 3m
− times the

optimal Cmax value for the problems with two or more identical parallel machines.

Coffman and Sethi (1976) suggest another absolute performance ratio for LPT

rule. The new worst case error bound is 1 11
k km

+ − where k is the number of

tasks on any machine whose last task terminates the schedule. They show that this

error bound is tight when there are three or more machines. And, for the two and

one machine cases, the worst case error bound is 1. Coffman et al. (1984) present

how good the LPT algorithm is on the average for two machine environment

under the assumptions that task processing times are independent samples and

uniformly distributed on [0,1]. They prove that mean value of schedule length for

the LPT algorithm, max()LPTE C , is bounded with

max
1

4 4(1) 4 2(1)
()LPTn n e

n n
E C+ ≤ +

+ +
≤

where e is the base of the natural algorithm and n is the number of task. Frenk and

Rinnooy Kan (1984) show that the absolute error between maxC value of LPT and

maxC value of optimum (i.e., max max
LPT OPTC C−) converges to zero almost surely as

well as in expectation as number of tasks goes to infinity. They consider special

cases of the uniform and exponential distributions to analyze the speed at which

the absolute error converges to 0. In Frenk and Rinnooy Kan (1986), the authors

 24

extend and generalize the results. They prove that rate of convergences for almost

sure and in expectation are ()()log log /O n n and 1/n respectively.

Coffmann et al. (1978) presents a new approximation algorithm, multifit

algorithm, to get better performance guarantees. In this algorithm, it is tried to

determine whether a schedule can be constructed that is consistent with the

smallest feasible value of makespan (M) by using a heuristic procedure known as

first-fit decreasing (FFD). This procedure operates by first sorting the tasks

according to LPT, and then inserting each task one by one into the first machine

so that it completes before or on M. Then, jobs are assigned to another machine.

This is repeated until all jobs are scheduled. If any partial schedule exceeds on

any machine, then the procedure fails. Friesen and Langston (1986) prove that

maxC value of multifit algorithm is at most 72
61

 times the optimal maxC value.

Although multifit produces tighter bounds than LPT, it requires more

computational effort. An example is given that multifit produces worse makespan

than LPT in (Baker (1995), pp. 7.6-7.7). Lee and Massey (1988) suggest

combining LPT and multifit to improve performance. First a schedule is arranged

by using LPT rule, then this schedule is used as an initial upper bound and multifit

search is performed in the interval that is bounded on the upper side with this

bound. Their computational experiments show that combined algorithm needs less

searching them multifit alone. Haouari et al. (2006) present a review of the

previous studies on bounds for the identical parallel machine scheduling problem

and recommend new lower bounding strategies and heuristics for this scheduling

problem. The lower bounds are based on the lifting procedure. Their optimization-

based heuristic yields the solution by iteratively solving a subset-sum problem.

The authors’ computational experiments show the satisfactory performance of

 25

their lower bound strategy and algorithm. The algorithm performs well on wide

range of instances.

Rothkopf (1966) studies the maxmP C problem. He develops an exponential-time

algorithm, based on a dynamic programming approach, which only solves small

instances. Mokotoff (2002) studies the same problem and proposes an exact

cutting plane algorithm built from identification of valid inequalities that apply to

the subset of the solutions by a maximum value of the makespan. With these

inequalities, constraints are generated for the algorithm and these constraints are

added iteratively starting from the solution obtained by successive linear

programming relaxation. Upper and lower bounds are also used in the algorithm

to narrow the interval that will be searched. A simple lower bound is obtained by

giving permission to preemption and an upper bound is obtained by using the

most known procedures, i.e. LPT, multifit. His computational experiments show

the efficiency of the algorithm to produce quality feasible solutions. Lee et al.

(2006) propose simulated annealing heuristic algorithm, Min and Cheng (1999)

develop genetic algorithm for minimizing makespan value on identical parallel

machines. Computational experiments show the efficiency of these algorithms.

3.3 Hybrid Flowshop Scheduling Problem

A hybrid flowshop is a generalization of the flowshop and the parallel machine

environments. It consists of a series of production stages in series instead of m

machines in series. And, at least one of these stages has multiple machines in

parallel. Each job is processed by one machine in each stage and it flows through

one or more stage. Besides, all the assumptions for flowshop and parallel machine

scheduling problems are valid for hybrid flowshop scheduling problems.

 26

In the next two subsections, hybrid flowshop scheduling problems with identical

parallel machines in at least one of the stages are surveyed according to the

makespan.

3.3.1 Two-Stage Hybrid Flowshop

Arthanari and Ramamurthy (1971) study the two-stage hybrid flowshop problem,

where there is only one machine at the second stage. They suggest several lower

bounds and a branch-and-bound algorithm to minimize makespan. However, they

test this exact algorithm only for small instances that are less than ten jobs. Gupta

(1988) proves that the two-stage flowshop problem when there are identical

multiple machines at each stage to minimize makespan is NP-complete. He

develops a heuristic algorithm, which is based on the Johnson’s rule, for the

special case when there is one machine at the second stage. His computational

experiments are limited with two machines at the first stage.

Sriskandarajah and Sethi (1989) study the performance of algorithms for

minimizing makespan schedules. The authors show that for Johnson’s algorithm

applied to problems 1 2 max2 | 1, 2 |F k k k C= = = and 1 2 max2 | 1, 3 |F k k k C= = ≥

with { }max 1 2
1

max
n

j jjj

C p p
=

≤ +∑ where n is the number of jobs, 1 jp and 2 jp are

processing times of job j at stages 1 and 2, respectively; the best possible bound is

max max 2optimumC C ≤ . Also, for Johnson’s algorithm applied to problems

1 2 max2 | 1, 3 |F k k k C= = ≥ with { }max 1 2
1

max
n

j jjj

C p p
=

> +∑ , the bound is

max max
1 11 2 1optimum

k k
C C ⎛ ⎞⎛ ⎞≤ + − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. Moreover, the list scheduling algorithm is

 27

applied to the problem 1 max| 1, 2 |m mFm k k k C− = = ≥ , they get the bound

max max
11optimum m
k

C C ≤ + − . The authors propose two algorithms for the

1 2 max2 | 2 |F k k k C= = ≥ problem. First one is based on the list scheduling

algorithm whereas the other one is based on the LPT rule.

Gupta and Tunc (1991) study the two-stage hybrid flowshop problem with

multiple identical machines in second stage. They propose several lower bounds,

polynomial bounded approximate algorithms and an improved branch-and-bound

algorithm. The authors form a global lower bound by assigning the maximum of

the proposed lower bounds. This global lower bound on makespan is used as

surrogates for minimum makespan values for large problems, so the effectiveness

of the proposed heuristic algorithms is calculated. They develop two polynomial

bounded approximate algorithms, and then these algorithms are used to improve

the efficiency of an existing branch-and-bound algorithm by assuming the

makespan obtained from one of the two heuristic algorithms as initial upper

bound. Their computational experiments show the satisfactory performance of

their algorithms. Gupta et al. (1997) study the scheduling of two-stage hybrid

flowshop problem in which there are many identical machines at the first stage.

The authors present several lower bounds, a branch-and-bound algorithm and

constructive heuristics. The proposed lower bounds and a dominance rule are used

to restrict the size of the search tree. Besides, it is pointed out that using one of the

heuristic algorithms in the literature as an initial upper bound helps shorten the

search in the tree. Computational experiments show the efficiency of the

algorithms.

Oğuz et al. (2003) propose heuristic algorithms for a two-stage hybrid flowshop

scheduling problem. The heuristics are based on some priority rules. In the first

part of the heuristics, they construct the processing order for the jobs by using

 28

various sequencing rules like SPT, LPT, etc. In the second part, the schedule is

formed for the obtained sequence. The lower bounds are developed to evaluate the

performance of the heuristics. Haouari and M’Hallah (1997) study the two-stage

hybrid flowshop problem with several identical machines per stage. They suggest

a two phase heuristic. Firstly a feasible solution is computed by using a simple

heuristic that is easy to implement and then simulated annealing and tabu search

are employed to improve the initial solution. The results are compared with a new

derived lower bound. Their computational experiments show the efficiency of the

proposed heuristics.

3.3.2 Multi-Stage Hybrid Flowshop

Pioneer work on the multi-stage hybrid flowshop scheduling problem is done by

Wittrock (1985). He develops a heuristic periodic algorithm where small set of

jobs is scheduled and the schedule is repeated many times. However, it is difficult

to adapt periodic scheduling to practical scheduling environments. In another

study of Wittrock (1988), the author presents a non-periodic algorithm. He

suggests decomposing the scheduling problem into three sub-problems: machine

allocation, sequencing and timing. The algorithm employs the LPT heuristic for

machine allocation and the workload approximation heuristic for sequencing. For

the first time, Brah and Hunsucker (1991) propose several lower bounds and a

branch-and-bound algorithm for multi-stage hybrid flowshop scheduling problem

to minimize makespan. They also develop elimination rules to utilize along with

the derived lower bounds to increase the efficiency of the algorithm. Jin et al.

(2006) study the same problem. They propose a number of lower bound and two

metaheuristic algorithms that are based on the simulated annealing and shop

partitioning. Their computational experiments provide satisfactory performance

for two, three and five stage problems with maximum 10 machines at each stage.

 29

3.4 Hybrid Flowshop Scheduling Problem with Dedicated Machines

Dedicated machines are specialized for the execution of certain type of jobs. Oğuz

et al. (1997) study a problem in which first stage includes two dedicated machines

and second stage contains a common machine. In their manufacturing

environment, two different products are initially processed by independent

dedicated machines and finally jobs flow through a common machine such as an

inspection and testing station. The authors prove that the max3 | 2 |F T C= problem

is NP-hard. They study two polynomially solvable cases of the problem and

present their solution procedure. They propose a heuristic algorithm that is based

on the Johnson’s rule and analysis the worst-case bound for this heuristic.

Computational experiments show the efficiency of the proposed algorithm. Riane

et al. (1998) study hybrid three-stage flowshop problem with one machine in the

first and third stages and two dedicated machines in stage two. They propose two

heuristic algorithms which one of them is dynamic programming-based and the

other one is branch-and-bound-based. Their computational experiments which are

conducted for varying job numbers from 10 to 130 show the satisfactory

performance of their algorithms. Riane et al. (2002) study hybrid three-stage

flowshop problem with one machine in the first and two dedicated machines in

the second stage. The authors point out that the problem is NP-hard and presents

four polynomially solvable cases. They propose an exact algorithm based on a

dynamic program and three heuristic algorithms for large scale problems. Two of

the heuristics are based on the Johnson’s rule and the other heuristic is a greedy

heuristic. Their computational experiments show the efficiency of the algorithms.

In this section, 60 journal articles are reviewed according to the machine

environment and objective function, makespan. The most closely related study to

 30

ours is Oğuz et al. (1997). They study the same problem with two-stage flow

lines, unlike ours, in flowshop machine environment.

In this study, we extend their work by considering the problem with three-stage

flow lines in hybrid flowshop machine environment. There are many studies in

scheduling literature that deal with makespan minimization problem in hybrid

flowshop environment; however, scheduling in a three-stage dedicated hybrid

flowshop with a common third-stage is studied first time with this work, to the

best of our knowledge.

 31

CHAPTER 4

BRANCH-AND-BOUND ALGORITHM FOR THE REVERSED

PROBLEM

Our problem of scheduling in a three-stage dedicated hybrid flowshop with a

common third stage is a NP-hard problem of minimizing makespan. In Chapter 2,

we develop a mathematical model to find optimal solutions and in this chapter, we

present a branch-and-bound algorithm to solve the problem exactly.

4.1 The Reversed Problem

In the reversed problem, the direction of the job flow is reversed so that the jobs

flow from the common machine to their related production lines according to their

types. As it is illustrated by Figure 4.1, in stage 1, the first operations, last

operations in the original problem, of the jobs are processed on the common

machine regardless of the job type. The next operations of type-1 jobs are

performed on the first flow line that contains two serial machines in stage 2 and 3,

respectively. The last operations, first operations in the original problem, of type-2

jobs are completed on one of the identical parallel machines.

 32

M1

M3,1

M3,2

M2

M4

Stage 3Stage 2Stage 1

Type-1 Jobs

Type-2 Jobs

Type-1 Jobs

Type-2 Jobs

Figure 4.1: The Reversed Problem

Proposition 1: In the three-stage dedicated hybrid flowshop with a common

third-stage, makespan minimization problem and its reverse are equivalent.

Proof: Consider any feasible schedule S for the original problem. By right-

shifting the jobs so that the makespan of the schedule S will not increase will

lead to a feasible schedule 'S for the reverse problem. The feasibility of S

ensures that 'S is feasible. Moreover, the makespans for these two schedules in

their respective problems are identical. That is, () ()max max
' .C S C S= Similarly,

any feasible schedule for the reverse problem converts into a feasible schedule for

the original problem with the same makespan. Thus, the two problems, original

and reverse, are equivalent.

 33

4.2 Branch-and-bound Algorithm for the Reversed Problem

In this section, we propose a branch-and-bound algorithm for the reversed

problem to find exact solution to the problem addressed in this research. Since

constructing branch-and-bound algorithm for reversed problem is easier than

constructing for original problem, our branch-and-bound procedure is designed

for the reversed problem to take the advantage of scheduling problems are

symmetric with respect to time-reversal as shown in Proposition 1.

In order to use the branch-and-bound algorithm, the problem must be described as

a tree in which each node represents an allocation of some of the jobs. The first

node in the tree structure is called root node. It can be thought as starting node.

From this node n branches corresponding to n possible jobs that can be assigned

to the first position in the sequence are originated. From each of these nodes 1n −

branches are produced which corresponding to 1n − possible jobs that can be

assigned to the second position in the sequence, etc. At level s of the tree, the

decision about assignment of the ths job of the sequence is made and a complete

schedule is reached at level n . The node having the lowest lower bound is chosen

to branch at any level s n≤ . After a complete schedule is obtained at level n , we

backtrack to level 1n − and continue from this stage. Thus, there are !n feasible

solutions and 1 (1) ... !n n n n+ + − + + nodes in the tree unless any of nodes are

fathomed. We fathom the node if the associated lower bound is greater than or

equal to the upper bound. Upper bound is updated whenever a complete schedule

with n jobs and smaller lower bound is found. We terminate when there is no

unfathomed or nonbranched node. And, the latest updated upper bound is the

optimal solution.

 34

Depth-first search method is utilized to guide in the branch-and-bound tree.

According to this strategy, the branch of the tree goes down by dealing only one

job at each level. We reach a complete schedule at the bottom of the tree and then

we backtrack. We favor this strategy because of its relatively low memory

requirement.

The following notation is needed for the description of the lower bounds.

sJ = the ordered set of scheduled jobs at any arbitrary node, say i .

uJ = the set of unscheduled jobs at any arbitrary node, say i .

f
uJ = the set of unscheduled jobs that will be processed on flowshop

environment at any arbitrary node, say i .
p

uJ = the set of unscheduled jobs that will be processed on parallel

machine environment at any arbitrary node, say i .

iLB = the lower bound value for the makespan at node i .

jkP = processing time of job j at stage k .

()k sT J = the time at which machine at stage k completes processing on the jobs

 in set sJ .

Then, a lower bound on the makespan at node i is calculated as below

{ }1 2 3 4 5max , , , , ,=LB LB LB LB LB LBi i i i i i

where

{ }1 () min4 ,3 ,2 ,1ff
uu

LB T J P P Pi s j j jj Jj J
= + + +∑

∈∈
 (4.1)

 35

{ }2 () min2 ,2 ,1ff
uu

LB T J P Pi s j jj Jj J
= + +∑

∈∈
 (4.2)

3 ()1 ,1f
u

LB T J Pi s jj J
= + ∑

∈
 (4.3)

{ }4 () min4 ,3 ,1, pp
uu

LB T J P Pi s j ji j Jj J
= + +∑

∈∈
 (4.4)

{ }
{ }

{ }
{ }

5 max (),min (), ()4 3,1 3,2

max ,,1,

0,max (), (), ()max 4 3,1 3,2
max,1, max (),min (), ()4 3,1 3,2

2

p
u

p
u

LB T J T J T Ji s s s

Pji j J

T J T J T Js s s
Pji j J T J T J T Js s s

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
⎧ ⎫
⎪ ⎪∈⎪ ⎪
⎪ ⎪⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪−∑⎪ ⎪⎨ ⎬⎧ ⎫⎪ ⎪⎪ ⎪∈ − ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭⎪ ⎪
⎩ ⎭

 (4.5)

The stepwise description of our branch-and-bound algorithm is given below:

Step 1. Initialization

1.1. Let 0,k = ,sJ =∅ () ,us J n= 0iLB = for all i in the tree.

1.2. Compute upper bound, ,UB from proposed heuristic algorithm.

Step 2. Partial Schedule Arrangement

 2.1. Set 1.k k= +

 2.2. If ,k n> then go to Step 6.

Step 3. Lower Bounding

 3.1. Compute iLB for all unscheduled jobs.

 36

 3.2. If iLB UB> , fathom node .i

 3.2. If all nodes are pruned, then go to Step 6.

Step 4. Branching

 4.1. At each level branch from the node having the lowest lower bound

 4.2. If ,k n= then go to Step 5 else go to Step 2.

Step 5. Upper Bound Updating

If complete schedule has a better makespan value, then updates UB.

Step 6. Backtracking

 6.1. Set 1.k k= −

 6.2. If 0,k = then go to Step 7 else go to Step 3.

Step 7. Termination

 7.1. Terminate the procedure when there is no unfathomed or branched

node.

 7.2. The last upper bound is optimal solution to our problem

A numerical example that illustrates the implementation of branch-and-bound

algorithm for reversed problem is given in APPENDIX A.

 37

CHAPTER 5

PROPOSED HEURISTIC ALGORITHMS

Since the three-stage dedicated hybrid flowshop problem is NP-hard, an

optimizing algorithm that runs in polynomial-time cannot exist. In this section, we

propose heuristic algorithms; one of them is based on the six different sequencing

rules and the other one is based on the branch-and-bound algorithm, to schedule

jobs on the machines at all stages. It is important to evaluate the performance of

these heuristic procedures, because we employ them as an upper bound in our

exact solution approaches, i.e., branch-and-bound algorithm and mathematical

model. Moreover, when the computational effort to obtain an exact solution with

branch-and-bound algorithm or mathematical model is prohibitive, these

heuristics provide good quality solution at little computational effort. In order to

evaluate how good the proposed heuristics algorithms, we consider the optimum

value that is obtained by exact solution approaches for small size problems and

the global lower bound that is generated by our proposed four lower bounds.

5.1 Sequencing Rules and the Sequencing-rules Based Heuristic

5.1.1 Sequencing Rules

Rule A:

Step 1: a) Sequence the jobs of the two stage of the first flow line by applying

Johnson Algorithm with processing times ,1jp and ,2jp ; and

 38

 b) Sequence the jobs of the parallel machining shop by applying

Shortest Processing Time List Rule with processing times ,1jp .

Step 2: Sequence the jobs on the common stage in an ascending order of their

completion times (earliest release time) at the previous stage.

In this rule, our motivation is to finish the first and second operations of all jobs as

soon as possible.

The computational time complexity of the sequencing rule A is

()1 1 2 2log logO n n n n+ . In Step 1 of the sequencing rule, both type-1 and type-2

jobs have to be sorted. These operations take ()1 1 2 2log logO n n n n+ steps.

Furthermore, Step2 can be done in ()1 2O n n+ time. Thus, we have

()1 1 2 2log logO n n n n+ complexity.

Rule B:

The Rule B is similar to the previous one. Instead of SPT, LPT is employed to

sequence the jobs of the parallel machining shop.
Step 1: a) Sequence the jobs of the two stage of the first flow line by applying

Johnson Algorithm with processing times ,1jp and ,2jp ; and

 b) Sequence the jobs of the parallel machining shop by applying LPT

with processing times ,1jp .

Step 2: Sequence the jobs on the common stage in an ascending order of their

completion times (earliest release time) at the previous stage.

 39

The computational time complexity of the sequencing rule B is the same with the

previous one, ()1 1 2 2log logO n n n n+ . In Step 1 of the sequencing rule, both type-

1 and type-2 jobs have to be sorted, which can be done in ()1 1 2 2log logO n n n n+

time. Moreover, operation in Step2 takes ()1 2O n n+ time. Thus, we have

()1 1 2 2log logO n n n n+ complexity.

Rule C:

The Rule C is based on the algorithm due to Campbell, Dudek and Smith (CDS),

which is based on the repeated application of the Johnson algorithm. The

underlying idea of this algorithm is to generate two fictitious two-stage flow shop

problems for first flow line. These fictitious two-stage flow shop problems have

the processing times (),1 ,3,j jp p and (),1 ,2 ,2 ,3,j j j jp p p p+ + , respectively. We

then apply Johnson Algorithm to each of the two fictitious two-stage flow shop

problems generated for first flow line, and finally select the better of two

sequences. The Rule C has the following three steps:

Step 1: Sequence the jobs on the first two stages of first flow line by applying

Johnson Algorithm with processing times ,1jp and ,3jp . Sequence the

jobs of the parallel machining shop by applying SPT with processing

times ,1jp . Sequence the jobs on the common stage in an ascending

order of their completion times (earliest release time) at the previous

stage. Let 1
maxC be the makespan of the resulting schedule.

Step 2: Sequence the jobs on the first two stages of first flow line by applying

Johnson Algorithm with processing times ,1 ,2j jp p+ and ,2 ,3j jp p+ .

 40

Sequence the jobs of the parallel machining shop by applying SPT

with processing times ,1jp . Sequence the jobs on the common stage in

an ascending order of their completion times (earliest release time) at

the previous stage. Let 2
maxC be the makespan of the resulting

schedule.

Step 3: If 1 2
max maxC C≤ , select schedule obtained in Step 1 for

implementation, otherwise, select schedule obtained in Step 2.

The computational time complexity of the sequencing rule C is

()()1 1 2 22 log logO n n n n+ . Since we execute the Step 1 and Step 2 of the rule A

twice for each fictitious problem in rule C, its complexity

is ()()1 1 2 22 log logO n n n n+ .

Rule D:

Step 1: Sequence the jobs on the first two stages of first flow line by applying

Johnson Algorithm with processing times ,1jp and ,1jp . Sequence the

jobs of the parallel machining shop by applying LPT with processing

times ,1jp . Sequence the jobs on the common stage in an ascending

order of their completion times (earliest release time) at the previous

stage. Let 1
maxC be the makespan of the resulting schedule.

Step 2: Sequence the jobs on the first two stages of first flow line by applying

Johnson Algorithm with processing times ,1 ,2j jp p+ and ,2 ,3j jp p+ .

Sequence the jobs of the parallel machining shop by applying LPT

with processing times ,1jp . Sequence the jobs on the common stage in

 41

an ascending order of their completion times (earliest release time) at

the previous stage. Let 2
maxC be the makespan of the resulting

schedule.

Step 3: If 1 2
max maxC C≤ , select schedule obtained in Step 1 for

implementation, otherwise, select schedule obtained in Step 2.

The computational time complexity of the sequencing rule D is the same with the

previous one. The sorting operation in Step 1 takes ()1 1 2 2log logO n n n n+ time.

Furthermore, Step2 can be done in ()1 2O n n+ time. Since we execute the Step 1

and Step 2 twice for each fictitious problem in rule D, its complexity

is ()()1 1 2 22 log logO n n n n+ .

Rule E:

Step 1: a) Sequence the jobs on the first two stages of first flow line by applying

Shortest Processing Times Rule with processing times ,1 ,2j jp p+ .

 b) Sequence the jobs of the parallel machining shop by applying SPT

with processing times ,1jp .

Step 2: Sequence the jobs on the common stage in an ascending order of their

completion times (earliest release time) at the previous stage.

The sequencing rule E has the same computational time complexity with the

sequencing rules A and B, ()1 1 2 2log logO n n n n+ . In Step 1 of the sequencing

rule, both type-1 and type-2 jobs have to be sorted. These operations take

 42

()1 1 2 2log logO n n n n+ steps. Furthermore, Step2 can be done in ()1 2O n n+

time. Thus, we have ()1 1 2 2log logO n n n n+ complexity.

Rule F:

Step 1: a) Sequence the jobs on the first two stages of first flow line by applying

LPT with processing times ,1 ,2j jp p+ .

 b) Sequence the jobs of the parallel machining shop by applying LPT

with processing times ,1jp .

Step 2: Sequence the jobs on the common stage in an ascending order of their

completion times (earliest release time) at the previous stage.

The computational time complexity of the sequencing rule F is computed as

follows. The sorting operation in Step 1 takes ()1 1 2 2log logO n n n n+ time.

Furthermore, the time complexity of Step2 is ()1 2O n n+ . Thus, we have

()1 1 2 2log logO n n n n+ complexity.

5.1.2 The Sequencing-rules Based Heuristic

We develop a heuristic algorithm based on the six different sequencing rules to

schedule jobs on the machines at all stages.

Step 1: Apply sequencing rules through Rule A to Rule F, respectively; and

calculate their associated makespan value.

Step 2: Select the rule which gives the minimum makespan value to be

implemented.

 43

5.2 The Branch-and-bound Based Heuristic

Branch-and-bound is a well-known algorithm for finding an optimal solution to

optimization problems. However, the computational effort to obtain an exact

solution with branch-and-bound algorithm is prohibitive for large scale problem.

For that reason, we propose a heuristic procedure that is based on the branch-and-

bound algorithm.

In Section 4.2, the proposed branch-and-bound algorithm is explained in detail. In

order to use this algorithm, the problem is described as a tree and partial solutions

are arranged at each level of this tree. At each stage of the solution, an allocation

of an unscheduled job to the sequence is done. A complete schedule is obtained

when all jobs are scheduled. This is our initial solution. After the computation of

the initial solution, the backtracking procedure starts.

The branch-and-bound based heuristic does not take into account the backtracking

part of the branch-and-bound algorithm. The initial solution of the algorithm is

accepted as a heuristic solution.

A numerical example that illustrates the implementation of the branch-and-bound

based heuristic is given in APPENDIX B.

5.3 Lower Bounds

In this section, we derive four lower bounds for the makespan of an optimal

schedule, which will be used in evaluating the performance of the proposed

heuristic algorithms.

 44

5.3.1 Lower Bound 1

First lower bound is obtained by assuming that the job with the minimum

processing time for the third operation determines the makespan. The expression

in (5.1) states that the processing of the operations, before the last operation on the

common machine, for all jobs cannot be completed before total processing time of

type-1 jobs at second stage plus minimum processing time of type-1 jobs at first

stage or total processing time of type-1 jobs at first stage plus minimum

processing time of type-1 jobs at second stage or half of total processing time of

type-2 jobs at first stage;

 { } { }
1 1

1 1 2

,1
,2 ,1 ,1 ,2max min , min ,

2
,j

j j j j
j J j Jj J j J j J

p
p p p p

∈ ∈∈ ∈ ∈

+ +
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑ (5.1)

where ,j ip is the processing time of j at stage i. Therefore, the makespan of any

schedule cannot be less than the expression in (5.1) plus the minimum processing

time for the third operation. Thus, we obtain the first lower bound as

{ } { }

{ }

1 1
1 1 2

,1
,2 ,1 ,1 ,2

,3

1 max min , min ,
2

min

∈ ∈∈ ∈ ∈

∈

= + +

+

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑ j

j j j j
j J j Jj J j J j J

j
j J

p
LB p p p p

p
 (5.2)

5.3.2 Lower Bound 2

We derive the second lower bound by assuming that the third stage operates

continuously without any idle time between jobs, and the job which satisfies the

condition,

 45

{ } { }
1 2

,1 ,2 ,1min min ,minj j jj J j J
p p p

∈ ∈

⎧ ⎫+⎨ ⎬
⎩ ⎭

 (5.3)

determines the makespan. The expression in (5.3) gives us the minimum

processing time of the operations before the last operation is processed on the

common machine. Thus, the second lower bound can be derived as

{ } { }{ }
1 2

,1 ,2 ,1 ,32 min min , min .
∈ ∈ ∈

= + + ∑j j j j
j J j J j J

LB p p p p (5.4)

5.3.3 Lower Bound 3

Consider only type-1 jobs. For any sequence, we assume that the job with

minimum processing time for the third operation determines the makespan.

Thus, we can establish our third lower bound as

{ }
1

1
3 [],1 [],2 ,3

1
max min ,

∈∈ = =

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑

nj

i i jj Jj J i i j
LB p p p (5.5)

where][i is the job in the thi position of the sequence and 1n is the number of

type-1 jobs.

3LB can be rewritten by changing the bounds of summation for first term of (5.5)

as

{ }
1

1

1

[],1 [],2 [],2 ,3
1 1 1

3 max min
nj j

i i i j
j Jj J i i i

LB p p p p
−

∈∈ = = =

= + − +
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∑ ∑ (5.6)

 46

 { }
1

1

1

[],1 [],2 [],2 ,3
1 1 1

max min .
−

∈∈ = = =

= − + +
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∑ ∑

nj j

i i i j
j Jj J i i i

p p p p (5.7)

Note that the second term in the equation above is constant and independent from

the sequence, and the first term,

1

1

[],1 [],2
1 1

max
j j

i ij J i i
p p

−

∈ = =

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

−∑ ∑ (5.8)

gives the total idle time at the second stage. The expression in (5.8) has the form,

which is same one as the Johnson’s with processing times at the first and second

stages, respectively, and the idle time can be minimized by sequencing job k

preceding job l if { } { },1 ,2 ,1 ,2min , min , .≤k l l kp p p p

Therefore,

() { }
1

*
3 max ,1 ,2 ,3, min ,j j jj Jj J

LB C JA p p p
∈∈

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (5.9)

where ()
1

*
max ,1 ,2,j jj J

C JA p p
∈

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 is the makespan of the two-stage problem,

which is obtained by Johnson’s Algorithm with processing times ,1jp and ,2jp .

5.3.4 Lower Bound 4

Another lower bound is obtained by reducing the problem to classical two

machine flowshop problem by dividing the job processing time at first stage by

the number of machines, i.e., two identical parallel machines. So, the new

 47

processing time of job j at stage 1 is defined as ,1

2
jp

. Then the problem with

two-machine, one is at the first stage and the other one is at the third stage, is

solved by Johnson’s algorithm (Johnson (1954)). Thus, the fourth lower bound

can be derived as

2

,1*
4 max ,3,

2
j

j
j J

p
LB C JA p

∈
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (5.10)

From the above four lower bounds, it follows that the makespan of an optimal

schedule *
maxC cannot be less than the global lower boundGLB . That is,

{ }*
max

1,...,4
max i

i
C GLB LB

=
≥ = (5.11)

5.4 A Numerical Example to Illustrate the Lower Bounds and

Sequencing-rules Based Heuristic

Suppose that we have six jobs with the processing times given in Table 5.1. The

first three jobs are type-1 jobs; others are type-2 jobs.

Table 5.1: Processing Times for the Numerical Example

 Processing Times
Jobs Stage 1 Stage 2 Stage 3

1 7 1 2
2 3 3 6
3 2 6 5
4 1 0 8
5 3 0 4
6 7 0 4

 48

5.4.1 Lower Bounds

The lower bounds and global lower bound are computed as follows:

Lower Bound 1:

{ } { }

{ }

1 1
1 1 2

,1
,2 ,1 ,1 ,2

,3

1 max min , min ,
2

min

j
j j j j

j J j Jj J j J j J

j
j J

p
LB p p p p

p

∈ ∈∈ ∈ ∈

∈

= + +

+

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

⇒

∑ ∑ ∑

() ()1 max , , 1 3 71 3 6 2 7 3 2 1 2 15.
2

LB ⎧ ⎫= ⎨ ⎬
⎩ ⎭

+ ++ + + + + + + =

Lower Bound 2:

{ } { }{ }
1 2

,1 ,2 ,1 ,32 min min , min

j j j j
j J j J j J

LB p p p p
∈ ∈ ∈

= + +

⇒

∑

(){ }2 min ,1 29 30.3 3LB = + =+

Lower Bound 3:

() { }
11

*
3 max ,1 ,2 ,3, min

j j jj Jj J
LB C JA p p p

∈∈

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⇒

1

3 13 2 15, where : 3 2 1.

i J

LB JA
∈

= + = − −

 49

Lower Bound 4:

2

,1*
4 max ,3,

2

j
j

j J

p
LB C JA p

∈

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⇒

2
4

17, where : 4 5 6.
i J

LB JA
∈

= − −

Therefore, the global lower bound GLB

{ }max 15, 30, 15, 17 30.LB = =

5.4.2 Sequencing Rules

Rule A:

By sequencing the jobs of the two stage of the first flow line by applying Johnson

Algorithm with processing times ,1jp and ,2jp , we get
1

: 3 2 1
i J
JA
∈

− − , and by

sequencing the jobs of the parallel machining shop by applying SPT with

processing times ,1jp , we get
2

: 4 5 6
i J
SPT
∈

− − . The Gantt chart for the schedule

obtained by sequencing rule A is given in Figure 5.1.

 50

M1 3 2 1

 2 5 12

M2 3 2 1

 2 8 11 12 13

M31 4 6

 1 8

M32 5

 3

M4 4 5 6 3 2 1

 1 9 13 17 22 28 30 = maxC = LB

Figure 5.1: Schedule Obtained by Sequencing Rule A

Rule B:

The sequencing rule B is similar to the sequencing rule A. The sequence of the

jobs of the two stage of the first flow line is the same with the previous one that is

determined for rule A,
1

: 3 2 1
i J
JA
∈

− − , and by sequencing the jobs of the parallel

machining shop by applying LPT with processing times ,1jp , we get

2

: 6 5 4
i J
LPT
∈

− − . The related Gantt chart is given in Figure 5.2.

 51

M1 3 2 1

 2 5 12

M2 3 2 1

 2 8 11 12 13

M31 6

 7

M32 5 4

 3 4

M4 5 4 6 3 2 1

 3 7 15 19 24 30 32 = maxC

Figure 5.2: Schedule Obtained by Sequencing Rule B

 Rule C:

By sequencing the jobs of the two stage of the first flow line by applying Johnson

Algorithm with processing times ,1jp and ,3jp , we get
1

: 3 2 1
i J
JA
∈

− − , and by

sequencing the jobs of the parallel machining shop by applying SPT with

processing times ,1jp , we get
2

: 4 5 6
i J
SPT
∈

− − . The 1
maxC value according to the

given sequences is 30.

In the second part of the rule, the sequence of the jobs on the first two stages of

first flow line is determined by applying Johnson Algorithm with processing times

,1 ,2j jp p+ and ,2 ,3j jp p+ ,
1

: 2 3 1
i J
JA
∈

− − , and the sequence of the jobs of the

parallel machining shop is the same with the one which is determined in the first

 52

part of the heuristic,
2

: 4 5 6
i J
SPT
∈

− − . And, finally by sequencing the jobs on the

third stage in an ascending order of their completion times at the previous stage,

the 2
maxC value is computed as 32.

Since 1 2
max maxC C< , we select the schedule obtained in first part of the heuristic

for implementation. The schedule obtained by sequencing rule C is illustrated by

the Gantt chart in Figure 5.3.

M1 3 2 1

 2 5 12

M2 3 2 1

 2 8 11 12 13

M31 4 6

 1 8

M32 5

 3

M4 4 5 6 3 2 1

 1 9 13 17 22 28 30 = maxC = LB

Figure 5.3: Schedule Obtained by Sequencing Rule C

Rule D:

The sequence of the jobs for the first two stages of the first flow line is the same

for the first and second part of the rule with the previous one that is determined

 53

for rule C,
1

: 3 2 1
i J
JA
∈

− − and
1

: 2 3 1
i J
JA
∈

− − , respectively. The sequence of the jobs

of the parallel machining shop is determined by applying LPT with processing

times ,1jp ,
2

: 6 5 4
i J
LPT
∈

− − . Since 1 2
max max32 32C C= = = , we can select either

of the schedules obtained in the first part of the heuristic or in the second part for

implementation. The Gantt chart given in Figure 5.4 illustrates the schedule

obtained by sequencing rule D.

M1 3 2 1

 2 5 12

M2 3 2 1

 2 8 11 12 13

M31 6

 7

M32 5 4

 3 4

M4 5 4 6 3 2 1

 3 7 15 19 24 30 32 = maxC

Figure 5.4: Schedule Obtained by Sequencing Rule D

Rule E:

The sequence of the jobs of the on the first two stages of first flow line is

determined by applying Shortest Processing Times Rule with processing times

,1 ,2j jp p+ ,
1

: 2 3 1
i J
SPT
∈

− − , and by sequencing the jobs of the parallel machining

 54

shop by applying Shortest Processing Time List Rule with processing times ,1jp ,

we get
2

: 4 5 6
i J
SPT
∈

− − . The schedule obtained by sequencing rule E is illustrated

by the Gantt chart in Figure 5.5.

M1 2 3 1

 3 5 12

M2 2 3 1

 3 6 12 13

M31 4 6

 1 8

M32 5

 3

M4 4 5 2 6 3 1

 1 9 13 19 23 28 30 = maxC = LB

Figure 5.5: Schedule Obtained by Sequencing Rule E

Rule F:

The sequence of the jobs of the on the first two stages of first flow line is

determined by applying LPT with processing times ,1 ,2j jp p+ ,
1

: 3 1 2
i J
LPT
∈

− − ,

and by sequencing the jobs of the parallel machining shop by applying LPT with

processing times ,1jp , we get
2

: 6 5 4
i J
LPT
∈

− − . The Gantt chart for the schedule

obtained by sequencing rule F is given in Figure 5.6.

 55

M1 3 1 2

 2 9 12

M2 3 1 2

 2 8 9 10 12 15

M31 6

 7

M32 5 4

 3 4

M4 5 4 6 3 1 2

 3 7 15 19 24 26 32 = maxC

Figure 5.6: Schedule Obtained by Sequencing Rule F

In this problem instance, makespan values for the schedules obtained by

sequencing rules A, C, and E are equal to the global lower bound value, 30. Thus,

we can conclude that the optimal makespan value is 30. Sequencing rules B, D,

and F cannot yield optimal solution for the numerical example. Common part of

the sequencing rules A, C, and E is the use of the SPT rule in order to sequence

the jobs in both of the flow lines, unlike to the sequencing rules B, D, and F,

which are based on the LPT rule. Someone can think that SPT rule is better than

LPT rule for our problem. However, we cannot generalize this situation; it is true

only for the problem instances which flowshop environment is dominant to the

parallel machine environment in point of processing times, such that it is well

known in the literature that SPT works better than LPT for flowshop environment.

The sequencing rules B, D, and F, which are based on the LPT rule, can give

better solutions than the sequencing rules A, C, and E with different data sets.

 56

CHAPTER 6

COMPUTATIONAL EXPERIMENTS AND RESULTS

In this chapter, we discuss the results of our computational experiments to

investigate the performance of our lower bounds on the makespan, proposed

heuristic algorithms and branch-and-bound algorithm. Also, the effect of the

certain parameters on the performance of our solution approaches is presented.

We first explain our data generation scheme; then, the performance measures are

presented. Finally, we discuss the results of our computational experiments.

6.1 Design of Experiments

The data generation procedures are given in this section. The following

parameters are employed in the production of our data:

Processing Time: The integer processing times are generated from a discrete

uniform distribution over [1, 20] in general. However, in order to evaluate the

performance of our proposed solution approaches when one of the machine or

production line is dominant to other one in terms of production time, we generate

the production time from a discrete uniform distribution over various ranges. The

possible cases and required conditions are given in Table 6.1.

Furthermore, these dominance cases are effective in generation of lower bounds

for the original problem. Such that, the lower bound 1 is generated by taking the

case 3 into account, the lower bound 2 is generated by taking the case 2 into

 57

account, the lower bound 3 is generated by taking the case 4 into account, the

lower bound 4 is generated by taking the case 5 into account,

Problem Size: In order to see the effect of the number of type-1 and type-2 jobs,

we use different number of jobs in our experiments. First of all, we define number

of type-1 jobs, which are 10, 20, 30 and 50. Then, numbers of type-2 jobs are

determined depending on these values; we generate number of type-2 jobs

according to the following ratio:

{ }Number of Type-2 jobs 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0
Number of Type-1 jobs

= (6.1)

Size of the problem instances in our computational study and the related number

of type-1 and type-2 jobs are given in Table 6.2.

Table 6.1: Possible Dominance Cases Between Manufacturing Lines/Machines and Needed
Conditions for These Cases

Case Description Condition

1 No operation is dominant
(or dominated) Randomly chosen data

2
Common machine
dominates the other
machines { }4 1 2 3,1 3,2()* max (), (), (), ()p M p M p M p M p M>

3
Common machine is
dominated by the other
machines { }4 1 2 3,1 3,2() min (), (), (), ()p M p M p M p M p M<

4
Flowshop type jobs
dominate parallel
machine type jobs

()3,1 3,2

1

() ()
()

2
p M p M

p M
+

> ∑∑

5
Parallel machine type
jobs dominate flowshop
type jobs () { }3,1 3,2 1 2() () 2*max (), ()p M p M p M p M+ >∑

* ()ip M indicates the processing time of a job on Machine i (iM) (See Figure 2.1).

 58

For each combination of processing times, 10 problem instances are generated.

The mathematical model is coded in GAMS 22.6 and the problem instances with

up to 28 jobs are solved by using CPLEX solver under the time limit of one hour.

Table 6.2: Size of the Problem Instances in the Computational Study

Number of
Type-1 Jobs

(n1)

Number of
Type-2 Jobs

(n2)

Number of
Type-1 Jobs

(n1)

Number of
Type-2 Jobs

(n2)
2 6
4 12
6 18
8 24

10 30
12 36
14 42
16 48
18 54

10

20

30

60
4 10
8 20

12 30
16 40
20 50
24 60
28 70
32 80
36 90

20

40

50

100

The proposed heuristic algorithms, lower bounds and branch-and-bound algorithm

are coded in Visual C++ 6.0, and all computational experiments are conducted on

Intel Pentium IV 2400 MHz CPU with 256 MB memory PC under Windows XP

operating system.

 59

6.2 Performance Measures

The following performance measures are used to evaluate the performance of our

solution methods and bounding procedures.

• The performance of global lower bound, GLB, is evaluated by using

average and maximum value of its percentage deviation from optimal

value, OPT, which is obtained by our exact solution methods (i.e.

mathematical model, and branch-and-bound algorithm) is used. Thus, our

performance measure is 100OPT GLB
OPT
−

×

• The performance of heuristic algorithms is evaluated by using average and

maximum value of its percentage deviation from optimal value which is

obtained by our exact solution methods (i.e. mathematical model, and

branch-and-bound algorithm). For the large size problems, which our

exact solution approaches do not work, instead of optimal value we use

global lower bound, GLB. Hence, our performance measure is

100iH OPT
OPT
−

× or 100iH GLB
GLB
−

×

 where iH is the makespan value obtained by the scheduling rule i.

• Number of times, optimal solution is found in problem instances is another

performance measure for the heuristic algorithms.

• Computation time is used to evaluate the performance of the branch-and-

bound algorithm. Average and maximum values of computation times in

CPU seconds are reported.

 60

• Average and maximum numbers of nodes generated in the branch-and-

bound tree are reported for each instance as another performance measure

for our branch-and-bound algorithm.

• Number of unsolved problem instances in one hour is also used to evaluate

the performance of the branch-and-bound algorithm.

6.3 Discussion of the Results

6.3.1 Global Lower Bound Performance

The average and maximum percent deviations of global lower bound from the

optimal solution are reported in Table 6.3. As can be observed from the table, the

problem instances up to the 28 jobs are considered in the experimentation. This is

because the optimal solution is needed to investigate the global lower bound

performance, and our exact solution methods are capable to solve problem up to

with 28 jobs in a given time limit, which is one hour. Our results show that in

general global lower bound performs better for small n1/n2 ratio. For example,

when n1=10 and dominance case 4, average deviations from optimal solution are

0.91% and 1.29% for n1/n2=0.2 and n1/n2=0.4, respectively. As Table 6.3

indicates, the global lower bound performs well and gives close solutions for all

combinations of number of type-1, and type-2 jobs and also for every dominance

cases. For example, when n1=10 and n1/n2=0.4, average deviations from optimal

solution are 0.94%, 1.29%, and 2.03% for case 3, case 4 and case 5, respectively.

 61

Table 6.3: Global Lower Bound Performance- Percent Deviation from Optimum

Case 1 Case 2
() / 100OPT GLB OPT− × () / 100OPT GLB OPT− × n1 n2/n1

Avg Max
n1 n2/n1

Avg Max
0.2 1.2 3.5 0.2 0 0
0.4 1.52(2)* 5.92 0.4 0(2)* 0
0.6 0.12(5)* 0.61 0.6 0(4)* 0
0.8 0(6)* 0 0.8 0(5)* 0
1.0 0(6)* 0 1.0 0(5)* 0
1.2 0(7)* 0 1.2 0(8)* 0
1.4 0(7)* 0 1.4 0(7)* 0
1.6 0(8)* 0 1.6 0(8)* 0

10

1.8 0(9)* 0

10

1.8 0(7)* 0
0.2 0(9)* 0 0.2 0(8)* 0 20 0.4 0(8)* 0 20 0.4 0(6)* 0

Case 3 Case 4
() / 100OPT GLB OPT− × () / 100OPT GLB OPT− × n1 n2/n1

Avg Max
n1 n2/n1

Avg Max
0.2 0.71 2.29 0.2 0.91 3.06
0.4 0.94 2.62 0.4 1.29 3.07
0.6 2.03(5)* 4.18 0.6 1.22 3.46
0.8 1.42(3)* 2.54 0.8 1.72(2)* 3.47
1.0 1.14(5)* 3.89 1.0 1.03(2)* 1.84
1.2 0.43(8)* 0.86 1.2 0.9(1)* 2.18
1.4 (10)* 1.4 1.16(1)* 2.42
1.6 (10)* 1.6 0.76(3)* 2.47

10

1.8 (10)*

10

1.8 0.64 1.67
0.2 0(8)* 0 0.2 0.8(3)* 1.84 20 0.4 1.2(8)* 1.69 20 0.4 0.92(5)* 1.46

Case 5
() / 100OPT GLB OPT− ×n1 n2/n1

Avg Max
0.2 3.83 10.56
0.4 2.03 6.71
0.6 2.81(8)* 4.17
0.8 (10)*
1.0 (10)*
1.2 (10)*
1.4 (10)*
1.6 (10)*

10

1.8 (10)*
0.2 (10)* 20 0.4 (10)*

(*) The numbers in parentheses denote the number of unsolved instances out of ten within one

hour time limit.

 62

6.3.2 Heuristic Algorithms Performances

Average and maximum percent deviations from the optimal and global lower

bound are reported in Table 6.4 and Table 6.5, respectively. Furthermore,

numbers of times, our heuristics find optimal solution is reported in Table 6.6.

Table 6.4: Heuristic Algorithms Performance – Percent Deviation from Optimum

Case 1
() / 100Heuristic OPT OPT− × () / 100Heuristic OPT OPT− ×

Average Maximum
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 7.47 7.47 0.86 0.86 7.90 7.90 5.45 21.26 21.26 7.87 7.87 20.28 20.28 14.39

0.4 5.14(2)* 7.43 0.69 3.70 4.30 7.03 12.17 14.48 14.48 5.52 6.67 19.08 19.08 31.03

0.6 0.00(5)* 4.46 0.00 2.63 0.00 2.63 2.90 0.00 6.70 0.00 4.04 0.00 4.04 7.58

0.8 0.00(6)* 5.54 0.00 3.95 0.00 3.95 2.44 0.00 7.30 0.00 5.83 0.00 5.83 6.15

1.0 0.00(6)* 6.57 0.00 3.41 0.00 3.52 4.38 0.00 8.37 0.00 4.89 0.00 4.89 6.67

1.2 0.00(7)* 3.30 0.00 2.17 0.00 2.17 4.98 0.00 5.45 0.00 3.18 0.00 3.18 8.33

1.4 0.00(7)* 4.98 0.00 4.61 0.00 4.23 5.56 0.00 5.68 0.00 5.68 0.00 4.84 14.71

1.6 0.00(8)* 5.78 0.00 2.29 0.00 2.29 1.88 0.00 7.11 0.00 3.56 0.00 3.56 3.75

10

1.8 0.00(9)* 4.67 0.00 0.39 0.00 0.39 42.41 0.00 4.67 0.00 0.39 0.00 0.39 42.41

0.2 8.84(9)* 8.84 0.00 1.61 0.00 1.61 0.00 8.84 8.84 0.00 1.61 0.00 1.61 0.00 20
0.4 0.34(8)* 2.46 0.00 1.45 0.17 1.45 0.00 0.68 3.08 0.00 1.53 0.34 1.53 0.00

Case 2
() / 100Heuristic OPT OPT− × () / 100Heuristic OPT OPT− ×

Average Maximum
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 0.03 0.03 0.00 0.00 0.00 0.00 1.11 0.28 0.28 0.00 0.00 0.00 0.00 2.81

0.4 0.00(2)* 1.44 0.00 0.80 0.00 0.80 1.59 0.00 3.33 0.00 1.55 0.00 1.55 3.43

0.6 0.12(4)* 1.07 0.00 0.45 0.00 0.45 1.58 0.73 2.22 0.00 0.89 0.00 0.89 3.53

0.8 0.00(5)* 1.11 0.00 0.71 0.00 0.71 0.68 0.00 2.59 0.00 1.23 0.00 1.23 1.64

1.0 0.00(5)* 1.53 0.00 0.80 0.00 0.80 1.02 0.00 2.25 0.00 2.25 0.00 2.25 2.09

1.2 0.00(8)* 1.13 0.00 1.13 0.00 1.13 1.48 0.00 1.70 0.00 1.70 0.00 1.70 1.83

1.4 0.00(7)* 1.22 0.00 0.99 0.00 0.99 0.88 0.00 1.66 0.00 1.41 0.00 1.41 1.28

1.6 0.00(8)* 1.16 0.00 1.16 0.00 1.16 1.36 0.00 1.97 0.00 1.97 0.00 1.97 1.53

10

1.8 0.00(7)* 1.27 0.00 0.55 0.00 0.55 0.79 0.00 2.28 0.00 0.81 0.00 0.81 1.22

0.2 0.00(8)* 0.20 0.00 0.20 0.00 0.20 0.07 0.00 0.27 0.00 0.27 0.00 0.27 0.13
20

0.4 0(6)* 0.70 0.00 0.64 0.00 0.64 0.77 0.00 1.41 0.00 1.17 0.00 1.17 1.56

(*) The numbers in parentheses denote the number of unsolved instances out of ten within one

hour time limit

 63

Table 6.4 (cont.)

Case 3
() / 100Heuristic OPT OPT− × () / 100Heuristic OPT OPT− ×

Average Maximum
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 1.35 1.35 1.21 1.21 6.04 6.04 3.67 4.64 4.64 6.09 6.09 8.78 8.78 10.03

0.4 2.18 2.18 1.69 1.69 4.18 4.18 5.20 5.38 5.38 7.59 7.59 7.80 7.80 15.86

0.6 1.03(5)* 1.03 0.71 0.71 3.41 3.41 6.38 3.43 3.43 2.69 2.69 7.23 7.23 16.76

0.8 1.11(3)* 1.11 0.57 0.57 5.97 5.97 7.03 2.40 2.40 2.04 2.04 9.38 9.38 24.86

1.0 1.37(5)* 1.37 1.95 1.95 4.02 4.02 2.20 3.43 3.43 4.94 4.94 7.55 7.55 11.18

1.2 2.18(8)* 2.18 0.00 0.00 6.66 6.66 39.52 3.21 3.21 0.00 0.00 7.49 7.49 46.97

1.4 (10)*

1.6 (10)*

10

1.8 (10)*

0.2 1.25(8)* 1.25 2.08 2.08 4.62 4.62 3.66 1.54 1.54 4.15 4.15 5.40 5.40 5.56 20
0.4 0.66(8)* 0.66 0.69 0.69 4.20 4.20 12.46 1.01 1.01 1.38 1.38 5.21 5.21 16.18

Case 4
() / 100Heuristic OPT OPT− × () / 100Heuristic OPT OPT− ×

Average Maximum
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 1.38 1.38 0.00 0.00 6.80 6.80 1.14 4.80 4.80 0.00 0.00 9.76 9.76 5.10

0.4 1.01 1.01 0.00 0.00 5.65 5.65 3.98 2.69 2.69 0.00 0.00 8.53 8.53 8.63

0.6 1.67 1.67 0.00 0.00 6.12 6.12 4.34 3.77 3.77 0.00 0.00 9.54 9.54 8.18

0.8 1.25(2)* 1.25 0.00 0.00 5.36 5.36 5.64 3.47 3.47 0.00 0.00 8.50 8.50 14.51

1.0 1.92(2)* 1.92 0.00 0.00 6.03 6.03 4.75 4.53 4.53 0.00 0.00 8.88 8.88 12.35

1.2 0.37(1)* 0.37 0.00 0.00 4.40 4.40 8.32 2.24 2.24 0.00 0.00 7.43 7.43 14.71

1.4 0.90(1)* 0.90 0.00 0.00 4.65 4.65 5.09 3.19 3.19 0.00 0.00 6.73 6.73 17.51

1.6 1.50(3)* 1.50 0.00 0.00 3.89 3.89 8.75 3.46 3.46 0.00 0.00 7.27 7.27 24.04

10

1.8 0.25 0.25 0.00 0.00 3.85 3.85 4.85 1.49 1.49 0.00 0.00 6.74 6.74 10.42

0.2 1.03(3)* 1.03 0.00 0.00 2.76 2.76 1.65 2.47 2.47 0.00 0.00 4.94 4.94 4.91 20
0.4 0.95(5)* 0.95 0.00 0.00 2.77 2.77 1.86 2.27 2.27 0.00 0.00 4.17 4.17 3.73

Case 5
() / 100Heuristic OPT OPT− × () / 100Heuristic OPT OPT− ×

Average Maximum
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 14.14 14.14 1.03 1.03 7.33 7.33 3.73 29.92 29.92 3.31 3.31 17.91 17.91 13.75

0.4 12.49 12.95 1.25 2.69 4.74 5.01 9.18 26.62 27.70 4.55 7.14 17.53 17.53 28.38

0.6 4.30(8)* 7.47 1.13 2.16 0.54 2.16 2.16 4.76 7.74 1.79 4.33 0.60 4.33 4.33

0.8 (10)*

1.0 (10)*

1.2 (10)*

1.4 (10)*

1.6 (10)*

10

1.8 (10)*

0.2 (10)* 20
0.4 (10)*

 64

Since our exact solution methods are not capable to solve problems for all

combinations of type-1 and type-2 jobs in a given time limit, we investigate the

performance of the heuristic by examining average and maximum percent

deviations from the optimal solution and global lower bound. We propose two

types of heuristic algorithms, sequencing-rules based and branch-and-bound

based, to solve our problem. The notation “ iS ” in Table 6.3 and Table 6.4

symbolize the sequencing rules, which best of them determines the result of

sequencing-rules based heuristic, and the notation “ &B B ” on Table 6.3 and

Table 6.4 symbolize branch-and-bound based heuristic. As can be seen from

Table 6.4, we report the result of the sequencing rules one by one to be able to

analyze which sequencing rule especially determines the sequencing-rules based

heuristic. The sequencing rule C, which is denoted by, “ 3S ” is superior to other

rules under all conditions. For example, when n1=10, n1/n2=0.4 and dominance

case=1, average deviations from optimal solution are 5.14%, 7.43%, 0.69%,

3.70%, 4.30% and 7.03% for sequencing rules A, B, C, D, E, F, respectively. We

also reveal that in general the sequencing-rules based heuristic algorithm gives

better results than the branch-and-bound based heuristic algorithm. For example,

when n1=10, n1/n2=0.2 and dominance case=3, average deviations from optimal

solution are 1.21% and 3.67% for the best result through sequencing rule A to rule

F and branch-and-bound based heuristic, respectively.

Table 6.5 shows the summary of the performance of heuristic algorithms under all

possible combinations of design parameters. The results in Table 6.5 reveal

similar consequences with Table 6.4. We again observe that the sequencing rule C

is superior to other rules under all conditions and the sequencing-rules based

heuristic gives better result than the branch-and-bound based heuristic. Besides,

we detect that there are some combinations where the sequencing rule C and the

branch-and-bound based heuristic performs better. For example, when we execute

 65

our heuristic on a system which common machine dominates the other machines

in the system, case 2, average and maximum percentage deviation from the global

lower bound is too small.

We also try to investigate the effect of number of type-1 and type-2 jobs on the

heuristic algorithms performance. As can be seen from Table 6.5, the numbers of

type-1 and type-2 jobs have no specific and significant effect on the performance

of heuristic algorithms. For example, when n1=50, n2/n1=1.0 and dominance

case= 1, average deviations from the global lower bound are 0.00% and 0.57% for

the best result through sequencing rule A to rule F and branch-and-bound based

heuristic, respectively. However, a little improvement is seen on the performance

of the sequencing-rules based heuristic when number of type-1 jobs increase

under dominance case 5. We do not observe similar results for the branch-and-

bound based heuristic.

It is also observed from Table 6.5 that the ratio between number of type-1 and

type-2 jobs has no significant effect on the performance of the sequencing-rules

based heuristic algorithm. For example, when n1=30 and dominance case=3,

average deviations from the global lower bound are 0.77% and 0.76% for the best

result through sequencing rule A to rule F for n1/n2=0.4 and 2.0, respectively.

Table 6.5 reveals the effect of the related ratio on the branch-and-bound based

heuristic. Only for dominance case 3, we observed that as the ratio increasing the

performance of the heuristic decreases. For example, when n1=20 and dominance

case=3, average deviations from the global lower bound are 2.24% and 16.97%

for n1/n2=0.2 and 1.4, respectively.

As can be observed from Table 6.5, the sequencing-rules based heuristic

algorithm performances are satisfactory for all problem combinations. It is

 66

capable to solve up to 150 jobs with the overall average deviation less than 5.30%

and the overall maximum deviation less than 13.1%. These results are the worst-

case performances; better results are obtained in the computational analyses.

As can be seen from Table 6.6, the sequencing rule C is very effective in solving

1 2 3 max3 | 3, 1, 1, 2 |F k k k T C= = = = problem. The sequencing-rules based heuristic

finds optimal solution quite often by using the sequencing rule C. Especially, in

dominance case 4, our related heuristic finds optimal solutions for every

comparable instances.

 67

Table 6.5: Heuristic Algorithms Performance–% Deviation from Global Lower Bound

Case 1
() / 100Heuristic GLB GLB− × () / 100Heuristic GLB GLB− ×

Average Maximum
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 8.81 8.81 2.11 2.11 9.28 9.28 6.74 24.19 24.19 10.48 10.48 24.64 24.64 16.91
0.4 6.03 8.31 2.03 4.71 5.09 7.54 12.34 21.17 21.17 11.68 11.68 26.57 26.57 38.69
0.6 0.57 4.46 0.50 3.20 1.52 4.22 5.93 5.11 8.02 4.38 6.79 14.60 14.60 27.74
0.8 1.55 6.98 1.06 4.16 1.69 4.72 6.35 15.49 15.49 10.56 10.56 16.20 16.20 34.51
1.0 0.00 6.19 0.00 3.71 0.00 3.75 3.19 0.00 8.37 0.00 6.67 0.00 6.15 6.67
1.2 0.00 3.60 0.00 2.74 0.00 2.74 3.78 0.00 6.50 0.00 5.38 0.00 5.38 8.33
1.4 0.00 5.47 0.00 4.06 0.00 3.86 10.42 0.00 7.31 0.00 6.07 0.00 5.67 24.62
1.6 0.00 4.61 0.00 3.36 0.00 3.57 1.83 0.00 7.11 0.00 4.79 0.00 4.79 4.14
1.8 0.00 3.19 0.00 2.17 0.00 2.17 15.43 0.00 5.80 0.00 4.64 0.00 4.64 42.41

10

2.0 0.06 4.16 0.06 3.01 0.06 3.08 3.04 0.57 5.71 0.57 3.87 0.57 4.29 9.04
0.2 8.98 9.45 0.40 1.69 4.42 5.11 3.46 16.21 16.21 1.91 3.16 12.98 12.98 18.15
0.4 0.69 3.19 0.04 1.27 1.16 2.36 2.02 4.76 5.30 0.43 3.31 11.26 11.26 5.73
0.6 0.03 3.04 0.03 2.15 0.03 2.12 2.84 0.29 5.43 0.29 5.08 0.29 4.44 9.34
0.8 0.00 2.91 0.00 1.66 0.00 1.89 2.01 0.00 4.81 0.00 2.94 0.00 4.28 6.89
1.0 0.00 2.09 0.00 0.95 0.00 0.95 1.29 0.00 4.39 0.00 1.75 0.00 1.75 3.79
1.2 0.02 2.81 0.00 1.55 0.00 1.64 1.62 0.23 4.44 0.00 3.01 0.00 3.09 3.82
1.4 0.00 2.37 0.00 1.18 0.00 1.21 20.02 0.00 3.59 0.00 1.91 0.00 1.91 42.05
1.6 0.00 2.41 0.00 1.31 0.00 1.38 1.24 0.00 3.35 0.00 2.15 0.00 2.86 2.79
1.8 0.00 1.69 0.00 1.13 0.00 1.13 27.62 0.00 3.07 0.00 2.57 0.00 2.57 68.41

20

2.0 0.02 2.06 0.02 1.04 0.02 1.04 1.66 0.17 3.28 0.17 2.16 0.17 2.11 2.90
0.2 5.33 6.00 0.02 1.21 1.69 2.46 2.39 15.59 15.59 0.23 2.01 6.04 6.04 5.77
0.4 0.05 2.25 0.02 0.78 0.02 0.78 1.35 0.23 3.67 0.23 2.07 0.23 2.07 3.72
0.6 0.02 2.24 0.00 1.05 0.00 0.99 1.10 0.20 3.65 0.00 3.65 0.00 3.00 3.62
0.8 0.00 2.32 0.00 0.81 0.00 0.78 1.02 0.00 2.84 0.00 1.57 0.00 1.41 2.40
1.0 0.00 2.11 0.00 0.76 0.00 0.86 1.23 0.00 3.07 0.00 2.07 0.00 2.07 2.59
1.2 0.00 1.77 0.00 0.88 0.00 0.98 1.48 0.00 2.38 0.00 1.93 0.00 2.08 2.83
1.4 0.00 1.89 0.00 0.87 0.00 0.90 26.24 0.00 2.52 0.00 1.68 0.00 1.58 52.86
1.6 0.00 1.51 0.00 0.40 0.00 0.40 1.07 0.00 2.27 0.00 1.11 0.00 1.11 2.17
1.8 0.00 1.00 0.00 0.51 0.00 0.56 27.34 0.00 1.95 0.00 1.38 0.00 1.38 58.50

30

2.0 0.00 1.34 0.00 0.66 0.00 0.64 0.63 0.00 1.88 0.00 1.22 0.00 1.15 1.50
0.2 1.88 2.57 0.02 0.46 1.08 1.49 1.59 5.00 5.00 0.16 1.29 5.51 5.51 4.94
0.4 1.00 2.14 0.03 0.45 0.18 0.52 1.35 9.42 9.42 0.27 0.86 1.57 1.57 2.67
0.6 0.00 1.42 0.00 0.47 0.00 0.47 0.94 0.00 2.02 0.00 0.98 0.00 0.98 2.00
0.8 0.00 1.19 0.00 0.50 0.00 0.49 0.55 0.00 1.88 0.00 1.44 0.00 1.15 1.00
1.0 0.00 1.11 0.00 0.33 0.00 0.33 0.57 0.00 1.67 0.00 0.84 0.00 0.84 1.48
1.2 0.00 1.14 0.00 0.25 0.00 0.27 0.74 0.00 1.70 0.00 0.74 0.00 0.98 1.30
1.4 0.00 0.96 0.00 0.31 0.00 0.36 28.93 0.00 1.48 0.00 0.80 0.00 1.20 62.96
1.6 0.00 0.93 0.00 0.23 0.00 0.23 0.40 0.00 1.51 0.00 0.31 0.00 0.31 0.72
1.8 0.00 0.70 0.00 0.30 0.00 0.30 33.06 0.00 1.07 0.00 0.50 0.00 0.50 70.01

50

2.0 0.00 0.75 0.00 0.21 0.00 0.21 0.54 0.00 1.17 0.00 0.66 0.00 0.66 1.27

 68

Table 6.5 (cont.)

Case 2
() / 100Heuristic GLB GLB− × () / 100Heuristic GLB GLB− ×

Average Maximum
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 0.03 0.03 0.00 0.00 0.00 0.00 1.11 0.28 0.28 0.00 0.00 0.00 0.00 2.81
0.4 0.00 1.38 0.00 0.87 0.00 0.87 1.79 0.00 3.33 0.00 1.57 0.00 1.57 3.43
0.6 0.07 1.45 0.00 0.73 0.00 0.73 1.14 0.73 3.42 0.00 1.54 0.00 1.54 3.53
0.8 0.00 1.29 0.00 0.99 0.00 0.99 1.00 0.00 2.59 0.00 2.05 0.00 2.05 2.65
1.0 0.00 1.94 0.00 1.01 0.00 1.01 1.13 0.00 2.94 0.00 2.25 0.00 2.25 2.09
1.2 0.00 1.20 0.00 0.95 0.00 0.95 1.38 0.00 2.33 0.00 1.81 0.00 1.81 2.41
1.4 0.00 1.57 0.00 0.85 0.00 0.85 0.88 0.00 2.28 0.00 1.41 0.00 1.41 1.87
1.6 0.00 1.51 0.00 0.87 0.00 0.87 0.90 0.00 2.44 0.00 1.97 0.00 1.97 2.29
1.8 0.00 1.38 0.00 1.00 0.00 1.00 0.67 0.00 2.28 0.00 1.63 0.00 1.63 1.22

10

2.0 0.00 1.18 0.00 0.75 0.00 0.75 0.80 0.00 1.87 0.00 1.37 0.00 1.37 1.74
0.2 0.11 0.58 0.00 0.27 0.00 0.27 0.90 0.70 1.80 0.00 0.91 0.00 0.91 1.95
0.4 0.00 0.93 0.00 0.47 0.00 0.47 0.86 0.00 1.81 0.00 1.17 0.00 1.17 1.81
0.6 0.00 1.21 0.00 0.57 0.00 0.57 0.79 0.00 1.90 0.00 1.06 0.00 1.06 1.39
0.8 0.00 0.80 0.00 0.40 0.00 0.40 0.65 0.00 1.57 0.00 0.70 0.00 0.70 1.48
1.0 0.00 0.80 0.00 0.40 0.00 0.40 0.53 0.00 1.44 0.00 0.81 0.00 0.81 1.36
1.2 0.00 0.67 0.00 0.26 0.00 0.26 0.61 0.00 1.15 0.00 0.52 0.00 0.52 1.27
1.4 0.00 0.82 0.00 0.34 0.00 0.34 0.97 0.00 1.23 0.00 0.66 0.00 0.66 2.67
1.6 0.00 0.73 0.00 0.39 0.00 0.39 0.61 0.00 1.18 0.00 0.66 0.00 0.66 1.19
1.8 0.00 0.72 0.00 0.40 0.00 0.40 2.37 0.00 1.02 0.00 0.58 0.00 0.58 9.14

20

2.0 0.00 0.70 0.00 0.28 0.00 0.28 0.51 0.00 1.05 0.00 0.77 0.00 0.77 0.99
0.2 0.01 0.65 0.00 0.35 0.00 0.35 0.61 0.09 1.05 0.00 0.70 0.00 0.70 1.12
0.4 0.00 0.65 0.00 0.27 0.00 0.27 0.64 0.00 1.43 0.00 0.53 0.00 0.53 1.29
0.6 0.00 0.81 0.00 0.32 0.00 0.32 0.27 0.00 1.23 0.00 0.66 0.00 0.66 0.84
0.8 0.00 0.71 0.00 0.23 0.00 0.23 0.47 0.00 1.15 0.00 0.60 0.00 0.60 0.83
1.0 0.00 0.62 0.00 0.26 0.00 0.26 0.50 0.00 0.89 0.00 0.43 0.00 0.43 0.94
1.2 0.00 0.57 0.00 0.23 0.00 0.23 0.34 0.00 0.82 0.00 0.38 0.00 0.38 0.90
1.4 0.00 0.49 0.00 0.18 0.00 0.18 4.33 0.00 0.77 0.00 0.36 0.00 0.36 11.27
1.6 0.00 0.43 0.00 0.19 0.00 0.19 0.49 0.00 0.72 0.00 0.34 0.00 0.34 0.81
1.8 0.00 0.47 0.00 0.20 0.00 0.20 5.23 0.00 0.69 0.00 0.40 0.00 0.40 14.02

30

2.0 0.00 0.29 0.00 0.14 0.00 0.14 0.26 0.00 0.67 0.00 0.25 0.00 0.25 0.62
0.2 0.01 0.49 0.00 0.09 0.00 0.09 0.34 0.05 1.02 0.00 0.22 0.00 0.22 0.94
0.4 0.00 0.55 0.00 0.12 0.00 0.12 0.33 0.00 0.89 0.00 0.23 0.00 0.23 0.62
0.6 0.00 0.53 0.00 0.10 0.00 0.10 0.31 0.00 0.76 0.00 0.20 0.00 0.20 0.74
0.8 0.00 0.34 0.00 0.13 0.00 0.13 0.16 0.00 0.67 0.00 0.28 0.00 0.28 0.47
1.0 0.00 0.21 0.00 0.09 0.00 0.09 0.34 0.00 0.61 0.00 0.22 0.00 0.22 0.61
1.2 0.00 0.30 0.00 0.10 0.00 0.10 0.14 0.00 0.51 0.00 0.15 0.00 0.15 0.57
1.4 0.00 0.27 0.00 0.09 0.00 0.09 7.24 0.00 0.44 0.00 0.21 0.00 0.21 17.09
1.6 0.00 0.26 0.00 0.08 0.00 0.08 0.18 0.00 0.47 0.00 0.18 0.00 0.18 0.40
1.8 0.00 0.18 0.00 0.09 0.00 0.09 7.79 0.00 0.33 0.00 0.14 0.00 0.14 17.71

50

2.0 0.00 0.21 0.00 0.06 0.00 0.06 0.18 0.00 0.41 0.00 0.20 0.00 0.20 0.38

 69

Table 6.5 (cont.)

Case 3
() / 100Heuristic GLB GLB− × () / 100Heuristic GLB GLB− ×

Average Maximum
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 2.08 2.08 1.93 1.93 6.80 6.80 4.42 4.64 4.64 6.09 6.09 9.50 9.50 11.23
0.4 3.15 3.15 2.66 2.66 5.18 5.18 6.24 5.38 5.38 8.06 8.06 10.47 10.47 18.73
0.6 2.83 2.83 2.16 2.16 5.64 5.64 9.52 4.62 4.62 7.17 7.17 8.80 8.80 27.54
0.8 2.22 2.22 2.11 2.11 7.61 7.61 10.35 4.05 4.05 5.52 5.52 11.27 11.27 26.27
1.0 2.53 2.53 2.55 2.55 5.37 5.37 9.50 4.73 4.73 5.25 5.25 9.20 9.20 37.32
1.2 3.33 3.33 1.63 1.63 7.51 7.51 17.98 4.76 4.76 5.33 5.33 12.38 12.38 48.26
1.4 3.26 3.26 1.69 1.69 6.87 6.87 23.86 5.23 5.23 3.14 3.14 10.72 10.72 49.38
1.6 2.20 4.37 1.47 3.17 7.10 8.04 27.83 4.57 12.10 5.93 7.96 13.69 13.69 65.54
1.8 2.43 5.33 2.01 3.79 6.71 7.95 35.47 5.70 16.44 4.36 9.23 10.46 10.46 51.00

10

2.0 1.97 6.09 1.26 4.13 4.08 6.57 22.29 6.18 15.93 3.24 7.67 10.00 11.50 61.72
0.2 1.54 1.54 1.22 1.22 4.27 4.27 2.24 2.91 2.91 4.15 4.15 5.81 5.81 7.93
0.4 1.34 1.34 1.53 1.53 5.72 5.72 5.99 2.46 2.46 3.23 3.23 9.69 9.69 17.03
0.6 0.97 0.97 0.96 0.96 5.21 5.21 5.02 2.37 2.37 2.28 2.28 8.80 8.80 22.91
0.8 2.06 2.06 1.41 1.41 4.58 4.58 14.41 2.97 2.97 3.26 3.26 6.17 6.17 29.55
1.0 1.67 1.67 1.28 1.28 3.95 3.95 19.92 2.88 2.88 2.58 2.58 5.56 5.56 36.41
1.2 2.05 2.05 1.32 1.32 3.35 3.35 14.72 2.82 2.82 2.39 2.39 6.90 6.90 42.88
1.4 1.40 1.40 1.30 1.30 4.77 4.77 16.97 2.53 2.53 3.22 3.22 11.16 11.16 41.42
1.6 1.04 1.60 0.53 0.59 4.00 4.00 24.95 2.64 6.72 1.61 2.08 6.53 6.53 47.06
1.8 1.15 4.07 0.91 2.13 3.46 4.00 36.25 2.70 10.94 2.66 6.51 5.87 5.87 64.17

20

2.0 1.56 7.71 0.51 3.15 2.45 7.07 41.99 3.88 10.95 2.09 4.78 4.35 11.92 66.10
0.2 0.93 0.93 0.83 0.83 2.22 2.22 3.16 1.82 1.82 2.16 2.16 4.21 4.21 7.21
0.4 1.02 1.02 0.77 0.77 3.25 3.25 3.02 1.88 1.88 2.10 2.10 6.01 6.01 13.40
0.6 1.45 1.45 0.61 0.61 2.89 2.89 12.06 2.02 2.02 1.70 1.70 5.41 5.41 21.88
0.8 0.84 0.84 0.74 0.74 4.40 4.40 6.90 2.04 2.04 2.28 2.28 7.75 7.75 23.23
1.0 0.95 0.95 0.66 0.66 3.09 3.09 19.48 1.91 1.91 1.81 1.81 5.54 5.54 35.11
1.2 0.86 0.86 0.72 0.72 3.14 3.14 15.57 1.74 1.74 1.53 1.53 6.09 6.09 47.34
1.4 0.64 0.64 0.34 0.34 3.53 3.53 23.53 1.80 1.80 1.24 1.24 6.50 6.50 50.77
1.6 0.80 1.19 0.91 1.12 4.26 4.43 22.42 1.96 4.82 1.72 3.07 9.12 9.12 58.26
1.8 0.64 2.94 0.54 1.37 2.84 3.20 40.88 1.38 6.46 1.87 3.74 6.31 6.31 57.41

30

2.0 1.45 8.59 0.76 2.71 2.20 6.35 31.55 3.68 11.47 1.99 5.84 5.09 10.80 61.23
0.2 0.63 0.63 0.48 0.48 2.31 2.31 4.10 1.08 1.08 1.41 1.41 4.26 4.26 7.15
0.4 0.66 0.66 0.51 0.51 1.74 1.74 2.88 1.17 1.17 0.97 0.97 3.93 3.93 13.79
0.6 0.55 0.55 0.28 0.28 2.38 2.38 9.85 0.98 0.98 1.04 1.04 5.16 5.16 21.30
0.8 0.46 0.46 0.41 0.41 2.53 2.53 8.02 0.98 0.98 1.35 1.35 5.41 5.41 26.86
1.0 0.57 0.57 0.26 0.26 2.57 2.57 21.06 1.09 1.09 0.70 0.70 4.18 4.18 37.92
1.2 0.66 0.66 0.33 0.33 2.48 2.48 13.38 1.22 1.22 0.83 0.83 5.56 5.56 45.83
1.4 0.80 0.80 0.40 0.40 1.81 1.81 25.07 1.09 1.09 1.22 1.22 4.61 4.61 53.41
1.6 0.53 0.84 0.27 0.39 2.33 2.59 31.56 1.13 3.16 0.97 1.20 3.63 3.63 60.33
1.8 0.71 2.90 0.52 0.57 2.24 2.43 42.51 1.24 7.50 1.25 1.25 3.94 4.01 61.40

50

2.0 0.62 5.41 0.17 1.26 0.91 3.42 32.77 3.22 9.48 1.01 2.61 3.16 5.80 65.44

 70

Table 6.5 (cont.)

Case 4
() / 100Heuristic GLB GLB− × () / 100Heuristic GLB GLB− ×

Average Maximum
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 2.32 2.32 0.92 0.92 7.79 7.79 2.08 5.26 5.26 3.16 3.16 10.77 10.77 8.42
0.4 2.34 2.34 1.31 1.31 7.04 7.04 5.34 5.28 5.28 3.17 3.17 11.97 11.97 10.03
0.6 2.94 2.94 1.25 1.25 7.43 7.43 5.65 4.76 4.76 3.58 3.58 11.47 11.47 10.75
0.8 2.50 2.50 1.47 1.47 7.40 7.40 6.26 7.19 7.19 3.59 3.59 10.38 10.38 18.63
1.0 2.96 2.96 1.39 1.39 6.50 6.50 6.79 4.78 4.78 3.51 3.51 9.97 9.97 14.37
1.2 1.16 1.16 0.83 0.83 5.34 5.34 8.41 3.69 3.69 2.23 2.23 7.43 7.43 17.27
1.4 2.00 2.00 1.18 1.18 5.86 5.86 5.91 4.21 4.21 2.48 2.48 7.54 7.54 18.41
1.6 2.08 2.08 0.91 0.91 4.98 4.98 9.26 3.92 3.92 2.53 2.53 7.52 7.52 27.19
1.8 0.90 0.90 0.65 0.65 4.52 4.52 5.54 1.92 1.92 1.69 1.69 7.19 7.19 12.29

10

2.0 1.24 1.24 0.46 0.46 4.06 4.06 4.62 2.39 2.39 1.81 1.81 5.74 5.74 17.34
0.2 1.90 1.90 0.69 0.69 4.15 4.15 1.99 2.79 2.79 1.88 1.88 5.53 5.53 6.88
0.4 1.66 1.66 0.80 0.80 3.98 3.98 3.63 3.11 3.11 1.48 1.48 5.10 5.10 8.72
0.6 1.38 1.38 0.58 0.58 4.00 4.00 3.30 2.85 2.85 1.31 1.31 5.07 5.07 12.27
0.8 1.20 1.20 0.40 0.40 4.55 4.55 1.90 2.92 2.92 0.80 0.80 5.50 5.50 4.55
1.0 1.51 1.51 0.67 0.67 3.89 3.89 5.34 2.97 2.97 1.56 1.56 5.54 5.54 12.36
1.2 1.41 1.41 0.52 0.52 3.51 3.51 4.62 2.43 2.43 1.23 1.23 4.51 4.51 13.95
1.4 1.14 1.14 0.40 0.40 2.60 2.60 1.42 2.21 2.21 0.94 0.94 3.55 3.55 3.29
1.6 1.30 1.30 0.46 0.46 2.85 2.85 5.35 2.22 2.22 1.07 1.07 4.33 4.33 17.67
1.8 0.54 0.54 0.23 0.23 2.77 2.77 1.92 1.18 1.18 0.52 0.52 3.44 3.44 9.50

20

2.0 0.76 0.76 0.46 0.46 2.35 2.35 6.38 1.53 1.53 0.91 0.91 3.75 3.75 21.60
0.2 0.94 0.94 0.33 0.33 2.38 2.38 0.69 1.82 1.82 0.62 0.62 3.35 3.35 1.77
0.4 1.05 1.05 0.32 0.32 3.28 3.28 1.09 1.71 1.71 0.64 0.64 3.76 3.76 4.11
0.6 1.01 1.01 0.40 0.40 2.78 2.78 2.71 1.96 1.96 0.84 0.84 3.72 3.72 7.01
0.8 1.28 1.28 0.43 0.43 2.70 2.70 2.20 2.01 2.01 0.62 0.62 3.55 3.55 3.55
1.0 0.63 0.63 0.11 0.11 2.90 2.90 0.93 1.90 1.90 0.53 0.53 3.74 3.74 3.38
1.2 0.66 0.66 0.30 0.30 2.53 2.53 2.47 1.29 1.29 0.69 0.69 3.42 3.42 6.34
1.4 0.82 0.82 0.37 0.37 2.33 2.33 1.29 1.46 1.46 0.73 0.73 3.07 3.07 3.52
1.6 0.61 0.61 0.27 0.27 2.00 2.00 3.33 1.48 1.48 0.78 0.78 2.68 2.68 11.47
1.8 0.72 0.72 0.23 0.23 1.86 1.86 2.30 1.35 1.35 0.65 0.65 2.67 2.67 10.74

30

2.0 0.56 0.56 0.20 0.20 1.54 1.54 2.99 1.14 1.14 0.47 0.47 2.21 2.21 7.30
0.2 0.66 0.66 0.21 0.21 1.61 1.61 0.50 1.00 1.00 0.52 0.52 2.13 2.13 1.30
0.4 0.48 0.48 0.19 0.19 1.83 1.83 0.67 0.94 0.94 0.26 0.26 2.34 2.34 1.79
0.6 0.76 0.76 0.20 0.20 1.79 1.79 1.19 1.21 1.21 0.44 0.44 2.39 2.39 2.96
0.8 0.62 0.62 0.21 0.21 1.69 1.69 1.95 0.97 0.97 0.38 0.38 2.44 2.44 5.94
1.0 0.74 0.74 0.16 0.16 1.82 1.82 1.70 1.16 1.16 0.32 0.32 2.34 2.34 4.40
1.2 0.66 0.66 0.18 0.18 1.36 1.36 2.46 0.98 0.98 0.38 0.38 1.90 1.90 6.19
1.4 0.63 0.63 0.18 0.18 1.54 1.54 0.15 0.96 0.96 0.41 0.41 1.89 1.89 7.65
1.6 0.57 0.57 0.13 0.13 1.22 1.22 2.34 0.88 0.88 0.27 0.27 1.66 1.66 5.79
1.8 0.57 0.57 0.09 0.09 1.15 1.15 1.78 0.80 0.80 0.20 0.20 1.42 1.42 12.62

50

2.0 0.24 0.24 0.09 0.09 0.95 0.95 1.76 0.55 0.55 0.15 0.15 1.45 1.45 3.94

 71

Table 6.5 (cont.)

Case 5
() / 100Heuristic GLB GLB− × () / 100Heuristic GLB GLB− ×

Average Maximum
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B S1 S2 S3 S4 S5 S6 B&B
0.2 18.98 18.98 5.28 5.28 11.85 11.85 8.02 39.52 39.52 13.04 13.04 24.64 24.64 14.91
0.4 14.94 15.37 3.41 4.87 7.00 7.27 11.55 29.14 35.00 9.29 12.14 19.87 19.87 35.71
0.6 9.02 10.90 2.80 3.32 2.93 4.05 8.00 19.88 24.22 12.41 12.41 12.41 14.91 31.06
0.8 6.95 7.96 2.58 4.05 2.77 3.78 5.62 15.74 13.33 10.59 14.71 8.82 12.94 10.09
1.0 3.38 5.27 0.69 1.49 0.66 1.92 4.53 7.28 10.68 2.71 5.18 3.63 7.77 7.28
1.2 2.70 3.43 0.81 1.13 0.67 1.53 3.58 6.28 7.11 3.95 4.39 2.63 6.58 8.26
1.4 3.12 5.55 1.40 3.40 1.40 3.09 11.38 5.51 9.51 4.94 9.51 4.56 7.06 25.67
1.6 2.94 4.64 0.75 1.41 0.75 1.79 3.18 5.81 10.70 3.88 8.86 3.88 8.86 8.49
1.8 1.79 2.84 1.40 1.96 1.42 2.44 15.32 4.64 6.69 4.64 6.69 4.55 7.28 39.79

10

2.0 2.88 4.52 2.20 3.45 1.98 3.96 4.45 6.75 6.82 6.75 6.82 6.75 6.82 10.93
0.2 9.11 10.02 1.98 1.94 4.63 5.43 10.98 18.33 18.33 7.60 7.62 14.34 15.14 52.90
0.4 4.13 5.39 1.17 1.33 1.08 1.31 3.32 7.03 9.79 6.12 6.12 7.65 7.65 6.14
0.6 3.39 5.01 0.35 0.45 1.21 2.54 5.60 12.46 12.12 2.36 2.36 8.08 10.54 14.38
0.8 2.44 3.20 0.59 0.66 0.68 0.99 2.72 4.41 4.66 1.89 1.89 2.16 2.33 5.41
1.0 2.07 2.86 0.41 0.70 0.39 0.83 2.73 3.60 5.81 2.09 3.49 1.63 4.88 5.76
1.2 1.37 2.44 0.18 0.33 0.14 0.45 2.48 4.05 7.34 1.01 1.01 0.63 1.52 4.88
1.4 2.07 2.72 0.49 0.65 0.49 0.65 24.63 3.14 5.23 3.14 3.64 3.14 3.64 50.09
1.6 1.65 2.61 0.64 0.60 0.75 0.79 2.42 3.78 4.48 3.78 3.38 3.78 3.38 8.55
1.8 1.86 3.18 1.18 2.38 1.13 2.43 22.97 3.34 6.25 3.34 6.25 3.34 6.25 55.31

20

2.0 1.98 2.60 1.31 2.22 1.34 2.28 4.37 3.48 4.18 3.48 4.18 3.48 4.18 6.97
0.2 10.44 12.85 1.07 2.26 2.76 3.96 15.21 24.73 24.20 6.59 8.31 6.54 13.75 42.38
0.4 4.28 4.56 0.36 0.36 0.43 0.43 2.73 9.03 11.40 1.13 1.13 1.13 1.13 6.06
0.6 2.38 3.49 0.14 0.22 0.37 0.70 3.15 5.15 8.40 0.79 0.79 2.92 5.42 7.25
0.8 2.00 2.76 0.23 0.23 0.37 0.46 2.04 3.08 4.79 1.56 1.56 2.19 3.13 3.60
1.0 1.65 3.03 0.27 0.38 0.37 0.49 1.70 3.18 6.53 1.90 2.85 1.90 3.01 2.87
1.2 1.26 1.73 0.30 0.45 0.32 0.62 2.18 2.88 5.12 1.60 3.04 1.12 2.56 4.42
1.4 1.13 1.98 0.15 0.34 0.15 0.35 26.10 1.78 3.68 1.47 2.05 1.47 2.05 56.46
1.6 0.79 2.20 0.06 0.55 0.06 0.55 2.86 2.03 4.02 0.63 2.49 0.63 2.49 7.20
1.8 0.92 1.77 0.59 1.13 0.59 1.13 27.65 2.71 4.53 2.71 4.53 2.71 4.53 58.36

30

2.0 1.18 1.81 1.05 1.42 1.13 1.42 3.86 2.60 2.95 2.60 2.95 2.60 2.95 7.45
0.2 13.48 13.16 0.15 0.45 1.66 1.62 12.91 24.15 22.62 1.20 4.30 8.31 5.93 25.65
0.4 2.97 3.52 0.03 0.03 0.06 0.06 10.17 8.28 9.01 0.29 0.29 0.59 0.59 21.22
0.6 1.30 1.81 0.14 0.14 0.16 0.24 1.43 3.00 3.69 1.25 1.25 1.38 2.13 3.52
0.8 0.98 1.37 0.07 0.07 0.20 0.25 1.19 1.98 2.97 0.38 0.38 0.59 0.99 3.30
1.0 0.90 1.65 0.09 0.09 0.09 0.19 1.89 1.77 3.00 0.48 0.48 0.48 1.27 2.96
1.2 0.91 1.35 0.05 0.05 0.12 0.13 1.36 1.64 2.92 0.19 0.19 0.58 0.58 2.60
1.4 0.78 1.24 0.05 0.05 0.05 0.05 30.84 1.71 2.70 0.32 0.32 0.32 0.32 69.87
1.6 0.74 1.02 0.04 0.07 0.07 0.10 3.05 1.55 2.13 0.21 0.57 0.37 0.57 7.39
1.8 0.69 0.99 0.27 0.31 0.27 0.31 29.24 1.54 1.90 1.54 1.65 1.54 1.65 60.70

50

2.0 0.80 1.30 0.51 0.82 0.55 0.85 3.38 1.67 2.22 1.67 2.22 1.67 2.22 4.52

 72

Table 6.6: Heuristic Algorithms Performance – Number of Times Optimal is Found

Case 1 Case 2
of times heuristics find the optimal # of times heuristics find the optimal n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B
0.2 4 4 8 8 4 4 3 0.2 9 9 10 10 10 10 3

0.4 2(2)* 0 7 1 5 0 0 0.4 8(2)* 2 8 2 8 2 0

0.6 5(5)* 0 5 0 5 0 1 0.6 5(4)* 0 6 2 6 2 0

0.8 4(6)* 0 4 0 4 0 1 0.8 5(5)* 1 5 1 5 1 2

1.0 4(6)* 0 4 0 4 0 0 1.0 5(5)* 0 5 0 5 0 2

1.2 3(7)* 0 3 0 3 0 0 1.2 2(8)* 0 2 0 2 0 0

1.4 3(7)* 0 3 0 3 0 0 1.4 3(7)* 0 3 0 3 0 0

1.6 2(8)* 0 2 0 2 0 1 1.6 2(8)* 0 2 0 2 0 0

10

1.8 1(9)* 0 1 0 1 0 0

10

1.8 3(7)* 0 3 0 3 0 0

0.2 0(9)* 0 1 0 1 0 1 0.2 2(8)* 0 2 0 2 0 1
20

0.4 1(8)* 0 2 0 1 0 2
20

0.4 4(6)* 1 4 1 4 1 2

Case 3 Case 4
of times heuristics find the optimal # of times heuristics find the optimal n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B
n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B
0.2 3 3 6 6 0 0 2 0.2 4 4 10 10 0 0 6

0.4 1 1 4 4 0 0 3 0.4 5 5 10 10 0 0 1

0.6 3(5)* 3 3 3 0 0 1 0.6 3 3 10 10 0 0 0

0.8 2(3)* 2 5 5 0 0 1 0.8 5(2)* 5 8 8 0 0 1

1.0 3(5)* 3 0 0 1 1 1 1.0 1(2)* 1 8 8 0 0 0

1.2 0(8)* 0 2 2 0 0 0 1.2 7(1)* 7 9 9 0 0 1

1.4 0(10)* 0 0 0 0 0 0 1.4 4(1)* 4 9 9 0 0 0

1.6 0(10)* 0 0 0 0 0 0 1.6 3(3)* 3 7 7 0 0 0

10

1.8 0(10)* 0 0 0 0 0 0

10

1.8 6 6 10 10 0 0 0

0.2 0(8)* 0 1 1 0 0 0 0.2 1(3)* 1 7 7 0 0 1
20

0.4 0(8)* 0 1 1 0 0 0
20

0.4 2(5)* 2 5 5 0 0 0

Case 5
of times heuristics find the optimal n1 n2/n1

S1 S2 S3 S4 S5 S6 B&B
0.2 1 1 5 5 2 2 3

0.4 0 0 6 3 2 2 0

0.6 0(8)* 0 0 1 0 1 1

0.8 0(10)* 0 0 0 0 0 0

1.0 0(10)* 0 0 0 0 0 0

1.2 0(10)* 0 0 0 0 0 0

1.4 0(10)* 0 0 0 0 0 0

1.6 0(10)* 0 0 0 0 0 0

10

1.8 0(10)* 0 0 0 0 0 0

0.2 0(10)* 0 0 0 0 0 0
20

0.4 0(10)* 0 0 0 0 0 0
(*) The numbers in parentheses denote the number of unsolved instances out of ten within one

hour time limit.

 73

6.3.3 Branch-and-bound Performances

The branch-and-bound performances, i.e., CPU time, number of generated nodes

and number of unsolved problems within one hour time limit are reported in Table

6.7.

We denote number of unsolved instances within one hour time limit in

parentheses in Table 6.7. In calculating the average and maximum number of

nodes, these unsolved instances are also included. Also, the zero CPU times

indicate almost negligible computation time.

As can be seen from Table 6.7, there is an inverse relationship between the

branch-and-bound algorithm’s performance and the number of jobs. For example,

when n1=10 and dominance case=1, average CPU time is 44.07 seconds and

2606.16 seconds, for n1/n2= 0.2 and 0.4, respectively similarly the average

number of generated nodes is 5805015.60 and 4322009570 for n1/n2= 0.2 and

0.4, respectively. The major reason of this result is that raise in the number of jobs

causes an exponential increase in the number of alternatives at each level of the

tree. Another reason is that the performances of the lower bounds get worse as the

number of jobs increase.

It is observed from Table 6.7 that branch-and-bound algorithm performs better for

dominance case 3 and 4. For the problems which the common machine is

dominated by the other machines, our algorithm can solve problem instances up to

20 jobs. Besides, if our problems are constructed for an environment where

flowshop type jobs dominate parallel machine type jobs, then the branch-and-

bound algorithm can solve problem instances up to 22 jobs.

 74

Table 6.7: Branch-and-bound Performances

Case 1
CPU Time (Sec.) Number of Nodes n1 n2/n1
Avg Max Avg Max

0.2 44.07 98.33 5,805,015.60 21,241,705.00 10 0.4 2,606.16(2)* 3600.00 432,200,957.00 832,710,027.00
Case 2

CPU Time (Sec.) Number of Nodes n1 n2/n1
Avg Max Avg Max

10 0.2 269.14 273.13 67,753,689.70 68,588,314.00
Case 3

CPU Time (Sec.) Number of Nodes n1 n2/n1
Avg Max Avg Max

0.2 5.10 5.10 115,115.30 1,150,905.00
0.4 11.57 11.57 257,970.60 2,579,114.00
0.6 2,366.34(5)* 3600.00 328,805,015.20 858,241,905.00
0.8 2,530.58(6)* 3600.00 597,053,659.70 861,587,312.00

10

1.0 2,426.16(5)* 3600.00 577,053,659.70 843,247,082.00
Case 4

CPU Time (Sec.) Number of Nodes n1 n2/n1
Avg Max Avg Max

0.2 0.00 0.00 17.60 35.00
0.4 0.00 0.00 47.90 102.00
0.6 51.39 123.11 3,672,105.90 17,211,587.00
0.8 1,996.57(2)* 3600.00 420,865,339.00 824,458,622.00
1.0 2,086.30(2)* 3600.00 496,840,321.00 844,913,011.00

10

1.2 2,926.16(7)* 3600.00 578,442,431.00 870,513,205.00
Case 5

CPU Time (Sec.) Number of Nodes n1 n2/n1
Avg Max Avg Max

0.2 1.01 1.01 19,369.10 183,688.00 10 0.4 512.08 2030.31 67,374,528.10 332,159,966.00

(*) The numbers in parentheses denote the number of unsolved instances out of ten within one
hour time limit.

 75

CHAPTER 7

CONCLUSION

In this thesis, we consider a scheduling problem of a manufacturing environment

in which there are two manufacturing flow lines, where the third stage of the first

line and the second stage of the second line are common. Each stage in the first

flow line has a single machine whereas the second flow line contains two identical

parallel machines in its first stage. Type-1 jobs are processed in the first flow line,

whereas second flow line is dedicated to type-2 jobs. The last operation, of both

types of jobs, must be processed on a common machine. The problem is to

determine the sequence and schedule of all jobs at all stages of the two flow lines

so that the makespan is minimized. There are many studies in scheduling

literature that deal with makespan minimization problem in hybrid flowshop

environment; however, scheduling in a three-stage dedicated hybrid flowshop

with a common third-stage is reviewed first time in the literature with this work.

We develop a mixed integer program and a branch-and-bound algorithm with

lower and upper bounding procedures to find optimal solution of the problem.

Moreover, we propose two heuristic algorithms which are used as initial upper

bound to our branch-and-bound algorithm and mathematical model. Besides,

these heuristics provide good quality solutions at little computational effort when

the computational effort to obtain an exact solution with branch-and-bound

algorithm or mathematical model is prohibitive. Lower bounds are derived to

evaluate the effectiveness of the proposed heuristic algorithms.

 76

Our computational experiments are designed by generating several problem

combinations using different parameters, i.e., processing time and problem size.

The experiments include 5 different cases in terms of production time, and up to

150 jobs. The results are evaluated by using the following performance measures;

average and maximum deviations from optimum solution and global lower bound,

CPU time, the number of generated nodes and the number of unsolved problems.

We observe from our experiments that the sequencing-rules based heuristic

algorithm performance is satisfactory. Its worst-case overall average deviation

performance is less than 5.30% and overall maximum deviation performance is

less than 13.1% for 150 jobs. The results show that for the big size problems,

good solutions are obtained in reasonable time limit and mostly, sequencing rule

C determines the result of sequencing-rules based heuristic.

The results of our computational experiments reveal that our branch-and-bound

algorithm performs better if common machine is dominated by other machines or

flowshop type jobs dominate parallel machine type jobs in terms of processing

time. It is observed that the performance of branch-and-bound algorithm

deteriorates as number of jobs increase.

There are several future extensions of this research. We suggest the following for

their immediate relevance to the results achieved in this study:

(i) Development of the worst-case performance bounds for the proposed

heuristics.

(ii) Extension of this studies to consider more general versions of the problem;

e.g., dedicated flow lines with more than three stages.

(iii)Development of solutions by use of compu-search techniques such as

Simulated Annealing, Tabu Search, or Genetic Algorithms.

 77

(iv) Incorporation of different objectives (such as flow time and due-date related

performance measures) into the problem studied in this study.

 R1

REFERENCES

1. ARTIBA, A. (1994), A Rule-based Planning System for Parallel Multiproduct

Manufacturing Lines, Production Planning and Control, 349-359, Vol. 5.

2. HERRMANN, J. W. and LEE, C. Y. (1992), Three-machine Look-ahead

Scheduling Problems, Report no: 92-23, Department of Industrial and Systems
Engineering, University of Florida, USA.

3. HE, D. W., KUSIAK, A. and ARTIBA, A. (1996), A Scheduling Problem in

Glass Manufacturing, IIE Transactions, 129-139, Vol. 28.

4. MEI, Q. (1996), Scheduling Two Stage Production Lines with Multiple

Machines, Production Planning and Control, 418-429, Vol. 7.

5. PAUL, R. J. (1979), A Production Scheduling Problem in the Glass-container

Industry, Operations Research, 290-302, Vol. 22.

6. ARTIBA, A. and RIANE, F. (1998), An Application of a Planning and

Scheduling Multi-model Approach in the Chemical Industry, Computers in
Industry, 209-229, Vol. 36.

7. NARASIMHAN, S. L. and PANWALKAR, S. S. (1984), Scheduling in a

Two-stage Manufacturing Process, International Journal of Production
Research, 555-564, Vol. 22.

8. RIANE, F., ARTIBA, A. and ELMAGHRABY, S. E. (1998), A Hybrid

Three-stage Flowshop problem: Efficient Heuristics to Minimize Makespan,
European Journal of Operations Research, 321-329 Vol. 109.

 R2

9. JOHNSON, S. M. (1954), Optimal Two and Three-stage Production
Schedules With Setup Times Included, Naval Research Logistics, 61-68,
Quarter 1.

10. OĞUZ, C., LIN, B. M. T. and CHENG, T. C. E (1997), Two-stage

Flowshop Scheduling with a Common Second-stage Machine, Computer Opt.
Res., 1169-1174, Vol. 24.

11. KARP, R.M. (1972), Reducibility Among Combinatorial Problems, In

Complexity Of Computer Computations, R. E. Miller and J. W. Thatcher
(eds.), 85-103, Plenum Press, New York.

12. GAREY, M. R., JOHNSON, D. S. and SETHI, R. R. (1976), The

Complexity of Flowshop and Job Shop Scheduling, Mathematics of
Operations Research, 117-129, Vol. 1.

13. CHEN, B., GLASS, A. C., POTTS, N. C. and STRUSEVICH A. V. (1996),

A New Heuristic For Three-machine Flow Shop Scheduling, Operations
Research, No. 6, Vol. 44.

14. BAKER, K.R. (1995), Elements of Sequencing and Scheduling, Darthmouth

College, Hanover, NH

15. BURNS, F. and ROOKER, J. (1976), Johnson’s Three-machine Flow Shop

Conjecture, Operations Research, 578-580, Vol. 24.

16. BURNS, F. and ROOKER, J. (1978), Three Stage Flow Shop With

Regressive Second Stage, Operations Research, 207-208, Vol. 26.

17. SZWARC, W. (1977), Optimal Two Machine Orderings in the 3xn Flow

Shop Problem, Operations Research, 70-77, Vol. 25.

 R3

18. SMITS, A. J. M. and BAKER, K. R (1981), An Experimental Investigation
of the Occurrence of Special Cases in the Three-machine Flowshop Problem,
International Journal of Production Research, 737-741, Vol. 19.

19. DUDEK, R. A. and TEUTON, O. F. (1964), Development of M-stage

decision rule for scheduling n jobs through M machines, Operations Research,
471-496, Vol. 12.

20. PALMER, D. S. (1965), Sequencing Jobs Through a Multi-stage Process in

the Minimum Total Time – a Quick Method of Obtaining a Near Optimum,
Operations Research, 101-107, Vol. 16.

21. CAMPBELL, H. G., DUDEK, R. A., SMITH, M. L. (1970), A Heuristic

Algorithm For The n Job, m Machine Sequencing Problem, Management
Science, 630-637, Vol. 16.

22. PAGE, E. S. (1961), An Approach to Scheduling Jobs on Machines, Journal

of the Royal Statistical Society, 484–492, Vol. 23.

23. GUPTA, J. N. D. (1971), A Functional Heuristic Algorithm for the Flowshop

Scheduling Problem, Operations Research, 39-48, Vol. 22.

24. DANNENBRING, D. (1977), An Evaluation of Flow Shop Sequencing

Heuristics, Management Science, 1174-1182, Vol. 23.

25. NAWAZ, M., ENSCORE Jr, E. and HAM, I. (1983), A Heuristic

Algorithm for the m-machine, n-job Flow-shop Sequencing Problem,
International Journal of Management Science, 91-95, Vol. 11.

26. FRAMINAN, J. M., LEISTEN, R. and RAJENDRAN, C. (2003), Different

Initial Sequences for the Heuristic of Nawaz, Enscore and Ham to Minimize
Makespan, Idletime or Flowtime in the Static Permutation Flowshop
Sequencing Problem, International Journal of Production Research, 121-148,
Vol. 41.

 R4

27. KOULAMAS, C. (1998), A New Constructive Heuristic for the Flowshop
Scheduling Problem, European Journal of Operational Research, 66-71, Vol.
152.

28. SULIMAN, S. (2000), A Two-phase Heuristic Approach to the Permutation

Flow-shop Scheduling Problem, International Journal of Production
Economics, 143-152, Vol. 64.

29. TAILLARD, E. (1990), Some Efficient Heuristic Methods for The Flow

Shop Sequencing Problem, European Journal of Operations Research, 65-74,
Vol. 47.

30. PONNAMBALAM, S. G., ARAVINDAN, P. and CHANDRASEKARAN,

S. (2001), Constructive and Improvement Flow Shop Scheduling Heuristics:
An Extensive Evaluation, Production Planning and Control, 335-344, Vol.
12.

31. WAGNER, H. M. (1959), An Integer Programming Model for Machine

Scheduling, Naval Research Logistics, 131-140, Quarter 6.

32. IGNALL, E. and SCHRAGE, L. (1965), Application of the Branch-and-

Bound technique to Some Flowshop Scheduling Problems, Operations
Research, 400-412, Vol. 13.

33. LOMNICKI, Z. (1965), A Branch-and-Bound Algorithm for the Exact

Solution of the Three-machine Scheduling Problem, Operations Research, 89-
100, Vol. 16.

34. McMAHON, G. B. and BURTON, P. G. (1967), Flowshop Scheduling with

the Branch and Bound Method, Operations Research, 473-481, Vol. 15.

35. RUIZ, R. and MAROTO, C. (2005), A Comprehensive Review and

Evaluation of Permutation Flowshop Heuristics, European Journal of
Operations Research, 479-494, Vol. 165.

 R5

36. HEJAZI, S. R. and SAGHAFIAN, S. (2005), Flowshop-scheduling
Problems with Makespan Criterion: A Review, International Journal of
Production Research, 2895-2929, Vol. 43.

37. GRAHAM, R. L. (1966), Bounds for Certain Multiprocessing Anomalies,

Bell System Technical Journal, 1563-1581, Vol. 45.

38. GRAHAM, R. L. (1969), Bounds on Multiprocessing Timing Anomalies,

SIAM Journal of Applied Mathematics, 263-269, Vol. 17.

39. COFFMAN, E. G., Jr. and SETHI, R. (1976), A Generalized Bound on LPT

Sequencing, RAIRO Informatique, 17-25, Vol. 10.

40. COFFMAN, E. G., FREDERICKSON, G. N. and LUEKER, G. S. (1984),

A Note on Expected Makespan for Largest-first Sequences of Independent
Tasks on Two Processors, Mathematics of Operations Research, 260-266,
Vol. 9.

41. FRENK, J. B. G. and RINNOOY KAN A. H. G. (1984), The Asymptotic

Optimality of the L.P.T. Rule, Mathematics of Operations Research, 241-254,
Vol. 12.

42. FRENK, J. B. G. and RINNOOY KAN A. H. G. (1986), The Rate of

Convergence to optimality of the LPT rule, Discrete Applied Mathematics,
187-197, Vol. 14.

43. COFFMAN, E. G., GAREY, M. R. and JOHNSON, D. S. (1978), An

Application of Bin Packing to Multiprocessor Scheduling, SIAM Journal of
Computing, 1-17, Vol. 7.

44. FRIESEN, D. K. and LANGSTON, M. A. (1986), Evaluation of a Multifit-

based Scheduling Algorithm, Journal of Algorithms, 35-59, Vol. 7.

 R6

45. LEE, C. Y. and MASSEY, J. D. (1988), Multiprocessor Scheduling:
Combining LPT and Multifit, Discrete Applied Mathematics, 233-242, Vol.
105.

46. HAOUARI, M., GHARBI, A. and JEMMALI, M. (2006), Tight Bounds for

the Identical Parallel Machine Scheduling Problem, International
Transactions in Operations Research, 529–548, Vol. 13.

47. ROTHKOPF, M. H. (1966), Scheduling Independent Tasks on Parallel

Processors, Management Science, 437–447, Vol. 12.

48. MOKOTOFF, E. (2002), An Exact Algorithm for the Identical Parallel

Machine Scheduling Problem, European Journal of Operational Research,
758-769, Vol. 152.

49. LEE, W. C., WU, C. C. and CHEN, P. (2006), A Simulated Annealing

Approach to Makespan Minimization on Identical Parallel Machines, Int J
Adv Manuf Technol, 328-334, Vol. 31.

50. MIN, L. and CHENG, W. (1999), A Genetic Algorithm for Minimizing the

Makespan in the Case of Scheduling Parallel Machines, Artificial Intelligence
in Engineering, 399–403, Vol. 13.

51. ARTHANARI, T. S. and RAMAMURTHY, K. G. (1971), An Extension of

Two Machines Sequencing Problem, Opsearch, 10-22, Vol. 8.

52. GUPTA, J. N. D. (1988), Two-stage, hybrid flowshop scheduling problem,

Operations Research, 359-364, Vol. 38.

53. SRISKANDARAJAH, C. and SETHI, S. P. (1989), Scheduling Algorithms

for Flexible Flowshops: Worst and Average Case Performance, European
Journal of Operations Research, 143-160, Vol. 43.

 R7

54. GUPTA, J. N. D. and TUNC, E. A. (1991), Schedules for a Two-stage
Hybrid Flowshop with Parallel Machines at the Second Stage, European
Journal of Operational Research, 415-428, Vol. 77.

55. GUPTA, J. N. D., HARIRI, A. M. A. and POTTS, C. N. (1997), Scheduling

a Two-stage Hybrid Flow Shop with Parallel Machines at the First Stage,
Annals of Operations Research, 171–191, Vol. 69.

56. OĞUZ, C., ERCAN, M. F., CHENG, T. C. E. and FUNG, Y. F. (2003),

Heuristic Algorithms for Multiprocessor Task Scheduling in a Two-stage
Hybrid Flow-shop, European Journal of Operational Research, 390-403, Vol.
149.

57. HAOUARI, M. and M’HALLAH, R. (1997), Heuristic Algorithms for the

Two-stage Hybrid Flowshop Problem, Operations Research Letters, 43-53,
Vol. 21.

58. WITTROCK, R. J. (1985), Scheduling Algorithms for Flexible Flow Lines,

IBM J. Res. Develop, 401-412, Vol. 29.

59. WITTROCK, R. J. (1988), An Adaptable Scheduling Algorithms for

Flexible Flow Lines, Operations Research, 445-453, Vol. 33.

60. BRAH, S. A. and HUNSUCKER, J. L. (1991), Branch and Bound

Algorithm for the Flow shop with Multiple Processors, European Journal of
Operational Research, 88-99, Vol. 51.

61. JIN, Z., YANG, Z. and ITO, T. (2006), Metaheuristic Algorithms for the

Multistage Hybrid Flowshop Scheduling problem, Int. J. Production
Economics, 332-334, Vol. 100.

62. RIANE, F., ARTIBA, A. and ELMAGHRABY, S. E. (2002), Sequencing a

Hybrid Two-stage Flowshop with Dedicated Machines, International Journal
of Production Research, 4353-4380, Vol. 40.

 A1

APPENDIX A

NUMERICAL EXAMPLE ON THE BRANCH AND BOUND

ALGORITHM

To illustrate our branch and bound algorithm, suppose that we have six jobs with

the processing times given in Table A.1. The first three jobs are type-1 jobs;

others are type-2 jobs.

Table A.1: Processing Times for the Numerical Example

 Processing Times

Jobs Stage 1 Stage 2 Stage 3

1 7 1 2

2 3 3 6

3 2 6 5

4 1 0 8

5 3 0 4

6 7 0 4

Before applying the branch-and-bound algorithm on this example, we first apply

the sequencing-rules based heuristic and obtain the initial upper bound for our

branch and bound algorithm. Since the proposed heuristic algorithm and the

global lower bound value are already calculated in Section 5.4 for the same data,

we select the makespan of the sequence 4-5-6-3-2-1, which is 30, as the upper

 A2

bound. In these calculations, we see that the makespan value for the schedule

obtained by sequencing-rules based heuristic is equal to the global lower bound

value. Thus, we can conclude that the optimal makespan value for the example is

30.

We branch from node 0.

LEVEL 1

The lower bounds on node 1 as follows:

{ }1 2 (6 5) min 3 3,6 2 191LB = + + + + + =

{ }2 3 (3 6) min 3,2 141LB = + + + =

3 10 (3 2) 151LB = + + =

{ }4 2 (8 4 4) min 1,3,7 191LB = + + + + =

{ }

{ }
{ }

5 max 2,min 0,01

(1 3 7) max 0,max(2,0,0) max(2,min(0,0))
max max 1,3,7 , 9

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

{ }max 19, 14, 15, 19, 9 191LB = =

The lower bounds on node 2:

 A3

{ }1 6 (2 5) min 1 7,6 2 212LB = + + + + + =

{ }2 9 (1 6) min 7,2 182LB = + + + =

3 12 (7 2) 212LB = + + =

{ }4 6 (8 4 4) min 1,3,7 232LB = + + + + =

{ }

{ }
{ }

5 max 6,min 0,02

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

{ }max 21, 18, 21, 23, 13 232LB = =

The lower bounds on node 3:

{ }1 5 (2 6) min 1 7,3 3 193LB = + + + + + =

{ }2 11 (1 3) min 7,3 183LB = + + + =

3 13 (7 3) 233LB = + + =

{ }4 5 (8 4 4) min 1,3,7 223LB = + + + + =

 A4

{ }

{ }
{ }

5 max 5,min 0,03

(1 3 7) max 0,max(5,0,0) max(5,min(0,0))
max max 1,3,7 , 12

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

{ }max 19, 18, 23, 22, 12 233LB = =

The lower bounds on node 4 as follows:

{ }1 8 (2 6 5) min 1 7,3 3,6 2 274LB = + + + + + + + =

{ }2 8 (1 3 6) min 7,3,2 204LB = + + + + =

3 8 (7 3 2) 204LB = + + + =

{ }4 8 (4 4) min 1,3,7 174LB = + + + =

{ }

{ }
{ }

5 max 8,min 0,04

(1 3 7) max 0,max(8,0,0) max(8,min(0,0))
max max 1,3,7 , 15

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

{ }max 27, 20, 20, 17, 15 274LB = =

The lower bounds on node 5 as follows:

{ }1 4 (2 6 5) min 1 7,3 3,6 2 235LB = + + + + + + + =

 A5

{ }2 4 (1 3 6) min 7,3,2 165LB = + + + + =

3 4 (7 3 2) 165LB = + + + =

{ }4 4 (8 4) min 1,3,7 175LB = + + + =

{ }

{ }
{ }

5 max 4,min 0,05

(1 3 7) max 0,max(4,0,0) max(4,min(0,0))
max max 1,3,7 , 11

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

{ }max 23, 16, 16, 17, 11 235LB = =

The lower bounds on node 6 as follows:

{ }1 4 (2 6 5) min 1 7,3 3,6 2 236LB = + + + + + + + =

{ }2 4 (1 3 6) min 7,3,2 166LB = + + + + =

3 4 (7 3 2) 166LB = + + + =

{ }4 4 (8 4) min 1,3,7 176LB = + + + =

{ }

{ }
{ }

5 max 4,min 0,06

(1 3 7) max 0,max(4,0,0) max(4,min(0,0))
max max 1,3,7 , 11

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

 A6

{ }max 23, 16, 16, 17, 11 236LB = =

After the calculation of the lower bounds of the jobs in set uJ , the node with the

smallest lower bound value is selected to be branched next.

{ }_ [()] min , , ..., 1 2Global LB LEVEL i LB LB LBk= where s(uJ) = k

So,

{ }_ [(1)] min 19, 23, 23, 27, 23, 23 19Global LB LEVEL = = ,

branch from node 1.

LEVEL 2

The lower bounds on node 1-2:

1 8 5 (6 2) 211 2LB = + + + =−

2 11 6 2 191 2LB = + + =−

3 14 2 161 2LB = + =−

{ }4 8 (8 4 4) min 1,3,7 251 2LB = + + + + =−

{ }

{ }
{ }

5 max 8,min 0,01 2

(1 3 7) max 0,max(8,0,0) max(8,min(0,0))
max max 1,3,7 , 15

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=

{ }max 21, 19, 16, 25, 15 251 2LB = =−

 A7

The lower bounds on node 1-3:

1 7 6 (3 3) 191 3LB = + + + =−

2 13 3 3 191 3LB = + + =−

3 15 3 181 3LB = + =−

{ }4 7 (8 4 4) min 1,3,7 241 3LB = + + + + =−

{ }

{ }
{ }

5 max 7,min 0,01 3

(1 3 7) max 0,max(7,0,0) max(7,min(0,0))
max max 1,3,7 , 14

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=

{ }max 19, 19, 18, 24, 14 241 3LB = =−

The lower bounds on node 1-4 as follows:

{ }1 10 (6 5) min 3 3,6 2 271 4LB = + + + + + =−

{ }2 10 (3 6) min 3,2 211 4LB = + + + =−

3 10 (3 2) 151 4LB = + + =−

{ }4 10 (4 4) min 1,3,7 191 4LB = + + + =−

 A8

{ }

{ }
{ }

5 max 10,min 0,01 4

(1 3 7) max 0,max(10,0,0) max(10,min(0,0))
max max 1,3,7 , 17

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=

{ }max 27, 21, 15, 19, 17 271 4LB = =−

The lower bounds on node 1-5 as follows:

{ }1 6 (6 5) min 3 3,6 2 231 5LB = + + + + + =−

{ }2 6 (3 6) min 3,2 171 5LB = + + + =−

3 6 (3 2) 111 5LB = + + =−

{ }4 6 (8 4) min 1,3,7 191 5LB = + + + =−

{ }

{ }
{ }

5 max 6,min 0,01 5

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=

{ }max 23, 17, 11, 19, 13 231 5LB = =−

The lower bounds on node 1-6 as follows:

 A9

{ }1 6 (6 5) min 3 3,6 2 231 6LB = + + + + + =−

{ }2 6 (3 6) min 3,2 171 6LB = + + + =−

3 6 (3 2) 111 6LB = + + =−

{ }4 6 (8 4) min 1,3,7 191 6LB = + + + =−

{ }

{ }
{ }

5 max 6,min 0,01 6

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=

{ }max 23, 17, 11, 19, 13 231 6LB = =−

{ }_ [(2)] min 25, 24, 27, 23, 23 23Global LB LEVEL = = ,

branch from node 10 or node 11 since they have the smallest lower bound value;

choose one of them arbitrary.

LEVEL 3

The lower bounds on node 1-5-2:

1 12 5 (2 6) 251 5 2LB = + + + =− −

2 15 6 2 231 5 2LB = + + =− −

3 18 2 201 5 2LB = + =− −

 A10

{ }4 12 (8 4) min 1,7 251 5 2LB = + + + =− −

{ }

{ }
{ }

5 max 12,min 9,01 5 2

(1 7) max 0,max(12,9,0) max(12,min(9,0))
max max 1,7 , 19

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=

{ }max 25, 23, 20, 25, 19 251 5 2LB = =− −

The lower bounds on node 1-5-3 as follows:

1 11 6 (3 3) 231 5 3LB = + + + =− −

2 17 3 3 231 5 3LB = + + =− −

3 19 3 221 5 3LB = + =− −

{ }4 11 (8 4) min 1,7 241 5 3LB = + + + =− −

{ }

{ }
{ }

5 max 11,min 9,01 5 3

(1 7) max 0,max(11,9,0) max(11,min(9,0))
max max 1,7 , 18

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=

{ }max 23, 23, 22, 24, 18 241 5 3LB = =− −

The lower bounds on node 1-5-4 as follows:

 A11

{ }1 14 (6 5) min 3 3,6 2 311 5 4LB = + + + + + =− −

{ }2 14 (3 6) min 3,2 251 5 4LB = + + + =− −

3 14 (3 2) 191 5 4LB = + + =− −

{ }4 14 4 min 1,7 191 5 4LB = + + =− −

{ }

{ }
{ }

5 max 14,min 9,01 5 4

(1 7) max 0,max(14,9,0) max(14,min(9,0))
max max 1,7 , 21

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=

{ }max 31, 25, 19, 19, 21 311 5 4LB = =− −

The lower bounds on node 1-5-6 as follows:

{ }1 10 (6 5) min 3 3,6 2 271 5 6LB = + + + + + =− −

{ }2 10 (3 6) min 3,2 211 5 6LB = + + + =− −

3 10 (3 2) 151 5 6LB = + + =− −

{ }4 10 8 min 1,7 191 5 6LB = + + =− −

 A12

{ }

{ }
{ }

5 max 10,min 9,01 5 6

(1 7) max 0,max(10,9,0) max(10,min(9,0))
max max 1,7 , 17

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=

{ }max 27, 21, 15, 19, 17 271 5 6LB = =− −

{ }_ [(3)] min 25, 24, 31, 27 24Global LB LEVEL = = ,

branch from node 13

LEVEL 4

The lower bounds on node 1-5-3-2 as follows:

1 17 0 0 171 5 3 2LB = + + =− − −

2 20 0 0 201 5 3 2LB = + + =− − −

3 23 0 231 5 3 2LB = + =− − −

{ }4 17 (8 4) min 1,7 301 5 3 2LB = + + + =− − −

{ }

{ }
{ }

5 max 17,min 9,01 5 3 2

(1 7) max 0,max(17,9,0) max(17,min(9,0))
max max 1,7 , 24

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=

 A13

{ }max 17, 20, 23, 30, 24 301 5 3 2LB = =− − −

The lower bounds on node 1-5-3-4 as follows:

1 19 6 (3 3) 311 5 3 4LB = + + + =− − −

2 19 3 3 251 5 3 4LB = + + =− − −

3 19 3 221 5 3 4LB = + =− − −

{ }4 19 4 min 1,7 241 5 3 4LB = + + =− − −

{ }

{ }
{ }

5 max 19,min 9,01 5 3 4

(1 7) max 0,max(19,9,0) max(19,min(9,0))
max max 1,7 , 26

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=

{ }max 31, 25, 22, 24, 26 311 5 3 4LB = =− − −

The lower bounds on node 1-5-3-6 as follows:

1 15 6 (3 3) 271 5 3 6LB = + + + =− − −

2 15 3 3 211 5 3 6LB = + + =− − −

3 15 3 181 5 3 6LB = + =− − −

{ }4 15 8 min 1,7 241 5 3 6LB = + + =− − −

 A14

{ }

{ }
{ }

5 max 15,min 9,01 5 3 6

(1 7) max 0,max(15,9,0) max(15,min(9,0))
max max 1,7 , 22

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=

{ }max 27, 21, 18, 24, 22 271 5 3 6LB = =− − −

{ }_ [(4)] min 30, 31, 27 27Global LB LEVEL = = ,

branch from node 13

LEVEL 5

The lower bounds on node 1-5-3-6-2 as follows:

1 21 0 0 211 5 3 6 2LB = + + =− − − −

2 24 0 0 241 5 3 6 2LB = + + =− − − −

3 27 0 271 5 3 6 2LB = + =− − − −

4 21 8 1 301 5 3 6 2LB = + + =− − − −

{ }

{ }

5 max 21,min 9,221 5 3 6 2

1 max 0,max(21,9,22) max(21,min(9,22))
max 1, 22

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − −

− −
=

{ }max 21, 24, 27, 30, 22 301 5 3 6 2LB = =− − − −

 A15

The lower bounds on node 1-5-3-6-4 as follows:

1 23 6 (3 3) 351 5 3 6 4LB = + + + =− − − −

2 23 3 3 291 5 3 6 4LB = + + =− − − −

3 23 3 261 5 3 6 4LB = + =− − − −

4 23 0 1 241 5 3 6 4LB = + + =− − − −

{ }

{ }

5 max 23,min 9,221 5 3 6 4

1 max 0,max(23,9,22) max(23,min(9,22))
max 1, 24

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − −

− −
=

{ }max 35, 29, 26, 24, 24 351 5 3 6 4LB = =− − − −

{ }_ [(5)] min 30, 35 30Global LB LEVEL = = ,

branch from node 19

LEVEL 6

The lower bounds on node 1-5-3-6-2-4 as follows:

1 29 0 0 291 5 3 6 2 4LB = + + =− − − − −

2 29 0 0 291 5 3 6 2LB = + + =− − − −

3 29 0 291 5 3 6 2 4LB = + =− − − − −

 A16

4 29 0 1 301 5 3 6 2 4LB = + + =− − − − −

{ }

{ }

5 max 29,min 9,221 5 3 6 2 4

1 max 0,max(29,9,22) max(29,min(9,22))
max 1, 30

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − − −

− −
=

{ }max 29, 29, 29, 30, 30 301 5 3 6 2 4LB = =− − − − −

max 30C =

At last level of the tree, we obtain a complete schedule with the makespan value

30 that is equal to the optimal one. Hence, we cannot get better result than 30; so

we can fathom all other unbranched nodes.

Since there is no unfathomed or nonbranched node, we do not backtrack and the

latest updated upper bound is accepted as the solution of the algorithm, 30.

Branching scheme of the numerical example is given in Figure A.1.

 A17

1

Node1

0

6

Node6

5

Node5

4

Node4

3

Node3

2

Node2

6

Node11

5

Node10

4

Node9

3

Node8

2

Node7

4

Node21

4
Node20

2

Node19

6

Node18

4

Node17

2

Node16

LB1=19 LB2=23 LB3=23 LB4=27 LB5=23 LB6=23

LB7=25 LB8=24 LB9=27 LB10=23 LB11=23

LB12=25 LB13=24 LB14=31 LB15=27

LB16=30 LB17=31 LB18=27

LB19=30 LB20=35

Cmax=30

6

Node15

4

Node14

3

Node13

2

Node12

Figure A.1: Branching Scheme of the Numerical Example

 A18

APPENDIX B

NUMERICAL EXAMPLE ON THE BRANCH-AND-BOUND

BASED HEURISTIC

To illustrate the proposed heuristic algorithm, suppose that we have six jobs with

the processing times given in Table B.1. The first three jobs are type-1 jobs;

others are type-2 jobs.

Table B.1: Processing Times for the Numerical Example

 Processing Times

Jobs Stage 1 Stage 2 Stage 3

1 7 1 2

2 3 3 6

3 2 6 5

4 1 0 8

5 3 0 4

6 7 0 4

We branch from node 0.

LEVEL 1

The lower bounds on node 1 as follows:

 A19

{ }1 2 (6 5) min 3 3,6 2 191LB = + + + + + =

{ }2 3 (3 6) min 3,2 141LB = + + + =

3 10 (3 2) 151LB = + + =

{ }4 2 (8 4 4) min 1,3,7 191LB = + + + + =

{ }

{ }
{ }

5 max 2,min 0,01

(1 3 7) max 0,max(2,0,0) max(2,min(0,0))
max max 1,3,7 , 9

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

{ }max 19, 14, 15, 19, 9 191LB = =

The lower bounds on node 2:

{ }1 6 (2 5) min 1 7,6 2 212LB = + + + + + =

{ }2 9 (1 6) min 7,2 182LB = + + + =

3 12 (7 2) 212LB = + + =

{ }4 6 (8 4 4) min 1,3,7 232LB = + + + + =

 A20

{ }

{ }
{ }

5 max 6,min 0,02

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

{ }max 21, 18, 21, 23, 13 232LB = =

The lower bounds on node 3:

{ }1 5 (2 6) min 1 7,3 3 193LB = + + + + + =

{ }2 11 (1 3) min 7,3 183LB = + + + =

3 13 (7 3) 233LB = + + =

{ }4 5 (8 4 4) min 1,3,7 223LB = + + + + =

{ }

{ }
{ }

5 max 5,min 0,03

(1 3 7) max 0,max(5,0,0) max(5,min(0,0))
max max 1,3,7 , 12

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

{ }max 19, 18, 23, 22, 12 233LB = =

The lower bounds on node 4 as follows:

 A21

{ }1 8 (2 6 5) min 1 7,3 3,6 2 274LB = + + + + + + + =

{ }2 8 (1 3 6) min 7,3,2 204LB = + + + + =

3 8 (7 3 2) 204LB = + + + =

{ }4 8 (4 4) min 1,3,7 174LB = + + + =

{ }

{ }
{ }

5 max 8,min 0,04

(1 3 7) max 0,max(8,0,0) max(8,min(0,0))
max max 1,3,7 , 15

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

{ }max 27, 20, 20, 17, 15 274LB = =

The lower bounds on node 5 as follows:

{ }1 4 (2 6 5) min 1 7,3 3,6 2 235LB = + + + + + + + =

{ }2 4 (1 3 6) min 7,3,2 165LB = + + + + =

3 4 (7 3 2) 165LB = + + + =

{ }4 4 (8 4) min 1,3,7 175LB = + + + =

 A22

{ }

{ }
{ }

5 max 4,min 0,05

(1 3 7) max 0,max(4,0,0) max(4,min(0,0))
max max 1,3,7 , 11

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

{ }max 23, 16, 16, 17, 11 235LB = =

The lower bounds on node 6 as follows:

{ }1 4 (2 6 5) min 1 7,3 3,6 2 236LB = + + + + + + + =

{ }2 4 (1 3 6) min 7,3,2 166LB = + + + + =

3 4 (7 3 2) 166LB = + + + =

{ }4 4 (8 4) min 1,3,7 176LB = + + + =

{ }

{ }
{ }

5 max 4,min 0,06

(1 3 7) max 0,max(4,0,0) max(4,min(0,0))
max max 1,3,7 , 11

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +

+ + − −
=

{ }max 23, 16, 16, 17, 11 236LB = =

After the calculation of the lower bounds of the jobs in set uJ , the node with the

smallest lower bound value is selected to be branched next.

So,

 A23

{ }_ [(1)] min 19, 23, 23, 27, 23, 23 19Global LB LEVEL = = ,

branch from node 1.

LEVEL 2

The lower bounds on node 1-2:

1 8 5 (6 2) 211 2LB = + + + =−

2 11 6 2 191 2LB = + + =−

3 14 2 161 2LB = + =−

{ }4 8 (8 4 4) min 1,3,7 251 2LB = + + + + =−

{ }

{ }
{ }

5 max 8,min 0,01 2

(1 3 7) max 0,max(8,0,0) max(8,min(0,0))
max max 1,3,7 , 15

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=

{ }max 21, 19, 16, 25, 15 251 2LB = =−

The lower bounds on node 1-3:

1 7 6 (3 3) 191 3LB = + + + =−

2 13 3 3 191 3LB = + + =−

3 15 3 181 3LB = + =−

 A24

{ }4 7 (8 4 4) min 1,3,7 241 3LB = + + + + =−

{ }

{ }
{ }

5 max 7,min 0,01 3

(1 3 7) max 0,max(7,0,0) max(7,min(0,0))
max max 1,3,7 , 14

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=

{ }max 19, 19, 18, 24, 14 241 3LB = =−

The lower bounds on node 1-4 as follows:

{ }1 10 (6 5) min 3 3,6 2 271 4LB = + + + + + =−

{ }2 10 (3 6) min 3,2 211 4LB = + + + =−

3 10 (3 2) 151 4LB = + + =−

{ }4 10 (4 4) min 1,3,7 191 4LB = + + + =−

{ }

{ }
{ }

5 max 10,min 0,01 4

(1 3 7) max 0,max(10,0,0) max(10,min(0,0))
max max 1,3,7 , 17

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=

{ }max 27, 21, 15, 19, 17 271 4LB = =−

The lower bounds on node 1-5 as follows:

 A25

{ }1 6 (6 5) min 3 3,6 2 231 5LB = + + + + + =−

{ }2 6 (3 6) min 3,2 171 5LB = + + + =−

3 6 (3 2) 111 5LB = + + =−

{ }4 6 (8 4) min 1,3,7 191 5LB = + + + =−

{ }

{ }
{ }

5 max 6,min 0,01 5

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=

{ }max 23, 17, 11, 19, 13 231 5LB = =−

The lower bounds on node 1-6 as follows:

{ }1 6 (6 5) min 3 3,6 2 231 6LB = + + + + + =−

{ }2 6 (3 6) min 3,2 171 6LB = + + + =−

3 6 (3 2) 111 6LB = + + =−

{ }4 6 (8 4) min 1,3,7 191 6LB = + + + =−

 A26

{ }

{ }
{ }

5 max 6,min 0,01 6

(1 3 7) max 0,max(6,0,0) max(6,min(0,0))
max max 1,3,7 , 13

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +−

+ + − −
=

{ }max 23, 17, 11, 19, 13 231 6LB = =−

{ }_ [(2)] min 25, 24, 27, 23, 23 23Global LB LEVEL = = ,

branch from node 10 or node 11 since they have the smallest lower bound value;

choose one of them arbitrary.

LEVEL 3

The lower bounds on node 1-5-2:

1 12 5 (2 6) 251 5 2LB = + + + =− −

2 15 6 2 231 5 2LB = + + =− −

3 18 2 201 5 2LB = + =− −

{ }4 12 (8 4) min 1,7 251 5 2LB = + + + =− −

{ }

{ }
{ }

5 max 12,min 9,01 5 2

(1 7) max 0,max(12,9,0) max(12,min(9,0))
max max 1,7 , 19

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=

 A27

{ }max 25, 23, 20, 25, 19 251 5 2LB = =− −

The lower bounds on node 1-5-3 as follows:

1 11 6 (3 3) 231 5 3LB = + + + =− −

2 17 3 3 231 5 3LB = + + =− −

3 19 3 221 5 3LB = + =− −

{ }4 11 (8 4) min 1,7 241 5 3LB = + + + =− −

{ }

{ }
{ }

5 max 11,min 9,01 5 3

(1 7) max 0,max(11,9,0) max(11,min(9,0))
max max 1,7 , 18

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=

{ }max 23, 23, 22, 24, 18 241 5 3LB = =− −

The lower bounds on node 1-5-4 as follows:

{ }1 14 (6 5) min 3 3,6 2 311 5 4LB = + + + + + =− −

{ }2 14 (3 6) min 3,2 251 5 4LB = + + + =− −

3 14 (3 2) 191 5 4LB = + + =− −

{ }4 14 4 min 1,7 191 5 4LB = + + =− −

 A28

{ }

{ }
{ }

5 max 14,min 9,01 5 4

(1 7) max 0,max(14,9,0) max(14,min(9,0))
max max 1,7 , 21

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=

{ }max 31, 25, 19, 19, 21 311 5 4LB = =− −

The lower bounds on node 1-5-6 as follows:

{ }1 10 (6 5) min 3 3,6 2 271 5 6LB = + + + + + =− −

{ }2 10 (3 6) min 3,2 211 5 6LB = + + + =− −

3 10 (3 2) 151 5 6LB = + + =− −

{ }4 10 8 min 1,7 191 5 6LB = + + =− −

{ }

{ }
{ }

5 max 10,min 9,01 5 6

(1 7) max 0,max(10,9,0) max(10,min(9,0))
max max 1,7 , 17

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− −

+ − −
=

{ }max 27, 21, 15, 19, 17 271 5 6LB = =− −

{ }_ [(3)] min 25, 24, 31, 27 24Global LB LEVEL = = ,

branch from node 13

 A29

LEVEL 4

The lower bounds on node 1-5-3-2 as follows:

1 17 0 0 171 5 3 2LB = + + =− − −

2 20 0 0 201 5 3 2LB = + + =− − −

3 23 0 231 5 3 2LB = + =− − −

{ }4 17 (8 4) min 1,7 301 5 3 2LB = + + + =− − −

{ }

{ }
{ }

5 max 17,min 9,01 5 3 2

(1 7) max 0,max(17,9,0) max(17,min(9,0))
max max 1,7 , 24

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=

{ }max 17, 20, 23, 30, 24 301 5 3 2LB = =− − −

The lower bounds on node 1-5-3-4 as follows:

1 19 6 (3 3) 311 5 3 4LB = + + + =− − −

2 19 3 3 251 5 3 4LB = + + =− − −

3 19 3 221 5 3 4LB = + =− − −

{ }4 19 4 min 1,7 241 5 3 4LB = + + =− − −

 A30

{ }

{ }
{ }

5 max 19,min 9,01 5 3 4

(1 7) max 0,max(19,9,0) max(19,min(9,0))
max max 1,7 , 26

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=

{ }max 31, 25, 22, 24, 26 311 5 3 4LB = =− − −

The lower bounds on node 1-5-3-6 as follows:

1 15 6 (3 3) 271 5 3 6LB = + + + =− − −

2 15 3 3 211 5 3 6LB = + + =− − −

3 15 3 181 5 3 6LB = + =− − −

{ }4 15 8 min 1,7 241 5 3 6LB = + + =− − −

{ }

{ }
{ }

5 max 15,min 9,01 5 3 6

(1 7) max 0,max(15,9,0) max(15,min(9,0))
max max 1,7 , 22

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − −

+ − −
=

{ }max 27, 21, 18, 24, 22 271 5 3 6LB = =− − −

{ }_ [(4)] min 30, 31, 27 27Global LB LEVEL = = ,

branch from node 13

 A31

LEVEL 5

The lower bounds on node 1-5-3-6-2 as follows:

1 21 0 0 211 5 3 6 2LB = + + =− − − −

2 24 0 0 241 5 3 6 2LB = + + =− − − −

3 27 0 271 5 3 6 2LB = + =− − − −

4 21 8 1 301 5 3 6 2LB = + + =− − − −

{ }

{ }

5 max 21,min 9,221 5 3 6 2

1 max 0,max(21,9,22) max(21,min(9,22))
max 1, 22

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − −

− −
=

{ }max 21, 24, 27, 30, 22 301 5 3 6 2LB = =− − − −

The lower bounds on node 1-5-3-6-4 as follows:

1 23 6 (3 3) 351 5 3 6 4LB = + + + =− − − −

2 23 3 3 291 5 3 6 4LB = + + =− − − −

3 23 3 261 5 3 6 4LB = + =− − − −

4 23 0 1 241 5 3 6 4LB = + + =− − − −

 A32

{ }

{ }

5 max 23,min 9,221 5 3 6 4

1 max 0,max(23,9,22) max(23,min(9,22))
max 1, 24

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − −

− −
=

{ }max 35, 29, 26, 24, 24 351 5 3 6 4LB = =− − − −

{ }_ [(5)] min 30, 35 30Global LB LEVEL = = ,

branch from node 19

LEVEL 6

The lower bounds on node 1-5-3-6-2-4 as follows:

1 29 0 0 291 5 3 6 2 4LB = + + =− − − − −

2 29 0 0 291 5 3 6 2LB = + + =− − − −

3 29 0 291 5 3 6 2 4LB = + =− − − − −

4 29 0 1 301 5 3 6 2 4LB = + + =− − − − −

{ }

{ }

5 max 29,min 9,221 5 3 6 2 4

1 max 0,max(29,9,22) max(29,min(9,22))
max 1, 30

2

LB ⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= +− − − − −

− −
=

{ }max 29, 29, 29, 30, 30 301 5 3 6 2 4LB = =− − − − −

 A33

max 30C =

Branching scheme of the numerical example is given in Figure B.1.

 A34

1

Node1

0

6

Node6

5

Node5

4

Node4

3

Node3

2

Node2

6

Node11

5

Node10

4

Node9

3

Node8

2

Node7

4

Node21

4
Node20

2

Node19

6

Node18

4

Node17

2

Node16

LB1=19 LB2=23 LB3=23 LB4=27 LB5=23 LB6=23

LB7=25 LB8=24 LB9=27 LB10=23 LB11=23

LB12=25 LB13=24 LB14=31 LB15=27

LB16=30 LB17=31 LB18=27

LB19=30 LB20=35

Cmax=30

6

Node15

4

Node14

3

Node13

2

Node12

Figure B.1: Branching Scheme of the Numerical Example

