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a b s t r a c t 

In the recent years some effort s were made to propose simple and well-behaved fractional derivatives 

that inherit the classical properties from the first order derivative. In this regards, the truncated M - 

fractional derivative for α-differentiable function was recently introduced that is a generalization of four 

fractional derivatives presented in the literature and has their important features. In this research, we aim 

to generalize this novel and effective derivative under interval uncertainty. The concept of interval trun- 

cated M -fractional derivative is introduced and some of the distinguished properties of this interesting 

fractional derivative such as Rolle’s and mean value theorems, are developed for the interval functions. 

In addition, the existence and uniqueness conditions of the solution for the interval fractional differential 

equations (IFDEs) based on this new derivative are also investigated. Finally, we present the applicability 

of this novel interval fractional derivative for IFDEs based on the notion of w -increasing ( w -decreasing) 

by solving a number of test problems. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The fractional calculus is a standout amongst the most pre-

cise devices to redefine the natural phenomena. In the recent few

decades a lot of researchers have shown their interest due to its

frequent appearances in many fields of science and engineering.

It enhances the accuracy of models due to various types of frac-

tional derivatives and nature [1–11] . In fact, the use of fractional

order differential equation for the modelling is more effective than

integer order derivatives which can easily explain the hereditary

properties and memory [12–21] . 

While these studies have been carried out, scientists used

different definitions of fractional derivative and integral such as

Grünwald-Letnikov, Riesz-Fischer, Caputo, Riemann-Liouville, and

modified Riemann-Liouville. But almost all of these derivatives

have some kind of flaws. For instance, the Riemann-Liouville frac-

tional derivative of a constant is not zero, the Riemann-Liouville

derivative and Caputo derivative do not obey the Leibnitz rule and

chain rule. The Riemann-Liouville derivative and Caputo do not
∗ Corresponding author. 
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atisfy the known formula of the derivative of the quotient of two

unctions [22] . 

To overcome the above mentioned shortcomings, recently a

ew type of fractional derivative called conformable fractional

erivative has been introduced by Khalil et al. [22] . The applica-

ility, and effectiveness of the conformable derivative have been

tudied in various fields [23–25] . Hence, it was found worthwhile

o work on this new area and develop it with some new features.

n this regards, Sousa et al. [26] introduced a generalization of four

ractional derivatives including conformable fractional derivative,

lternative fractional derivative, generalized alternative fractional

erivative [27] and M -fractional derivative [28] . It is called trun-

ated M -fractional derivative for α-differentiable functions. This

ew fractional derivative behaves well with respect to the classi-

al properties of the integer-order derivative. 

On the other hand, the interval arithmetic and interval differ-

ntial equations (IDEs) have not been considered enough from the

ime that were introduced by Markove [29] . In fact, he was the

ioneer in this field to propose the interval-valued function, inter-

al derivatives and etc. However, in the recent years, the scientists

ound the applicability of this significant notion that measures un-

ertainties in the mathematical modeling with uncertain parame-

ers. Therefore, a number of researches have been done in this re-

https://doi.org/10.1016/j.chaos.2018.10.002
http://www.ScienceDirect.com
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ards to analyze the mathematical systems based on the interval

arameters and study the existence and uniqueness of the interval

olutions of the IDEs [30–35] . As a matter of fact, interval arith-

etic is a branch of fuzzy sets that deals with the intervals from

he first step of modeling or numerical algorithm that can reduce

he complexity and computational difficulties compared with fuzzy

ystems. 

Considering the above circumstances, we motivated to general-

ze truncated M -fractional derivative for interval fractional differ-

ntial equations (IFDEs). Similar to the integer order differential

quations, a limited number of researches devoted to IFDEs, even

 few studies have been done for fuzzy fractional calculus [36–48] .

ecause of the vast applications of interval and fuzzy arithmetic

rising day to day in the engineering problems [49,50] , it is cru-

ial to take these important fields into the consideration. In this

egards, we study also in the current proposal the existence and

niqueness of the interval solutions of IFDEs based on the inter-

al truncated M -fractional derivative. The significant and applicable

lassical properties of this novel fractional derivative are developed

nder interval uncertainty. To the best of our knowledge, this re-

earch has enough potential to open a new window to the interval

ncertainty since it proposes a new model for a real-world sys-

em (Kelvin-Voigt system) based on this fractional derivative and

he behavior of the exact solution is analyzed by considering the

oncept of w -increasing (decreasing) presented in [29,30] . 

The paper is organized as follows: in Section 2 , some impor-

ant concept of interval arithmetic are revisited. Besides, the def-

nition and properties of truncated M -fractional derivative are re-

alled in this section. Section 3 includes the main results of this

eport. We propose in this section the notion of interval trun-

ated M -fractional derivative and discuss some of important clas-

ical properties of this derivative for interval-valued functions. A

umber of problems including the Kelvin-Voigt models are devel-

ped in Section 4 based on this new interval fractional derivative

nd the procedure to achieve the exact solution is explained com-

lexity. The results demonstrate the applicability and validity of

his new concept. To summarize, some conclusions and suggestions

or the future works are drawn. 

. Preliminaries and notation 

In the current section, we revisit some important features of the

nterval arithmetic presented in [35] . Also, the definition and some

ecessary properties of the truncated M -fractional derivative are

ecalled [28] . Interested reader are referred for a comprehensive

tudy of the fractional calculus to [1–3] . 

.1. Interval arithmetic 

Let F indicate the family of all nonempty, compact and convex

ntervals of the real line R . The addition and scalar multiplication

n F , we define as usual, i.e. for P , Q ∈ F , P = [ p , p ] , Q = [ q , q ] , p ≤
 , q ≤ q , and ϖ≥ 0 we have 

 + Q = [ p + q , p + q ] , 

� P = [ � p , � p ] (−� )P = [ −� p , −� p ] . 

The Hausdorff metric H in F is defined as follows: 

(P , Q) = max {| p − q | , | ̄p − q̄ |} , 
or P = [ p , p ] , Q = [ q , q ] . It is known (see e.g. [35] ) that (F , H) is a

omplete, separable and locally compact metric space. 

Let P , Q ∈ F . If there exists an interval T ∈ F such that P = Q +
 , then we call T the Hukuhara difference (H-difference for short)

f P and Q. We denote the interval T by P �Q. Note that P � Q � =
 + (−1)Q . 
As it was stated above, the H-difference is unique, but it does

ot always exist. A generalization of the Hukuharra difference is

roposed in [51] to overcome this shortcoming. 

efinition 2.1. The generalized Hukuhara difference of two fuzzy

umbers u 1 , u 2 ∈ F (gH-difference for short) is defined as follows

 1 �g u 2 = u 3 ⇔ 

{ 

(i ) u 1 = u 2 + u 3 , 

or 
(ii ) u 2 = u 1 + (−1) u 3 , 

(2.1) 

n which u 3 ∈ F . 

The most important definition of the interval derivative, based

n the fuzzy differentiability concept introduced in [51] , is defined

s: 

efinition 2.2. Let Y : (a, b) → F and ω ∈ ( a, b ). We say that Y is

trongly generalized (Hukuhara) differentiable at ω, if there exists

n element Y 

′ 
(ω) ∈ F , such that Y 

′ 
(ω) satisfies in one of the fol-

owing cases: 

(i) for all h > 0 sufficiently small, ∃Y(ω + h ) � Y(ω) , ∃Y(ω) �

Y(ω − h ) and 

lim 

h ↘ 0 

Y (ω+ h ) �Y (ω) 
h 

= lim 

h ↘ 0 

Y (ω) �Y (ω−h ) 
h 

, 

= Y 

′ 
(ω) 

(ii) for all h > 0 sufficiently small, ∃Y(ω) � Y(ω + h ) , ∃Y(ω −
h ) � Y(ω) and 

lim 

h ↘ 0 

Y (ω) �Y (ω+ h ) 
−h 

= lim 

h ↘ 0 

Y (ω−h ) �Y (ω) 
−h 

, 

= Y 

′ 
(ω) 

(iii) for all h > 0 sufficiently small, ∃Y(ω + h ) � Y(ω) , ∃Y(ω −
h ) � Y(ω) and 

lim 

h ↘ 0 

Y (ω+ h ) �Y (ω) 
h 

= lim 

h ↘ 0 

Y (ω−h ) �Y (ω) 
−h 

, 

= Y 

′ 
(ω) 

(iv) for all h > 0 sufficiently small, ∃Y(ω) � Y(ω + h ) , ∃Y(ω) �

Y(ω − h ) and 

lim 

h ↘ 0 

Y (ω) �Y (ω+ h ) 
−h 

= lim 

h ↘ 0 

Y (ω) �Y (ω−h ) 
h 

, 

= Y 

′ 
(ω) 

Next is definition of the generalized Hukuhara differentiability

gH-differentiable for short) which was introduced in [35] based

n the gH-difference. 

efinition 2.3. Let t ∈ ( a, b ) and h be such that t + h ∈ (a, b) , then

he generalized Hukuhara derivative of a fuzzy-valued function x :

(a, b) → F is defined as 

 

′ 
gH (t) = lim 

h → 0 

x (t + h ) �g x (t) 

h 

. (2.2) 

If x ′ gH (t) ∈ F satisfying Eq. (2.2) exists, we say that x is gH-

ifferentiable at t . Also, we say that x is [(i)-gH]-differentiable

t t , if x satisfies in Definition (2.2) -(i), then we have x ′ gH (t) =
 x ′ (t) , x ′ (t)] , similarly, x is [(ii)-gH]-differentiable at t , if x satisfies

n Definition (2.2) -(ii), then we have x ′ gH (t) = [ x ′ (t ) , x ′ (t )] . 

We say that an interval-valued function F : [ a, b] → F is

-increasing (w-decreasing) on [ a, b ] if the real function

 → w F ( t ) := w ( F ( t )) is increasing (decreasing) on [ a, b ]. If F is w -

ncreasing or w -decreasing on [ a, b ], then we say that F is w -

onotone on [ a, b ] (see, [30] ). 

roposition 2.1. (see, [29] ). Let F : [ a, b] → F be such that F (t) =
 f −(t) , f + (t)] , t ∈ [ a, b] . If F is w-monotone and gH-differentiable on
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[ a, b ], then d 
dt 

f −(t) and d 
dt 

f + (t) exist for all t ∈ [ a, b ] . Moreover, we

have that: 

(i) F ′ (t) = [ d 
dt 

f −(t) , d 
dt 

f + (t)] for all t ∈ [ a, b ], if F is w-increasing,

(ii) F ′ (t) = [ d 
dt 

f + (t) , d 
dt 

f −(t)] for all t ∈ [ a, b ], if F is w-decreasing.

2.2. Truncated M-fractional derivative 

Definition 2.4. The truncated Mittag-Leffler function with one pa-

rameter is defined as follows [26] : 

i E β (z) = 

i ∑ 

k =0 

z k 

�(βk + 1) 
, (2.3)

in which β > 0 and z ∈ C . 

The truncated M -fractional derivative in the sense of non-fuzzy

concept is stated in the following definition [28] . 

Definition 2.5. Let f : [0 , ∞ ) → R . For 0 < α < 1 the truncated M -

fractional derivative of f of order α, indicated by 

i f 
(α) 
β

(x ) := lim 

ε→ 0 

f (x i E β (ε x −α)) − f (x ) 

ε 
(2.4)

∀ t > 0 and i E β (.), β > 0 is a truncated Mittag-Leffler function of one

parameter, prescribed in Definition 2.4 . 

Some classical properties of the new fractional derivative are

presented in the next theorem. 

Theorem 2.1. Assume that 0 < α ≤ 1 , β > 0, a, b ∈ R and f, g are α-

differentiable at point x > 0 . Therefore: 

(1) i (a f + bg) (α) 
β

(x ) = a i f 
(α) 
β

(x ) + b i g 
(α) 
β

(x ) 

(2) i ( f .g) (α) 
β

(x ) = f (x ) i g 
(α) 
β

(x ) + g(x ) i f 
(α) 
β

(x ) 

(3) i ( 
f 
g ) 

(α) 
β

(x ) = 

g(x ) i f 
(α) 
β

(x ) − f (x ) i g 
(α) 
β

(x ) 

[ g(t)] 2 

(4) i (c) (α) 
β

= 0 , where f (t) = c is a constant. 

(5) (Chain rule) If f is differentiable, then i f 
(α) 
β

(x ) = 

x 1 −α

�(β+1) 
df (x ) 

dx 
. 

The M -fractional integral of order α is defined in the next defi-

nition. 

Definition 2.6. Let a ≥ 0 and t ≥ a . Also, let f be a function defined

in ( a, t ] and 0 < α < 1. Then, the M -fractional integral of order α of

function f is defined by (
I 
α,β
a f 

)
(t) = �(β + 1) 

∫ t 

a 

f (x ) 

x 1 −α
dx, (2.5)

in which b > 0. 

3. Main results 

In this section, the interval truncated M -fractional derivative is

presented and its important relevant classical properties are pro-

vided in details. Furthermore, the existence and uniqueness condi-

tions of the interval solution of the IFDEs based on this new inter-

val fractional derivative are analyzed. 

Considering the Definition 2.4 , we introduce the interval trun-

cated M -fractional derivative as follows: 

Definition 3.1. Let f ∈ F and 0 < α ≤ 1. The interval truncated M -

fractional derivative is defined as: 

i f 
(α) 
β

(t) = lim 

ε→ 0 

f (t i E β (εt −α)) �g f (t) 

ε 
, (3.1)

for all β , t > 0. Also, we have 

i f 
(α) 
β

(0) = lim 

t→ 0 + 
i f 

(α) 
β

(t) . 
Note that for the simplicity, if f satisfies in Definition 3.1 , then

e say that f is α-differentiable. 

The following theorem discusses the continuity of an interval

unction f that is α-differentiable under specified conditions. 

heorem 3.1. Assume that f ∈ F is α-differentiable at t 0 and

 < α ≤ 1, β > 0 . Then, f is a continuous function. 

roof. In fact we have: 

f ( t 0 i E β (εt −α
0 )) �g f ( t 0 ) = 

f ( t 0 i E β (εt −α
0 

)) �g f ( t 0 ) 

ε 
× ε. 

hen 

lim 

→ 0 

[
f ( t 0 i E β (εt −α

0 )) �g f ( t 0 ) 
]

= lim 

ε→ 0 

f ( t 0 i E β (εt −α
0 

)) �g f ( t 0 ) 

ε 
× lim 

ε→ 0 
ε

= i f 
(α) 
β

( t 0 ) × lim 

ε→ 0 
ε = 0 . 

ence, f is continuous at t 0 . �

In the next definition, the concept of gH-differentiability, stated

n Definition 2.3 , is generalized for the interval truncated M -

ractional derivative. 

efinition 3.2. Let f ∈ F then: 

(i) We say that f is ( α, 2) β -differentiable, if there ex-

sts i f 
(α) 
β

(x ) ∈ F such that for all ε > 0 sufficiently small,

f (x ) � f (x i E β (εx −α)) exist and the limits 

lim 

→ 0 

f (x ) � f (x i E β (εx −α)) 

ε 
= i f (α) 

β
(x ) . 

(ii) We say that f is ( α, 1) β -differentiable, if there ex-

sts i f 
(α) 
β

(x ) ∈ F such that for all ε > 0 sufficiently small,

f (x i E β (εx −α)) � f (x ) exist and the limits 

lim 

→ 0 

f (x i E β (εx −α)) � f (x ) 

ε 
= i f (α) 

β
(x ) . 

heorem 3.2. Let f (x ) = [ f 1 (x ) , f 2 (x )] is α-dfferentiable and w-

onotone on ( a, b ), then for every x ∈ ( a, b ), the derivative f (α) 
1 

(x )

nd f (α) 
2 

(x ) exist and f (α) (x ) = [ f (α) 
1 

(x ) , f (α) 
2 

(x )] , if f is w-increasing

nd f (α) (x ) = [ f (α) 
2 

(x ) , f (α) 
1 

(x )] , if f is w-decreasing. 

roof. Markov [29] proposed the concept of interval differentiabil-

ty for interval differential equations of the first order. In fact, con-

idering Definition (3.1) , we generalize aforesaid concept for IFDEs

nder the assumption of w -increasing: 

 

f (α) 
β

(x ) = lim 

ε→ 0 

f (x i E β (ε x −α)) � f (x ) 

ε 

= lim 

ε→ 0 

[
f 1 (x i E β (ε x −α)) , f 2 (x i E β (ε x −α)) 

]
� [ f 1 (x ) , f 2 (x ) ] 

ε 

= lim 

ε→ 0 

[
f 1 (x i E β (ε x −α)) − f 1 (x ) , f 2 (x i E β (ε x −α)) − f 2 (x ) 

]
ε 

= 

[ 
i 

(
f (α) 
β, 1 

)
(x ) , i 

(
f (α) 
β, 2 

)
(x ) . 

] 
For the case under the assumption of w -decreasing, the proce-

ure is similar to prove the results, hence we omit it. 

�

roposition 3.1. In [26] , the authors have shown that 

lim 

→ 0 
f (t i E β (ε t −α)) = f 

( 

t lim 

ε→ 0 

i ∑ 

k =0 

(ε t −α) 
k 

�(βk + 1) 

) 

. 
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Using the fact that lim 

ε→ 0 

∑ i 
k =0 

(ε t −α ) 
k 

�(βk +1) 
= 1 , we have: 

lim 

→ 0 
f (t i E β (ε t −α)) = f (t) , 

n which f is a continuous function. 

Now, we present some classical properties of the interval α-

erivative in the following theorem. 

heorem 3.3. Suppose that 0 < α ≤ 1, β > 0, a, b ∈ R and f, g are α-

ifferentiable. The, the following properties hold: 

(i) i ( a f (t) + bg(t) ) 
(α) 
β

= a i f 
(α) 
β

(t) + b i g 
(α) 
β

(t) . 

(ii) i f 
(α) 
β

(t) = 0 , where f (t) = c ∈ F . 

(iii) i f 
(α) 
β

(t) = 

t 1 −α

�(β+1) 
. f ′ (t) , if f is gH-differentiable. 

roof. We choose to prove (iii), and the others can be proved di-

ectly from the definition. From the Eq. (2.6) in [26] we have: 

 i E β (εt −α
0 ) = t 

i ∑ 

k =0 

(ε t −α) 
k 

�(βk + 1) 

= t + 

ε t 1 −α

�(β + 1) 
+ 

t (ε t −α) 
2 

�(2 β + 1) 
+ 

t (ε t −α) 
3 

�(3 β + 1) 

+ . . . + 

t (ε t −α) 
i 

�(iβ + 1) 
. 

herefore, we can truncate the above series and state it as fol-

ows: 

 i E β (εt −α
0 ) = t + 

ε t 1 −α

�(β + 1) 
+ O ( ε 2 ) . 

f h = ε t 1 −α
(

1 
�(β+1) 

+ O (ε) 
)
, then 

 = 

h 

t 1 −α
(

1 
�(β+1) 

+ O (ε) 
) , 

nd we have: 

 

f (α) 
β

(t) = 

t 1 −α

�(β + 1) 
lim 

h → 0 

f (t+ h ) �g f (t) 

h 

1 + �(β + 1) O (ε) 

= 

t 1 −α

�(β + 1) 
. f ′ (t) , 

here β > 0. 

�

heorem 3.4. f, g ∈ F and differentiable of the same type (both

f them are ( α, 1) β -differentiable or ( α, 2) β -differentiable). Then,

 f �g g )( x ) is differentiable and 

 

( f �g g ) 
(α) 
β (x ) = i f 

(α) 
β

(x ) �g i g 
(α) 
β

(x ) , 

here 0 < α < 1, β > 0, x ∈ ( a, b ) . 

roof. Let f, g are ( α, 1) β -differentiable. Then, 

f (x ) �g g(x ) = k (x ) ⇔ 

{
(i ) f (x ) = g(x ) + k (x ) 
(ii ) f (x ) = g(x ) − k (x ) 

nder case (i), we have: 

 

f (α) 
β

(x ) = i g 
(α) 
β

(x ) + i k 
(α) 
β

(x ) , 

hen, 

 

k (α) 
β

(x ) = i f 
(α) 
β

(x ) �g i g 
(α) 
β

(x ) . 

imilarly, for case (ii), 

 

k (α) 
β

(x ) = −i g 
(α) 
β

(x ) � (−i f 
(α) 
β

(x )) . 
ence, we conclude that 

 

( f �g g ) 
(α) 
β (x ) = i f 

(α) 
β

(x ) �g i g 
(α) 
β

(x ) . 

�

Allahviranloo et al. [53] have used the following partial ordering

n F proposed by Kaleva [52] : 

or u, v ∈ F, u ≤ v if and only if u (α) ≤ v (α) and ū (α) ≤ v̄ (α) , 

sing the above partial ordering, they obtained Rolle’s theorem

nd fuzzy Cauchy mean value theorem under fuzzy notion. Simi-

arly, we aim to develop some new and interesting results such as

nterval Rolle’s theorem and interval mean value theorem for in-

erval truncated M -fractional derivative as follows. 

heorem 3.5. Let c ∈ ( a, b ), and f : [ a, b] → F . Suppose that f is ( α,

 ) β -differentiable at c , † ∈ {1, 2} . If f has a local maximum or mini-

um at c, then i f 
(α) 
β

(c) = 0 

roof. Without loss of generality, let c is a local minimum.

or x ∈ ( a, c ) we have f ( x ) �g f ( c ) ≤ 0 and x − c < 0 , then set x =
 i E β (ε t −α) , we have 

f (t i E β (ε t −α)) �g f (c) 

t i E β (ε t α) − c 
≥ 0 . 

t follows that i f 
(α) 
β

(c) � . Similarly, for x ∈ ( c, b ), we have 

f (t i E β (ε t −α)) �g f (c) 

t i E β (ε t α) − c 
≤ 0 , 

ence, we have i f 
(α) 
β

(c) ≤ 0 . Finally, we deduce that i f 
(α) 
β

(c) =
 �

heorem 3.6. (Interval Rolle’s theorem). Assume that f ∈ F . It is dif-

erentiable on ( a, b ) and continuous on [ a, b ] . If f (a ) = f (b) , then

here exist some c ∈ ( a, b ) such that 

 

f (α) 
β

(c) = 0 , 0 < α < 1 , β > 0 . 

roof. The proof is analogously to the demonstration of the proof

f Lemma 2.4 in [53] . In fact, we have f ( x min ) ≤ f ( x ) ≤ f ( x max ) for all

 ∈ [ a, b ]. If f (x min ) = f (x max ) , then f should be a constant function

nd we have: 

 

f (α) 
β

(x ) = 0 , for all x ∈ (a, b) . 

f f ( x min ) ≤ f ( x max ), at least f ( x min ) or f ( x max ) does not equal to

 ( a ) (or f ( b )). Suppose that 

f (x max ) � = f (a ) . 

et c = x max , then c ∈ ( a, b ) and by using Theorem 3.5 , we have

 

f (α) 
β

(c) = 0 that completes the proof. �

heorem 3.7. (Interval mean value theorem). Suppose that f ∈ F . It

s differentiable on ( a, b ) and continuous on [ a, b ] then, there exists

ome c ∈ ( a, b ) such that 

 

f (α) 
β

(c) = 

(
f (b) �g f (a ) 

b α

α − a α

α

)(
1 

�(β + 1) 

)
, 

n which 0 < α < 1, β > 0 . 

roof. Suppose that 

(x ) = ( f (x ) �g f (a ) ) �g 

(
f (b) �g f (a ) 

b α

α − a α

α

)(
x α

α
− a α

α

)
. 

hen, it is easy to verify that 

(a ) = ( f (a ) �g f (a ) ) �g 

(
f (b) �g f (a ) 

b α

α − a α

α

)(
a α

α
− a α

α

)
= 0 , 
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(

g

and 

ϒ(b) = ( f (b) �g f (a ) ) �g 

(
f (b) �g f (a ) 

b α

α − a α

α

)(
b α

α
− a α

α

)
= ( f (b) �g f (a ) ) �g ( f (b) �g f (a ) ) = 0 . 

Then using interval Rolle’s theorem, we have: 

∃ c ∈ (a, b) s.t. i ϒ
(α) 
β

(c) = 0 

Hence, 

i ( f (x ) �g f (a ) ) 
(α) 
β �g ( f (b) �g f (a ) ) �g 

(
f (b) �g f (a ) 

b α

α − a α

α

)
i (

x α

α
− a α

α

)(α) 

β
= 0 . 

Then, we have: 

i f 
(α) 
β

(x ) �g 

(
f (b) �g f (a ) 

b α

α − a α

α

)
. 

1 

�(β + 1) 
= 0 

and finally we obtain: 

i f 
(α) 
β

(c) = 

f (b) �g f (a ) 
b α

α − a α

α

. 
1 

�(β + 1) 
. 

In fact, we used the results i 
(

x α

α

)(α) 

β
= 

1 
�(β+1) 

and i 

(
a α

α

)(α) 

β
= 0 that

completes the proof. �

Remark 3.1. Clearly, once β becomes 0, the results reduce to the

Rolle’ theorem under conformable derivative with interval uncer-

tainty. 

In the next definition, the interval fractional integral of the in-

terval function f is defined. 

Definition 3.3. Let 0 ≤ a ≤ t and f ∈ F is integrable over ( a, t ].

Then, the fractional integral of order α for 0 < α ≤ 1 is defined by(
I 
α,β
a f 

)
(t) = �(β + 1) 

∫ t 

a 

f (x ) dx 

x 1 −α
. (3.2)

Theorem 3.8. Let a ≥ 0 and 0 < α ≤ 1 . Then for a given continuous

interval-valued function f we have: 

i 

(
I 
α,β
a f 

)(α) 

β
(t) = f (t) . (3.3)

Proof 

i 

(
I 
α,β
a f 

)(α) 

β
(t) = 

t 1 −α

�(β + 1) 

d 

dt 
(I 

α,β
a f )(t) 

= 

t 1 −α

�(β + 1) 
. �(β + 1) 

d 

dt 

∫ t 

a 

f (x ) dx 

x 1 −α
= f (t) . 

Therefore, the proof is complete. �

Theorem 3.9. Let f ∈ F be a α-differentiable interval-valued func-

tion for 0 < α ≤ 1 . Then 

I 
α,β
a 

(
i f 

(α) 
β

)
(t) = f (t) �g f (a ) . 

Proof. Let f is α-differentiable under ( α, 1) β -differentiability, then

I 
α,β
a 

(
i f 

(α) 
β

)
(t) = �(β + 1) 

∫ t 

a 

i f 
(α) 
β

(x ) dx 

x 1 −α

= �(β + 1) 

∫ t 

a 

x 1 −α

�(β + 1) 
. 

1 

x 1 −α
f ′ (x ) dx 

= 

[∫ t 

a 

f 
′ 
1 (x ) d x, 

∫ t 

a 

f 
′ 
2 (x ) d x 

]

= [ f 1 (t) − f 1 (a ) , f 2 (t) − f 2 (a )] 

= f (t) � f (a ) . 

imilarly, if f is α-differentiable under ( α, 2) β -differentiability,

hen 

 

α,β
a 

(
i f 

(α) 
β

)
(t) = �(β + 1) 

∫ t 

a 

i f 
(α) 
β

(x ) dx 

x 1 −α

= 

∫ t 

a 

f ′ (x ) dx 

= 

[∫ t 

a 

f 
′ 
2 (x ) d x, 

∫ t 

a 

f 
′ 
1 (x ) d x 

]
= [ f 2 (t) − f 2 (a ) , f 1 (t) − f 1 (a )] 

= − f (a ) � (− f (t)) . 

�

heorem 3.10. Let f ∈ F be a continuous interval-valued function,

hen 

 

(
(I 

α,β
a f )(t) , 0 

)
� I 

α,β
a H( f (t) , 0) , (3.4)

lso, if K = sup 

t∈ [ a,b] 

H( f (t) , 0) , then 

 

(
(I 

α,β
a f )(t) , 0 

)
� �(β + 1) K 

(
t α

α
− a α

α

)
. 

roof. The proofs are straightforward. �

heorem 3.11. Let f ∈ R and g ∈ F are two differentiable functions,

hen 

(1) If f (x ) . i f 
(α) 
β

(x ) > 0 and g is ( α, 1) β -differentiable. Then, f.g is

( α, 1) β -differentiable and 

i ( f .g) (α) 
β

(x ) = i f 
(α) 
β

(x ) .g(x ) + f (x ) . i g 
(α) 
β

(x ) . (3.5)

(2) If f (x ) . i f 
(α) 
β

(x ) < 0 and g is ( α, 2) β -differentiable. Then, f.g is

( α, 2) β -differentiable and 

i ( f .g) (α) 
β

(x ) = i f 
(α) 
β

(x ) .g(x ) + f (x ) . i g 
(α) 
β

(x ) . (3.6)

(3) If f (x ) . i f 
(α) 
β

(x ) > 0 , g is ( α, 2) β -differentiable and f.g satisfies

S 1 at x. Then, f.g is ( α, 1) β -differentiable and 

i ( f .g) (α) 
β

(x ) = i f 
(α) 
β

(x ) .g(x ) � (−1) f (x ) . i g 
(α) 
β

(x ) . (3.7)

(4) If f (x ) . i f 
(α) 
β

(x ) > 0 , g is ( α, 2) β -differentiable and f.g satisfies

S 2 at x. Then, f.g is ( α, 2) β -differentiable and 

i ( f .g) (α) 
β

(x ) = f (x ) . i g 
(α) 
β

(x ) � (−1) i f 
(α) 
β

(x ) .g(x ) . (3.8)

(5) If f (x ) . i f 
(α) 
β

(x ) < 0 , g is ( α, 1) β -differentiable and f.g satisfies

S 1 at x. Then, f.g is ( α, 1) β -differentiable and 

i ( f .g) (α) 
β

(x ) = f (x ) . i g 
(α) 
β

(x ) � (−1) i f 
(α) 
β

(x ) .g(x ) . (3.9)

(6) If f (x ) . i f 
(α) 
β

(x ) < 0 , g is ( α, 1) β -differentiable and f.g satisfies

S 2 at x. Then, f.g is ( α, 2) β -differentiable and 

i ( f .g) (α) 
β

(x ) = i f 
(α) 
β

(x ) .g(x ) � (−1) f (x ) . i g 
(α) 
β

(x ) . (3.10)

here S 1 and S 2 are defined as follows: 

(S 1 ) For ε > 0, sufficiently small, there exists: 

(x E β (ε x −α)) � g(x ) . 

S 2 ) For ε > 0, sufficiently small, there exists: 

(x ) � g(x E β (ε x −α)) . 
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Fig. 1. Comparison of the exact solution for different values of α and β : 0 (blue − o−) ; 0 . 5 (red − + −) , Example 4.1 , Case I. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Comparison of the exact solution for different values of α and β : 0 (blue − o−) ; 0 . 5 (red − + −) , Example 4.1 , Case II. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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roof. We prove Case (2) and the procedure to prove the other

tatements are similar. Under the assumptions of Case (2), we have

or sufficiently small ε > 0: 

g(x ) = g(x E β (ε x −α)) + p(x, ε, α) , 
f (x ) − f (x E β (ε x −α)) = q (x, ε, α) . 

hen, 

f (x ) .g(x ) = f (x E β (ε x −α)) .g(x E β (ε x −α)) 

+ g(x E β (ε x −α)) p(x, ε, α) 

+ q (x, ε, α) .g(x E β (ε x −α)) 

+ q (x, ε, α) .p(x, ε, α) . (3.11) 

ndeed, Eq. (3.11) is H-difference of f.g and

f (x E β (ε x −α)) .g(x E β (ε x −α)) . Hence, 

( f .g)(x ) � ( f .g)(x E β (ε x −α)) = f (x E β (ε x −α)) p(x, ε, α) 

+ q (x, ε, α) g(x E β (ε x −α)) + q (x, ε, α) p(x, ε, α) . 

hen by taking lim ε→ 0 from both sides, we have: 

lim 

→ 0 

( f .g)(x ) � ( f .g)(x E β (ε x −α)) 

−ε 
= lim 

ε→ 0 
f (x E β (ε x −α)) . 

p(x, ε, α) 

ε 

 lim 

ε→ 0 

q (x, ε, α) 

−ε 
.g(x E β (ε x −α)) + lim 

ε→ 0 

(q.p)(x, ε, α) 

−ε 
. 

onsidering the following assumptions that hold: 
(a) lim 

ε→ 0 
p(x, ε, α) = 0 , p is continous. 

(b) lim 

ε→ 0 
f (x E β (ε x −α)) . p(x,ε,α) 

−ε = f (x ) g (α) 
β

(x ) . 

(c) lim 

ε→ 0 

q (x,ε,α) 
−ε g(x E β (ε x −α)) = f (α) 

β
(x ) g(x ) . 

Now using the above statements, we obtain: 

lim 

→ 0 

( f .g)(x ) � ( f .g)(x E β (ε x −α)) 

−ε 
= f (x ) .g (α) 

β
(x ) + f (α) 

β
(x ) .g(x ) . 

�

.1. Existence and uniqueness of the solution 

In this part, the existence and uniqueness conditions of the

nterval solution for IFDE based on the interval truncated M -

ractional derivative are discussed. Let us to consider the following

FDE 

i y 
(α) 
β

(x ) = f (x, y ) 

y (x 0 ) = y 0 ∈ F, 
(3.12) 

here x 0 ∈ R and f : R × F → F is a interval continuous function.

he problem (3.12) is equivalent to the following system of equa-

ions: 

y ′ (x ) = �(β + 1) x α−1 f (x, y ) 
y ( x 0 ) = y 0 

(3.13) 
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Fig. 3. Exact solution of Example 4.2 for different values of β: β = 0 (−� − red) , β = 0 . 5 (−o − blue ) . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 4. Exact solution of Example 4.3 for different values of β: β = 0(−o − blue ) , β = 0 . 1(− + −, red) , β = 0 . 5(− ∗ −yel l ow ) , β = 0 . 9(− − black ) . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Set g(x, y ) = �(β + 1) x α−1 f (x, y ) , then Eq. (3.13) is converted

to: {
y ′ (x ) = g(x, y ) 
y ( x 0 ) = y 0 

(3.14)

Using Lemma 20 in [51] , it is easy to verify that the Eq. (3.14) is

equivalent to the one of the following integral equations: 

y (x ) = y 0 + 

∫ x 

x 

g(t , y (t )) dt , 

0 E
r 

 (x ) = y 0 � (−1) 

∫ x 

x 0 

g(t , y (t )) dt . 

emark 3.2. Using the equivalent form of the Eq. (3.12) , we can

asily obtain the existence and uniqueness of the solution. Indeed,

y replacing the function f with g in Theorems 22 and 25 in [51] ,

e obtain the existence and uniqueness of the solution of the
q. (3.12) . 
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Fig. 5. Comparison of w ( x ) and its derivative, w 

′ ( x ), for different values of β , Example 4.3 . 
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. Examples 

In this section, a number of IFDEs based on the interval trun-

ated M -fractional derivative are presented. The problems are

olved under ( α, 1) β -and ( α, 2) β -differentiability to demonstrate

he validity and applicability of the proposed interval fractional

erivative. 

In the current section, we propose a new viscoelastic model us-

ng IFDEs under interval truncated M -fractional differentiability. In

his regards, interval parameters are defined which are correspond-

ng to the frequency-dependent factors in the Kelin-Voigt equa-

ions [3] to explain the reality far better. 

xample 4.1. Let consider the following IFDE 

i y 
(α) 
β

(x ) = λy (x ) 

y (0) = y 0 = [1 , 2] 
(4.15) 

Case I. Set λ = 1 and if we assume y ( x ) is ( α, 1) β -differentiable,

hen we have: 

 (x ) = y 0 e 
�(β+1) x 

α

α . (4.16)

ndeed, when { β → 0 + 

α → 1 
we get to the solution for IFDE as follows: 

 (x ) = [1 , 2] e x . 

lso, only for the case β → 0 + , we have 

 (x ) = y 0 e 
x α

α , 
hat coincides with the solution based on the conformable deriva-

ive. 

Fig. 1 shows the interval exact solution for Example 4.1 , Case I

ith different values of α and β . As it is obvious, the IFDE experi-

nces an interval solution by changing the values of α and β over

 ∈ [0, 1]. 

Case II. Set λ = −1 and if we assume y ( x ) is ( α, 2) β -

ifferentiable, then we have: 

 (x ) = [1 , 2] e −�(β+1) x 
α

α (4.17)

n a similar way, once { β → 0 + 

α → 1 
the solution for IFDE is given by: 

 (x ) = [1 , 2] e −x . 

hich is similar with the solution of the interval ODE. Also, just

or the case that β → 0 + , we have 

 (x ) = [1 , 2] e −
x α

α . 

Similar to Case I, Fig. 2 depicts the interval exact solution under

he assumption λ = −1 under ( α, 2) β -differentiability. It is again

lear that the IFDE based on the interval truncated M -fractional

erivative achieves interval solutions by changing different values

f α and β . 

xample 4.2. Consider the following Kelin-Voigt model: 

i y 
(1 / 2) 
β

(x ) + y (x ) = c̄ ( x 2 + 2 x 
3 
2 ) 

y (0) = 0 , c̄ = [ −1 , 1] 
(4.18) 
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Using the fact that i y 
(1 / 2) 
β

(x ) = 

x 
1 
2 

�(β+1) 
y ′ (x ) , the equation is con-

verted to {
x 

1 
2 

�(β+1) 
y ′ (x ) + y (x ) = c̄ ( x 2 + 2 x 

3 
2 ) , 

y (0) = 0 , c̄ = [ −1 , 1] . 
(4.19)

Then, the solution is obtained under ( α, 1) β -differentiablity as fol-

lows: 

y (x ) = 

c̄ (6 b 2 x − 3 b − 6 b x 1 / 2 − 6 b 3 x + 6 b 2 x 1 / 2 + 2 b 4 x 2 − 4 b 3 x 3 / 2 + 4 b 4 x 3 / 2 + 3 

2 b 4 

+ 

c̄ (3 b − 3) 

2 b 4 exp (2 b x 1 / 2 ) 
, (4.20)

where b = �(β + 1) . 

For the case that β → 0 + , we get 

y (x ) = c̄ x 2 . 

that coincides with the solution of Example 4.1 in [54] . 

Fig. 3 displays the interval exact solution for Example 4.2 with

different values of β . Form the figure, it can conclude that by in-

creasing the value of β , the lower and upper bounds of the interval

solutions are closing together. 

Example 4.3. Let suppose another Kelin-Voigt model based on the

truncated M -fractional differential equation under interval uncer-

tainty: {
i y 

(1 / 2) 
β

(x ) + 

√ 

x y (x ) = c xe −x 

y (0) = 0 , c = [ −1 , 1] , 
(4.21)

The problem under ( α, 1) β -differentibaility is converted to the

following system: {
x 

1 
2 

�(β+1) 
y ′ (x ) + 

√ 

x y (x ) = c xe −x 

y (0) = 0 , c = [ −1 , 1] , 
(4.22)

Then, the solution is obtained as: 

y (x ) = b ̄c 

[ √ 

x exp (x (b − 1)) 

−1 + b 
− 1 

2 

√ 

π er f ( 
√ 

1 − b) 
√ 

x ) 

(−1 + b) 
√ 

1 − b) 

] 

×e −�(β) βx , (4.23)

where b = �(β + 1) . 

For the case that β → 0 + , we get 

y (x ) = 

2 

3 

c̄ e −x x 3 / 2 , 

that adapts with the solution of Example 4.2 in [54] . 

Fig. 4 shows the exact solution of Example 4.3 under interval

uncertainty for different values of β . Once again, it is obvious that

the bounds of the interval solution are approaching to each other

by increasing the value of β . Also, Fig. 5 demonstrates the concept

of w -increasing (decreasing) for this examples. It is implied from

all of the cases in this figure that the value of β affect considerably

on the behaviour of the interval solution. 

Remark 4.1. From the results, once can conclude that by introduc-

ing the new interval fractional derivative, we obtain more flexible

interval solution as β experiences different values. It affects on the

shape of the interval solutions and the time interval domains. 

5. Conclusions 

In this paper, we proposed a new type of fractional deriva-

tive under interval uncertainty, based on the M -truncated frac-

tional derivative. At the same time, we introduced the related

fractional integral for interval-valued functions. For such uncer-

tain fractional differentiable functions, we proved some new re-

sults such as Rolle’s theorem, Mean value theorem under new type
f fractional derivative. Indeed, our new results developed the in-

erval conformable derivative using new reflexive parameter β . In

act, our achievements will be considered as a generalization of the

roposed derivative in [27] under interval uncertainty. Moreover,

e obtained existence and uniqueness of solutions of IFDEs under

oth types of interval differentiability, by converting the original

roblem to the equivalent IDE. 

Finally, in order to show the ability and effectiveness of the pro-

osed interval fractional derivative, we solved a number of applica-

le examples arising in the mathematical modeling of viscoelastic

aterials. 

For a future research, one can consider such uncertainty for the

uzzy cases and develop this new derivative for fuzzy fractional dif-

erential equations. 
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