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EXISTENCE OF SOLUTIONS FOR RIEMANN-LIOUVILLLE
TYPE COUPLED SYSTEMS OF FRACTIONAL
INTEGRO-DIFFERENTIAL EQUATIONS AND

BOUNDARY CONDITIONS

AHMED ALSAEDI, SHOROG ALJOUDI, BASHIR AHMAD

Abstract. In this article, we study a boundary value problem of coupled sys-

tems of nonlinear Riemann-Liouvillle fractional integro-differential equations
supplemented with nonlocal Riemann-Liouvillle fractional integro-differential

boundary conditions. Our results rely on some standard tools of the fixed

point theory. An illustrative example is also discussed.

1. Introduction

Fractional calculus is regarded as an important mathematical modelling tool for
describing dynamical systems involving phenomena such as fractal and chaos. The
subject started with the speculations of Leibniz (1697) and Euler (1730) about
fractional-order derivatives and developed into an important branch of mathe-
matical analysis with the passage of time. It deals with differential and inte-
gral operators of arbitrary (non-integer) order. An important and useful fea-
ture characterizing fractional-order differential and integral operators (in contrast
to integer-order operators) is their nonlocal nature that accounts for the past
and hereditary behavior of materials and processes involved in the real world
problems. In addition to the extensive applications of fractional-order differen-
tial equations in various disciplines of technical and applied sciences, there has
been a great focus on developing the theoretical aspects, and analytic and numer-
ical methods for solving fractional order differential equations. For applications
of fractional calculus in engineering and physics, we refer the reader to the texts
[22, 24, 30], while some recent results on fractional differential equations can be
found in [1, 2, 3, 8, 11, 14, 16, 19, 23, 29, 35, 37, 39].

Coupled systems of fractional-order differential equations appear in the math-
ematical formulation of several real world phenomena and processes. Examples
of the occurrence of fractional systems include disease models [7, 9, 10, 26, 27],
anomalous diffusion [25, 32], ecological models [18], synchronization of chaotic sys-
tems [12, 13, 38], nonlocal thermoelasticity [28], etc. For details concerning the
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theoretical development of coupled systems of fractional-order differential equa-
tions supplemented with a variety of boundary conditions, for instance, see [4, 5,
6, 17, 21, 31, 33, 34, 36].

In this article, we study the existence of solutions for a Riemann-Liouville coupled
system of nonlinear fractional integro-differential equations given by

Dαu(t) = f(t, u(t), v(t), (φ1u)(t), (ψ1v)(t)), t ∈ [0, T ],

Dβv(t) = g(t, u(t), v(t), (φ2u)(t), (ψ2v)(t)), 1 < α, β ≤ 2.
(1.1)

subject to coupled Riemann-Liouville integro-differential boundary conditions:

Dα−2u(0+) = 0, Dα−1u(0+) = νIα−1v(η), 0 < η < T,

Dβ−2v(0+) = 0, Dβ−1v(0+) = µIβ−1u(σ), 0 < σ < T,
(1.2)

where D(·), I(·) denote the Riemann-Liouville derivatives and integral of fractional
order (·), respectively, f, g : [0, T ] × R4 → R are given continuous functions, ν, µ
are real constants, and

(φ1u)(t) =
∫ t

0

γ1(t, s)u(s)ds, (φ2u)(t) =
∫ t

0

γ2(t, s)u(s)ds,

(ψ1v)(t) =
∫ t

0

δ1(t, s)v(s)ds, (ψ2v)(t) =
∫ t

0

δ2(t, s)v(s)ds,

with γi and δi (i = 1, 2) being continuous function on [0, T ]× [0, T ].
The rest of the article is organized as follows. In Section 2, we recall some

preliminary concepts of Riemann-Liouville calculus and prove an auxiliary lemma.
Section 3 contains the existence and uniqueness results. Though we use the stan-
dard methodology (Leray-Schauder alternative to prove the existence of solutions
and Contraction mapping principle to obtain the uniqueness result), yet its expo-
sition to the given problem is new. Indeed our results are new and contribute to
the existing literature on fully Riemann-Liouville type nonlinear nonlocal coupled
systems of fractional integro-differential equations and boundary conditions.

2. Preliminaries

This section is devoted to some basic concepts of fractional calculus concern-
ing Riemann-Liouville derivatives and integrals [20]. We also present an auxiliary
lemma related to linear variant of the given problem.

Definition 2.1. The Riemann-Liouville fractional integral of order ρ > 0 for a
continuous function u : (0,∞)→ R is defined as

Iρu(t) =
1

Γ(ρ)

∫ t

0

(t− s)ρ−1u(s)ds,

provided the integral exists.

Definition 2.2. For a continuous function u : (0,∞)→ R, the Riemann-Liouville
derivative of fractional order ρ, n = [ρ] + 1 ( [ρ]denotes the integer part of the real
number ρ) is defined as

Dρu(t) =
1

Γ(n− ρ)
( d
dt

)n ∫ t

0

(t− s)n−ρ−1u(s)ds =
( d
dt

)n
In−ρu(t),

provided it exists.
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For ρ < 0, we use the convention that Dρu = Iρu. Also, for β ∈ [0, ρ], we have
DβIρu = Iρ−β . Note that for λ > −1, λ 6= ρ− 1, ρ− 2, . . . , ρ− n, we have

Dρtλ =
Γ(λ+ 1)

Γ(λ− ρ+ 1)
tλ−ρ and Dρtρ−i = 0, i = 1, 2, . . . , n.

In particular, for the constant function u(t) = 1, we obtain

Dρ1 =
1

Γ(1− ρ)
t−ρ, ρ /∈ N.

For ρ ∈ N, we obtain, of course, Dρ1 = 0 because of the poles of the gamma function
at the points 0,−1,−2, . . . . For ρ > 0, the general solution of the homogeneous
equation Dρu(t) = 0 in C(0, T ) ∩ L(0, T ) is

u(t) = c0t
ρ−n + c1t

ρ−n−1 + · · ·+ cn−2t
ρ−2 + cn−1t

ρ−1,

where ci, i = 1, 2, . . . , n− 1, are arbitrary real constants. Further, we always have
DρIρu = u, and

IρDρu(t) = u(t) + c0t
ρ−n + c1t

ρ−n−1 + · · ·+ cn−2t
ρ−2 + cn−1t

ρ−1. (2.1)

To define the solution for problem (1.1)-(1.2), we consider the following lemma.

Lemma 2.3. Let h1, h2 ∈ C[0, T ]∩L[0, T ]. Then the integral solution for the linear
system of fractional differential equations:

Dαu(t) = h1(t), Dβv(t) = h2(t), (2.2)

supplemented with the boundary conditions (1.2) is given by

u(t) =
νΓ(β)tα−1

∆

{∫ η

0

(η − s)α−2

Γ(α− 1)

(∫ s

0

(s− τ)β−1

Γ(β)
h2(τ)dτ

)
ds

+
µηα+β−2

Γ(α+ β − 1)

∫ σ

0

(σ − s)β−2

Γ(β − 1)

(∫ s

0

(s− τ)α−1

Γ(α)
h1(τ)dτ

)
ds
}

+
∫ t

0

(t− s)α−1

Γ(α)
h1(s)ds,

(2.3)

v(t) =
µΓ(α)tβ−1

∆

{∫ σ

0

(σ − s)β−2

Γ(β − 1)

(∫ s

0

(s− τ)α−1

Γ(α)
h1(τ)dτ

)
ds

+
νσα+β−2

Γ(α+ β − 1)

∫ η

0

(η − s)α−2

Γ(α− 1)

(∫ s

0

(s− τ)β−1

Γ(β)
h2(τ)dτ

)
ds
}

+
∫ t

0

(t− s)β−1

Γ(β)
h2(s)ds,

(2.4)

where

∆ = Γ(α)Γ(β)− νµΓ(α)Γ(β)(ησ)α+β−2

(Γ(α+ β − 1))2
6= 0. (2.5)

Proof. Using the formula (2.1), the general solution of the system (2.2) can be
written as

u(t) = a0t
α−2 + a1t

α−1 + Iαh1(t), (2.6)

v(t) = b0t
β−2 + b1t

β−1 + Iβh2(t), (2.7)
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where ai, bi, (i = 0, 1) are unknown arbitrary constants. From (2.6) and (2.7), we
have

Dα−1u(t) = a1Γ(α) + Ih1(t), (2.8)

Dβ−1v(t) = b1Γ(β) + Ih2(t), (2.9)

Dα−2u(t) = a0Γ(α− 1) + a1Γ(α)t+ I2h1(t), (2.10)

Dβ−2v(t) = b0Γ(β − 1) + b1Γ(β)t+ I2h2(t). (2.11)

Using the given conditions: Dα−2u(0+) = 0 = Dβ−2v(0+) in (2.10)-(2.11), we find
that a0 = 0, b0 = 0. Thus (2.6) and (2.7) take the form

u(t) = a1t
α−1 + Iαh1(t), (2.12)

v(t) = b1t
β−1 + Iβh2(t). (2.13)

Using the coupled integral boundary conditions: Dα−1u(0+) = νIα−1v(η) and
Dβ−1v(0+) = µIβ−1u(σ) in (2.8) and (2.9), we obtain

Γ(α)a1 −
νΓ(β)ηα+β−2

Γ(α+ β − 1)
b1 = νIα+β−1h2(η),

µΓ(α)σα+β−2

Γ(α+ β − 1)
a1 − Γ(β)b2 = −µIα+β−1h1(σ).

(2.14)

Solving the system (2.14), we find that

a1 =
ν

∆

{
Γ(β)Iα+β−1h2(η) +

µΓ(β)ηα+β−2

Γ(α+ β − 1)
Iα+β−1h1(σ)

}
, (2.15)

b1 =
µ

∆

{
Γ(α)Iα+β−1h1(σ) +

νΓ(α)σα+β−2

Γ(α+ β − 1)
Iα+β−1h2(η)

}
, (2.16)

where ∆ is given by (2.5). Substituting the values of a1 and b1 (from (2.15) and
(2.16)) in (2.12) and (2.13), we obtain the solution (2.3)-(2.4). Note that the
converse follows by direct computation. This completes the proof. �

The following lemma contains certain estimates that we need in the sequel. We
do not provide the proof as it is based on simple computation.

Lemma 2.4. For h1, h2 ∈ C[0, T ] ∩ L[0, T ] with ‖h1‖ = supt∈[0,T ] |h1(t)| and
‖h2‖ = supt∈[0,T ] |h2(t)|, we have

(i)
∣∣ ∫ σ

0

(σ − s)β−2

Γ(β − 1)

(∫ s

0

(s− τ)α−1

Γ(α)
h1(τ)dτ

)
ds
∣∣ ≤ σα+β−1

Γ(α+ β)
‖h1‖.

(ii)
∣∣ ∫ η

0

(η − s)α−2

Γ(α− 1)

(∫ s

0

(s− τ)β−1

Γ(β)
h2(τ)dτ

)
ds
∣∣ ≤ ηα+β−1

Γ(α+ β)
‖h2‖.

(iii)
∣∣ ∫ t

0

(t− s)α−1

Γ(α)
h1(s)ds

∣∣ ≤ Tα

Γ(α+ 1)
‖h1‖.

(iv)
∣∣ ∫ t

0

(t− s)β−1

Γ(β)
h2(s)ds

∣∣ ≤ T β

Γ(β + 1)
‖h2‖.
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3. Existence and uniqueness of solutions

Denote by X = {x : x ∈ C([0, T ],R)} and Y = {y : y ∈ C([0, T ],R)} the
spaces equipped respectively with the norms ‖x‖X = supt∈[0,T ] |x(t)| and ‖y‖Y =
supt∈[0,T ] |y(t)|. Observe that (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Banach spaces. In
consequence, the product space (X × Y, ‖ · ‖X×Y ) is a Banach space endowed with
the norm ‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y for (x, y) ∈ X × Y .

By Lemma 2.3, we define an operator F : X × Y → X × Y associated with the
problem (1.1)-(1.2) as follows:

F (u, v)(t) := (F1(u, v)(t), F2(u, v)(t)), (3.1)

where

F1(u, v)(t) =
νΓ(β)tα−1

∆

{∫ η

0

(η − s)α−2

Γ(α− 1)

×
(∫ s

0

(s− τ)β−1

Γ(β)
g(τ, u(τ), v(τ), (φ2u)(τ), (ψ2v)(τ))dτ

)
ds

+
µηα+β−2

Γ(α+ β − 1)

∫ σ

0

(σ − s)β−2

Γ(β − 1)

×
(∫ s

0

(s− τ)α−1

Γ(α)
f(τ, u(τ), v(τ), (φ1u)(τ), (ψ1v)(τ))dτ

)
ds
}

+
∫ t

0

(t− s)α−1

Γ(α)
f(s, u(s), v(s), (φ1u)(s), (ψ1v)(s))ds,

(3.2)

F2(u, v)(t) =
µΓ(α)tβ−1

∆

{∫ σ

0

(σ − s)β−2

Γ(β − 1)

×
(∫ s

0

(s− τ)α−1

Γ(α)
f(τ, u(τ), v(τ), (φ1u)(τ), (ψ1v)(τ))dτ

)
ds

+
νσα+β−2

Γ(α+ β − 1)

∫ η

0

(η − s)α−2

Γ(α− 1)

×
(∫ s

0

(s− τ)β−1

Γ(β)
g(τ, u(τ), v(τ), (φ2u)(τ), (ψ2v)(τ))dτ

)
ds
}

+
∫ t

0

(t− s)β−1

Γ(β)
g(s, u(s), v(s), (φ2u)(s), (ψ2v)(s))ds.

(3.3)

For computational convenience, we set

λ = 1 + γ0, λ̄ = 1 + γ̄0, (3.4)

θ = 1 + δ0, θ̄ = 1 + δ̄0, (3.5)

ε1 = Tα−1
{ |νµ|Γ(β)(ησ)α+β−1

η|∆|Γ(α+ β − 1)Γ(α+ β)
+

T

Γ(α+ 1)

}
, (3.6)

ε2 =
|ν|Γ(β)ηα+β−1Tα−1

|∆|Γ(α+ β)
, (3.7)

ε̄1 =
|µ|Γ(α)σα+β−1T β−1

|∆|Γ(α+ β)
, (3.8)

ε̄2 = T β−1
{ |νµ|(ησ)α+β−1Γ(α)
σ|∆|Γ(α+ β)Γ(α+ β − 1)

+
T

Γ(β + 1)

}
, (3.9)
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Ω1 = $0(ε1 + ε̄1) + κ0(ε2 + ε̄2), (3.10)

Ω2 = λmax{$1, $3}(ε1 + ε̄1) + λ̄max{κ1, κ3}(ε2 + ε̄2), (3.11)

Ω3 = θmax{$2, $4}(ε1 + ε̄1) + θ̄max{κ2, κ4}(ε2 + ε̄2). (3.12)

Observe that problem (1.1)-(1.2) has solutions if and only if the operator equation
F (u, v) = (u, v) has a fixed point.

Now we are ready to present our first existence result, which is based on Leray-
Schauder alternative.

Lemma 3.1 (Leray-Schauder alternative [15]). Let F : E → E be a completely
continuous operator. Let V (F ) = {x ∈ E : x = λF (x) for some0 < λ < 1}. Then
either the set V (F ) is unbounded or F has at least one fixed point.

Theorem 3.2. Let f, g : [0, T ] × R4 → R be continuous functions and there exist
real constants $i, κi ≥ 0 (i = 1, . . . , 4) and $0, κ0 > 0 such that

(H1) |f(t, u(t), v(t), (φ1u)(t), (ψ1v)(t))| ≤ $0+$1|u|+$2|v|+$3|φ1u|+$4|ψ1v|,
|g(t, u(t), v(t), (φ2u)(t), (ψ2v)(t))| ≤ κ0 + κ1|u|+ κ2|v|+ κ3|φ2u|+ κ4|ψ2v|,
for all (u, v) ∈ X × Y .

Further it is assumed that max{Ω2,Ω3} < 1, where Ω2 and Ω3 are given by (3.11)
and (3.12) respectively. Then problem (1.1)-(1.2) has at least one solution on [0, T ].

Proof. In the first step, we show that the operator F : X × Y → X × Y defined
by (3.1) is completely continuous. By continuity of the functions f and g, we
deduce that the operators F1 and F2 respectively given by (3.2) and (3.3) are
continuous. In consequence, the operator F is continuous. Next we show that
the operator F is uniformly bounded. For that, let A ⊂ X × Y be a bounded
set. Then, for any (u, v) ∈ A, there exist positive constants L1 and L2 such that
|f(t, u(t), v(t), (φ1u)(t), (ψ1v)(t))| ≤ L1, |g(t, u(t), v(t), (φ2u)(t), (ψ2v)(t))| ≤ L2,
for all (u, v) ∈ A. Then, for any (u, v) ∈ A, we have

|F1(u, v)(t)|

≤ Γ(β)|ν|tα−1

|∆|

{∫ η

0

(η − s)α−2

Γ(α− 1)

×
(∫ s

0

(s− τ)β−1

Γ(β)
|g(τ, u(τ), v(τ), (φ2u)(τ), (ψ2v)(τ))|dτ

)
ds

+
|µ|ηα+β−2

Γ(α+ β − 1)

∫ σ

0

(σ − s)β−2

Γ(β − 1)

×
(∫ s

0

(s− τ)α−1

Γ(α)
|f(τ, u(τ), v(τ), (φ1u)(τ), (ψ1v)(τ))|dτ

)
ds
}

+
∫ t

0

(t− s)α−1

Γ(α)
|f(s, u(s), v(s), (φ1u)(s), (ψ1v)(s))|ds,

≤ |ν|Γ(β)Tα−1

|∆|

{
L2

∫ η

0

(η − s)α−2

Γ(α− 1)

(∫ s

0

(s− τ)β−1

Γ(β)
dτ
)
ds

+
|µ|ηα+β−2L1

Γ(α+ β − 1)

∫ σ

0

(σ − s)β−2

Γ(β − 1)

(∫ s

0

(s− τ)α−1

Γ(α)
dτ
)
ds
}

+ L1

∫ t

0

(t− s)α−1

Γ(α)
ds,

≤ Tα−1L1

{ |νµ|(ησ)α+β−1Γ(β)
η|∆|Γ(α+ β − 1)Γ(α+ β)

+
T

Γ(α+ 1)

}
+
|ν|Γ(β)ηα+β−1Tα−1L2

|∆|Γ(α+ β)
,
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which, on taking the norm for t ∈ [0, T ] and using the notation (3.7), yields

‖F1(u, v)‖ ≤ ε1L1 + ε2L2. (3.13)

In a similar manner, we can find that

|F2(u, v)(t)| ≤ |µ|Γ(α)T β−1

|∆|

{L1σ
α+β−1

Γ(α+ β)
+

|ν|L2(ησ)α+β−1

σΓ(α+ β)Γ(α+ β − 1)

}
+

L2T
β

Γ(β + 1)
,

which together with (3.8) and (3.9) implies

‖F2(u, v)‖ ≤ ε̄1L1 + ε̄2L2. (3.14)

From the inequalities (3.13) and (3.14), we infer that F1 and F2 are uniformly
bounded, and hence the operator F is uniformly bounded.

Next, we show that F is equicontinuous. Let t1, t2 ∈ [0, T ] with t1 < t2. Then
we have

|F1(u, v)(t2)− F1(u, v)(t1)|

≤ |ν|Γ(β)|tα−1
2 − tα−1

1 |
|∆|

{L2η
α+β−1

Γ(α+ β)
+

|µ|(ησ)α+β−1L1

ηΓ(α+ β − 1)Γ(α+ β)

}
+

L1

Γ(α+ 1)
(
2(t2 − t1)α + |tα2 − tα1 |

)
.

Obviously |F1(u, v)(t2)− F1(u, v)(t1)| → 0 as t2 → t1.
In a similar manner, one can show that |F2(u, v)(t2) − F2(u, v)(t1)| → 0 as

t2 → t1. Thus the operator F is equicontinuous in view of equicontinuity of F1

and F2. Therefore, by Arzela-Ascoli’s theorem, we deduce that the operator F is
compact (completely continuous).

Finally, we consider a set V (F ) = {(u, v) ∈ X × Y : (u, v) = λF (u, v) ; 0 ≤ λ ≤
1} and show that it is bounded. Let (u, v) ∈ V . Then (u, v) = λF (u, v). For any
t ∈ [0, T ], we have u(t) = λF1(u, v)(t), v(t) = λF2(u, v)(t). Using the assumption
(H1) together with the notation (3.4) and (3.5), we obtain

|u(t)|
≤ |λ||F1(u, v)(t)| ≤ |F1(u, v)(t)|

≤ Γ(β)|ν|tα−1

|∆|

{∫ η

0

(η − s)α−2

Γ(α− 1)

(∫ s

0

(s− τ)β−1

Γ(β)
[κ0 + κ1|u(τ)|+ κ2|v(τ)|

+ κ3|(φ2u)(τ)|+ κ4|(ψ2v)(τ)|]dτ
)
ds

+
|µ|ηα+β−2

Γ(α+ β − 1)

∫ σ

0

(σ − s)β−2

Γ(β − 1)

(∫ s

0

(s− τ)α−1

Γ(α)
[$0 +$1|u(τ)|+$2|v(τ)|

+$3|(φ1u)(τ)|+$4|(ψ1v)(τ)|]dτ
)
ds
}

+
∫ t

0

(t− s)α−1

Γ(α)
[$0 +$1|u(s)|+$2|v(s)|+$3|(φ1u)(s)|+$4|(ψ1v)(s)|]ds

≤ Γ(β)|ν|tα−1

|∆|

{∫ η

0

(η − s)α−2

Γ(α− 1)

(∫ s

0

(s− τ)β−1

Γ(β)
[κ0 + (κ1 + γ̄0κ3)|u(τ)|

+ (κ2 + δ̄0κ4)|v(τ)|]dτ
)
ds

+
|µ|ηα+β−2

Γ(α+ β − 1)

∫ σ

0

(σ − s)β−2

Γ(β − 1)

(∫ s

0

(s− τ)α−1

Γ(α)
[$0 + ($1 + γ0$3)|u(τ)|
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+ ($2 + δ0$4)|v(τ)|]dτ
)
ds
}

+
∫ t

0

(t− s)α−1

Γ(α)
[$0 + ($1 + γ0$3)|u(s)|+ ($2 + δ0$4)|v(s)|]ds,

≤ |ν|Γ(β)Tα−1

|∆|

{
[κ0 + λ̄max{κ1, κ3}‖u‖X

+ θ̄max{κ2, κ4}‖v‖Y ]
∫ η

0

(η − s)α−2

Γ(α− 1)

(∫ s

0

(s− τ)β−1

Γ(β)
dτ
)
ds

+
|µ|ηα+β−2

Γ(α+ β − 1)

∫ σ

0

(σ − s)β−2

Γ(β − 1)

(
[$0 + λmax{$1, $3}‖u‖X

+ θmax{$2, $4}‖v‖Y ]
∫ s

0

(s− τ)α−1

Γ(α)
dτ
)
ds
}

+ [$0 + λmax{$1, $3}‖u‖X + θmax{$2, $4}‖v‖Y ]
∫ t

0

(t− s)α−1

Γ(α)
ds,

≤ Tα−1
{ |νµ|(ησ)α+β−1Γ(β)
η|∆|Γ(α+ β − 1)Γ(α+ β)

+
T

Γ(α+ 1)

}
[$0 + λmax{$1, $3}‖u‖X

+ θmax{$2, $4}‖v‖Y ]

+
|ν|Γ(β)ηα+β−1Tα−1

|∆|Γ(α+ β)
[κ0 + λ̄max{κ1, κ3}‖u‖X + θ̄max{κ2, κ4}‖v‖Y ],

which, on taking the norm for t ∈ [0, T ] and using (3.7), yields

‖u‖X ≤ ε1[$0 + λmax{$1, $3}‖u‖X + θmax{$2, $4}‖v‖Y ] + ε2[κ0

+ λ̄max{κ1, κ3}‖u‖X + θ̄max{κ2, κ4}‖v‖Y ].
(3.15)

Similarly, with the aid of notation (3.4), (3.5) and (3.9), one can obtain

‖v‖Y ≤ ε̄1[$0 + λmax{$1, $3}‖u‖X + θmax{$2, $4}‖v‖Y ] + ε̄2[κ0

+ λ̄max{κ1, κ3}‖u‖X + θ̄max{κ2, κ4}‖v‖Y ].
(3.16)

From (3.15) and (3.16), we find that

‖u‖X + ‖v‖Y
≤ $0(ε1 + ε̄1) + κ0(ε2 + ε̄2)

+
[
λmax{$1, $3}(ε1 + ε̄1) + λ̄max{κ1, κ3}(ε2 + ε̄2)

]
‖u‖X

+
[
θmax{$2, $4}(ε1 + ε̄1) + θ̄max{κ2, κ4}(ε2 + ε̄2)

]
‖v‖Y ,

≤ Ω1 + max{Ω2,Ω3}‖(u, v)‖X×Y ,

(3.17)

which, in view of ‖(u, v)‖X×Y = ‖u‖X + ‖v‖Y , yields

‖(u, v)‖X×Y ≤
Ω1

1−max{Ω2,Ω3}
,

where Ω1,Ω2,Ω3 are respectively given by (3.10), (3.11) and (3.12). This shows
that V (F ) is bounded. Thus, by Lemma 3.1, the operator F has at least one fixed
point. Consequently, the problem (1.1)-(1.2) has at least one solution on [0, T ].
This completes the proof. �
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Our next result deals with the uniqueness of solutions for problem (1.1)-(1.2) and
relies on Banach’s contraction mapping principle. For computational convenience,
we introduce the notation:

Λ =
|ν|Γ(β)Tα−1

|∆|

{
ξ1(1 + γ̄0) + ξ2(1 + δ̄0) +

|µ|ηα+β−2

Γ(α+ β − 1)

[
ζ1(1 + γ0)

+ ζ2(1 + δ0)
]}

+ ζ̄1(1 + γ0) + ζ̄2(1 + δ0),
(3.18)

Λ1 =
|µ|Γ(α)T β−1

|∆|

{
ζ1(1 + γ0) + ζ2(1 + δ0) +

|ν|σα+β−2

Γ(α+ β − 1)

[
ξ1(1 + γ̄0)

+ ξ2(1 + δ̄0)
]}

+ ξ̄1(1 + γ̄0) + ξ̄2(1 + δ̄0),
(3.19)

where

ζ1 = max
{
|Iα+β−1M1(σ)|, |Iα+β−1M3(σ)|

}
,

ζ2 = max
{
|Iα+β−1M2(σ)|, |Iα+β−1M4(σ)|

}
, (3.20)

ζ̄1 = sup
t∈[0,T ]

{
|IαM1(t)|, |IαM3(t)|

}
,

ζ̄2 = sup
t∈[0,T ]

{
|IαM2(t)|, |IαM4(t)|

}
, (3.21)

ξ1 = max
{
|Iα+β−1N1(η)|, |Iα+β−1N3(η)|

}
,

ξ2 = max
{
|Iα+β−1N2(η)|, |Iα+β−1N4(η)|

}
, (3.22)

ξ̄1 = sup
t∈[0,T ]

{
|IβN1(t)|, |IβN3(t)|

}
,

ξ̄2 = sup
t∈[0,T ]

{
|IβN2(t)|, |IβN4(t)|

}
, (3.23)

γ0 = sup
t∈[0,T ]

∣∣∣ ∫ t

0

γ1(t, s)ds
∣∣∣, γ̄0 = sup

t∈[0,T ]

∣∣∣ ∫ t

0

γ2(t, s)ds
∣∣∣, (3.24)

δ0 = sup
t∈[0,T ]

∣∣∣ ∫ t

0

δ1(t, s)ds
∣∣∣, δ̄0 = sup

t∈[0,T ]

∣∣∣ ∫ t

0

δ2(t, s)ds
∣∣∣, (3.25)

ε = ε1%1 + ε2%2, ε̄ = ε̄1%1 + ε̄2%2, %1 = sup
t∈[0,T ]

|f(t, 0, 0, 0, 0)|,

%2 = sup
t∈[0,T ]

|g(t, 0, 0, 0, 0)|, (3.26)

where εi, ε̄i(i = 1, 2) are respectively given by (3.6)–(3.9).

Theorem 3.3. Let f, g : [0, T ] × R4 → R be continuous functions and there exist
positive functions Mi(t), Ni(t) ≥ 0 (i = 1, . . . , 4) such that

|f(t, u1, u2, u3, u4)− f(t, v1, v2, v3, v4)| ≤
4∑
i=1

Mi(t)|ui − vi|,

g(t, u1, u2, u3, u4)− g(t, v1, v2, v3, v4)| ≤
4∑
i=1

Ni(t)|ui − vi|,
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for all t ∈ [0, T ], ui, vi ∈ R. In addition, assume that Λ < 1
2 and Λ1 <

1
2 , where

Λ and Λ1 are given by (3.18)and (3.19) respectively. Then boundary value problem
(1.1)-(1.2) has a unique solution on [0, T ].

Proof. Let us fix r ≥ max{2ε/(1 − 2Λ), 2ε̄/(1 − 2Λ1)}, where Λ,Λ1, and ε, ε̄ are
respectively given by (3.18), (3.19) and (3.26). Firstly, we show that FBr ⊂ Br,
where Br = {(u, v) ∈ X × Y : ‖(u, v)‖X×Y ≤ r} and F is given by (3.1). For
(u, v) ∈ Br, note that

|f(t, u(t), v(t), (φ1u)(t), (ψ1v)(t))|
≤ |f(t, u(t), v(t), (φ1u)(t), (ψ1v)(t))− f(t, 0, 0, 0, 0)|+ |f(t, 0, 0, 0, 0)|
≤M1(t)|u(t)|+M2(t)|v(t)|+M3(t)|(φ1u)(t)|+M4(t)|(ψ1v)(t)|+ %1

≤M1(t)|u(t)|+M2(t)|v(t)|+ γ0M3(t)|u(t)|+ δ0M4(t)|v(t)|+ %1

≤
[
M1(t) + γ0M3(t)

]
|u(t)|+

[
M2(t) + δ0M4(t)

]
|v(t)|+ %1

≤
(
M1(t) +M2(t) + γ0M3(t) + δ0M4(t)

)
‖(u, v)‖X×Y + %1

≤
(
M1(t) +M2(t) + γ0M3(t) + δ0M4(t)

)
r + %1.

Similarly, one can obtain

|g(t, u(t), v(t), (φ2u)(t), (ψ2v)(t))| ≤
(
N1(t) +N2(t) + γ̄0N3(t) + δ̄0N4(t)

)
r + %2.

Then, using the notation (3.20), (3.21), (3.22) and (3.26), we have

|F1(u, v)(t)|

≤ Γ(β)Tα−1

|∆|

{∫ η

0

(η − s)α−2

Γ(α− 1)

(∫ s

0

(s− τ)β−1

Γ(β)

(
N1(τ) +N2(τ)

+ γ̄0N3(τ) + δ̄0N4(τ)
)
r + %2

)
dτ
)
ds

+
|ν|ηα+β−2

Γ(α+ β − 1)

∫ σ

0

(σ − s)β−2

Γ(β − 1)

(∫ s

0

(s− τ)α−1

Γ(α)

(
M1(τ) +M2(τ) + γ0M3(τ)

+ δ0M4(τ)
)
r + %1

)
dτ
)
ds
}

+
∫ t

0

(t− s)α−1

Γ(α)

(
M1(s) +M2(s) + γ0M3(s) + δ0M4(s)

)
r + %1

)
ds

≤ |ν|Γ(β)Tα−1

|∆|

{
Iα+β−1

(
N1(η) + γ̄0N3(η)

)
r + Iα+β−1

(
N2(η) + δ̄0N4(η)

)
r

+
ηα+β−1%2

Γ(α+ β)

+
|µ|ηα+β−2

Γ(α+ β − 1)

[
Iα+β−1

(
M1(σ) + γ0M3(σ)

)
r + Iα+β−1

(
M2(σ) + δ0M4(σ)

)
r
]

+
ρ1|µ|(ησ)α+β−1

ηΓ(α+ β)Γ(α+ β − 1)

}
+ Iα

(
M1(t) + γ0M3(t)

)
r + Iα

(
M2(t) + δ0M4(t)

)
r

+
%1T

α

Γ(α+ 1)
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≤ r
{ |ν|Γ(β)Tα−1

|∆|

(
ξ1(1 + γ̄0) + ξ2(1 + δ̄0) +

|µ|ζ1ηα+β−2

Γ(α+ β − 1)
(1 + γ0)

+
|µ|ζ2ηα+β−2

Γ(α+ β − 1)
(1 + δ0)

)
+ ζ̄1(1 + γ0) + ζ̄2

(
1 + δ0

)}
+ %1

[ |µν|Γ(β)(ησ)α+β−1Tα−1

η|∆|Γ(α+ β)Γ(α+ β − 1)
+

Tα

Γ(α+ 1)

]
+ %2

|ν|Γ(β)ηα+β−1Tα−1

|∆|Γ(α+ β)
,

which, in view of (3.18) and (3.26), implies

‖F1(u, v)‖X ≤ Λr + ε ≤ r

2
. (3.27)

Analogously, using (3.19) and (3.26), we can obtain

‖F2(u, v)‖Y = Λ1r + ε̄ ≤ r

2
. (3.28)

From the estimates (3.27) and (3.28), it clearly follows that

‖F (u, v)‖X×Y = ‖F1(u, v)‖X + ‖F2(u, v)‖Y ≤ r,

and hence FBr ⊂ Br.
Now we show that the operator F is a contraction. For that, let ui, vi ∈ R,

i = 1, 2. Then, for each t ∈ [0, T ], it follows by (3.20)-(3.22) that

|F1(u1, v1)(t)− F1(u2, v2)(t)|

≤ |ν|Γ(β)Tα−1

|∆|

{∫ η

0

(η − s)α−2

Γ(α− 1)

(∫ s

0

(s− τ)β−1

Γ(β)
|g(τ, u1(τ), v1(τ), (φ2u1)(τ),

(ψ2v1)(τ))− g(τ, u2(τ), v2(τ), (φ2u2)(τ), (ψ2v2)(τ))|dτ
)
ds

+
|µ|ηα+β−2

Γ(α+ β − 1)

∫ σ

0

(σ − s)β−2

Γ(β − 1)

(∫ s

0

(s− τ)α−1

Γ(α)
|f(τ, u1(τ), v1(τ), (φ1u1)(τ),

(ψ1v1)(τ))− f(τ, u2(τ), v2(τ), (φ1u2)(τ), (ψ1v2)(τ))|dτ
)
ds
}

+
∫ t

0

(t− s)α−1

Γ(α)
|f(s, u1(s), v1(s), (φ1u1)(s), (ψ1v1)(s))

− f(s, u2(s), v2(s), (φ1u2)(s), (ψ1v2)(s))|ds

≤ |ν|Γ(β)Tα−1

|∆|

{
Iα+β−1

(
N1(η) + γ̄0N3(η)

)
‖u1 − u2‖X

+ Iα+β−1
(
N2(η) + δ̄0N4(η)

)
‖v1 − v2‖Y

+
|µ|ηα+β−2

Γ(α+ β − 1)

[
Iα+β−1

(
M1(σ) + γ0M3(σ)

)
‖u1 − u2‖X

+ Iα+β−1
(
M2(σ) + δ0M4(σ)

)
‖v1 − v2‖Y

]}
+ Iα

(
M1(t) + γ0M3(t)

)
‖u1 − u2‖X + Iα

(
M2(t) + δ0M4(t)

)
‖v1 − v2‖Y

≤
{ |ν|Γ(β)Tα−1

|∆|

[
ξ1(1 + γ̄0) +

|µ|ηα+β−2ζ1
Γ(α+ β − 1)

(1 + γ0)
]

+ ζ̄1(1 + γ0)
}
‖u1 − u2‖X

+
{ |ν|Γ(β)Tα−1

|∆|

[
ξ2(1 + δ̄0) +

|µ|ηα+β−2ζ2
Γ(α+ β − 1)

(1 + δ0)
]

+ ζ̄2(1 + δ0)
}
‖v1 − v2‖Y ,



12 A. ALSAEDI, S. ALJOUDI, B. AHMAD EJDE-2016/211

which yields

‖F1(u1, v1)− F1(u2, v2)‖X ≤ Λ[‖u1 − u2‖X + ‖v1 − v2‖Y ], (3.29)

where we have used (3.18). Similarly, we can find that

‖F2(u1, v1)− F2(u2, v2)‖Y ≤ Λ1[‖u1 − u2‖X + ‖v1 − v2‖Y ], (3.30)

where we have used (3.19). Thus, from (3.29) and (3.30), we have

‖F (u1, v1)− F (u2, v2)‖X×Y
= ‖F1(u1, v1)− F1(u2, v2)‖X + ‖F2(u1, v1)− F2(u2, v2)‖Y
≤ (Λ + Λ1)[‖u1 − u2‖X + ‖v1 − v2‖Y ],

which implies that F is a contraction in view of the given condition Λ + Λ1 < 1.
Hence, by Banach’s fixed point theorem, the operator F has a unique fixed point
which corresponds to the unique solution of the problem (1.1)-(1.2) on [0, T ]. This
completes the proof. �

Example. Consider the boundary-value problem

D3/2u(t) =
√
t2 + 1
10

+
t2

15
|u(t)|+ t2

10
tan−1 v(t)

+
t

25

∫ t

0

(t− s)1/2

Γ( 3
2 )

u(s)ds+
1
25

∫ t

0

(t− s)1/3

Γ( 4
3 )

v(s)ds,

D5/4v(t) =
et

80
(| sinu(t)|+ 1) +

1
20
|v(t)|

+
1
80

∫ t

0

e−(s−t)

50
u(s)ds+

t

20

∫ t

0

e−(s−t)/2

140
v(s)ds, 0 < t < 1

D−1/2u(0+) = 0, D1/2u(0+) = −I1/2(1/2),

D−3/4v(0+) = 0, D1/4v(0+) = −2I1/4(1/4).

(3.31)

Here, α = 3/2, β = 5/4, v = −1, µ = −2, η = 1/2, σ = 1/4, T = 1, γ1 =
(t − s)1/2/Γ(3/2), δ1 = (t − s)1/3/Γ(4/3), γ2 = e−(s−t)/50, δ2 = e−(s−t)/2/140,
M1(t) = t2/15, M2(t) = t2/10, M3(t) = t/25, M4(t) = 1/25, N1(t) = et/80,
N2(t) = 1/20, N3(t) = 1/80, N4(t) = t/20. Using the given data, we find that
γ0 ' 0.75225, δ0 ' 0.83988, γ̄0 ' 0.03437, δ̄0 ' 0.00927, ∆ ' 1.20312, ζ1 ' 0.00489,
ζ2 ' 0.00733, ζ̄1 ' 0.05015, ζ̄2 ' 0.07523, ξ1 ' 0.01006, ξ2 ' 0.01480, ξ̄1 ' 0.11841,
ξ̄2 ' 0.04413. Further, Λ ' 0.26689 < 1/2, and Λ1 ' 0.21388 < 1/2. Thus, by
Theorem 3.3, problem (3.31) has a unique solution on [0, 1].
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