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A recent nonlinear alternative for multivalued contractions in Fréchet spaces thanks to Frigon fixed point theorem consolidated
with semigroup theory is utilized to examine the existence results for fractional neutral integrodifferential inclusions (FNIDI) with
state-dependent delay (SDD). An example is described to represent the hypothesis.

1. Introduction

We are dealing in this paper with the existence of mild
solutions for FNIDI with SDD in Fréchet spaces by making
use of the fixed point theorem of Frigon [1, Corollary 3.5]. In
Section 3 of this paper, we deliberate the neutral integrodif-
ferential inclusions of fractional-order of the model
𝑑

𝑑𝑡
[𝑥 (𝑡) −G (𝑡, 𝑥(𝑡,𝑥

𝑡
))]

∈ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−2

Γ (𝛼 − 1)
A [𝑥 (𝑠) −G (𝑠, 𝑥(𝑠,𝑥

𝑠
))] 𝑑𝑠

+F(𝑡, 𝑥(𝑡,𝑥
𝑡
), ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑥(𝑠,𝑥
𝑠
)) 𝑑𝑠) ,

a.e. 𝑡 ∈ I = [0, +∞) ,

𝑥0 = 𝜍 ∈ B,

(1)

wherein 1 < 𝛼 < 2 andA : 𝐷(A) ⊂ E → E is the generator
of an integral resolvent family characterized on a complex
Banach space (E, | ⋅ |), the convolution integral within the
equation is understood because of the Riemann-Liouville
fractional integral (see [2]), F : I × B × E → P(E) is

a multivalued map, (P(E) is the family of nonempty subsets
of E), 𝑒 : I ×I ×B → E, G : I ×B → E, and  : I ×

B → (−∞, +∞) are apposite functions, andB is theoretical
phase space axioms characterized in Section 2.

For almost any continuous function 𝑥 characterized on
(−∞, 𝑏] and any 𝑡 ≥ 0, we designate by 𝑥𝑡 the part of B
characterized by 𝑥𝑡(𝜃) = 𝑥(𝑡 + 𝜃) for 𝜃 ≤ 0. Now, 𝑥𝑡(⋅) speaks
to the historical backdrop of the state from every 𝜃 ∈ (−∞, 0]

likely the current time 𝑡.
The notion of a fractional derivative plays an important

role in numerous technological innovation and scientific
disciplines as the statistical modeling of frameworks and
procedures in numerous fields, case in point, physical science,
chemical industry, aerodynamics, electrodynamics of com-
plex medium, and so forth. For information, we recommend
the readers to refer to the treatise ofAbbas et al. [3], Baleanu et
al. [4], Podlubny [5], Diethelm [6], Kilbas et al. [7], and Zhou
[8] and the papers of fractional differential and integrodif-
ferential systems [9–12] and impulsive fractional differential
systems [13–15] and the references cited therein.

We recall that the fractional differential inclusions (FDI)
occur in the mathematical modeling of specific models in
financial aspects, optimal control, and so forth and are usually
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investigated by numerous writers; see, for instance, [16–18]
and the references therein. Fractional equation with delay
properties arises in several fields such as biological and phys-
ical ones with state-dependent delay or nonconstant delay.
Nowadays, the existence results of mild solutions for such
problems became very attractive and several researchers are
working on it. Recently, several number of papers have
been written on the fractional-order problems with state-
dependent delay [19–23] and the sources therein. In partic-
ular, in [20, 21], the authors analyzed the existence results
for neutral differential systems with SDD in Banach spaces,
whereas in [19, 22] the authors investigate the same type of
problems with SDD and impulsive conditions by utilizing
appropriate fixed point theorem. Also, the integrodifferential
systems are experienced in numerous ranges of science, the
place where it is imperative to deal with aftereffect or delay
(e.g., control theory, biology, ecology, and medicine). Partic-
ularly, one dependably depicts a model which has inherited
qualities by integrodifferential systems in implementation;
see, for instance, [23–25].

The beginning stage of this work is reflected in [26–30].
Particularly, in [26], Agarwal et al. acquired the existence of
mild solutions for FIDE of the structure

𝑥

(𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−2

Γ (𝛼 − 1)
A𝑥 (𝑠) 𝑑𝑠 + 𝑓 (𝑡, 𝑥(𝑡,𝑥

𝑡
)) ,

a.e. 𝑡 ∈ I = [0, 𝑏] ,

𝑥 (0) = 𝜍 ∈ B,

(2)

in which 1 < 𝛼 < 2 and A : 𝐷(A) ⊂ X → X is a linear
densely described operator of sectorial kind on a complex
Banach space (X, | ⋅ |), whereas, in [30], the authors establish
the existence results for FIDI of the model

𝑥

(𝑡) − ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−2

Γ (𝛼 − 1)
A𝑥 (𝑠) 𝑑𝑠 ∈ F (𝑡, 𝑥(𝑡,𝑥

𝑡
)) ,

a.e. 𝑡 ∈ I = [0,∞) ,

𝑥0 = 𝜍 ∈ B,

(3)

where 𝛼 andA are the same as those mentioned inmodel (1).
The existence of mild solutions for the division of FNIDI

with SDD in Fréchet spaces of the structure (1) is by all
accounts an unread point. By utilizing a few speculations as a
part of [27, 30], our desire here is to yield the existence results
for the above model (1) utilizing a nonlinear alternative for
multivalued contractions as of late created by Frigon [1,
Corollary 3.5].

2. Preliminary Notions

Below, we briefly present the mathematical tools required in
this paper.

Let 𝐶([0, 𝑛],E), 𝑛 ∈ N, be the Banach space of all con-
tinuous functions fromI𝑛 = [0, 𝑛] into Emaking use of the
standard norm

‖𝑥‖𝑛 = sup {|𝑥 (𝑡)| : 0 ≤ 𝑡 ≤ 𝑛} . (4)

Allow𝐵(E) to be the space of all bounded linear operators
N : E → E, having the common supremum norm

‖N‖𝐵(E) = sup {|N (𝑥)| : |𝑥| = 1} . (5)

A measurable function 𝑥 : I𝑛 → E is Bochner
integrable if and only if |𝑥| is Lebesgue integrable (to get extra
insights about Bochner integral, see the treatise of Yosida
[31]).

Let 𝐿1(I𝑛,E) signify the Banach space of all measurable
functions 𝑥 : I𝑛 → Ewhich are Bochner integrable making
use of the norm

‖𝑥‖𝐿1 = ∫

𝑛

0

|𝑥 (𝑡)| 𝑑𝑡 ∀𝑥 ∈ 𝐿
1
(I𝑛,E) . (6)

Recognize the space

V+∞

= {𝑥 : (−∞, +∞) → E : 𝑥|I ∈ 𝐶 (I,E) , 𝑥0 ∈ B} ,

(7)

where 𝑥|I is the restraint of 𝑥 toI.
We expect that the phase space (B, ‖⋅‖B) is a seminormed

linear space of functions mapping (−∞, 0] into E and
fulfilling the subsequent elementary adages as a result of Hale
and Kato (find illustration in [32–34]).

(𝑃1) If 𝑥 : (−∞, 𝑛) → E is continuous on I𝑛 and 𝑥0 ∈
B, then for every 𝑡 ∈ I𝑛 the going hand in hand
circumstances hold the following:

(i) 𝑥𝑡 is inB;
(ii) |𝑥(𝑡)| ≤ 𝐻‖𝑥𝑡‖B;
(iii) ‖𝑥𝑡‖B ≤ D1(𝑡) sup{|𝑥(𝑠)| : 0 ≤ 𝑠 ≤ 𝑡} +

D2(𝑡)‖𝑥0‖B, where 𝐻 > 0 is a constant and
D1(⋅) : [0, +∞) → [0, +∞) is continuous,
D2(⋅) : [0, +∞) → [0, +∞) is locally bounded,
andD1,D2 are independent of 𝑥(⋅).

(𝑃2) For function 𝑥(⋅) in (𝑃1), 𝑥𝑡 is aB-valued continuous
function onI𝑛.

(𝑃3) The spaceB is complete.

Designate D∗
1

= sup{D1(𝑡) : 𝑡 ∈ I𝑛} and D∗
2

=

sup{D2(𝑡) : 𝑡 ∈ I𝑛}.
The next step is to review some known results from the

fractional calculus.
The Laplace transformation of a function 𝑓 ∈ 𝐿

1

loc(R
+
,E)

is determined by

L (𝑓) (𝜆) = �̂� (𝜆) = ∫

∞

0

𝑒
−𝜆𝑡
𝑓 (𝑡) 𝑑𝑡, Re (𝜆) > 𝜔, (8)

if the integral is definitely convergent for Re(𝜆) > 𝜔. With
a specific end goal to give an operator hypothetical method-
ology, we review the subsequent definition [2].

Definition 1. Let A : 𝐷(A) ⊂ E → E be a closed and
linear operator on a Banach space E. One addresses A as
the generator of an integral resolvent if one can find𝜔 > 0 and
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a strongly continuous function S : R+ → 𝐵(E) to ensure
that

(
1

�̂� (𝜆)
𝐼 −A)

−1

𝑥 = ∫

∞

0

𝑒
−𝜆𝑡

S (𝑡) 𝑥 𝑑𝑡,

Re 𝜆 > 𝜔, 𝑥 ∈ E.

(9)

For this situation, S(𝑡) is known as the integral resolvent
family produced by A. For extra points of interest regard-
ing this, we refer the reader to [35, Proposition 3.1 and
Lemma 2.2].

Remark 2. The uniqueness and uniform continuity of the
resolvent are long-familiar (see Benchohra and Litimein [30],
Pruss [36]).

Before we complete this section, we display some long-
familiar outcomes from multivalued research.

Indicate the following:

P (𝑋) = {𝑌 ⊂ 𝑋 : 𝑌 ̸= 0} ,

Pcl (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 closed} ,

P𝑏 (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 bounded} ,

Pcp (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 compact} ,

Pcp,𝑐 (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 compact and convex} .

(10)

Proposition 3 (see [37, Proposition III.4]). If Γ1 and Γ2 are
compact valued measurable multifunctions, then the multi-
function 𝑡 → Γ1(𝑡) ∩ Γ2(𝑡) is measurable. If (Γ𝑛) is a
sequence of compact valued measurable multifunctions, then
𝑡 → ∩Γ𝑛(𝑡) is measurable, and if ∪ Γ𝑛(𝑡) is compact, then
𝑡 → ∪Γ𝑛(𝑡) is measurable.

Remark 4. Thedefinitions ofmeasurable, admissible contrac-
tion, metric space, and nonlinear alternative fixed point the-
orem [1, Corollary 3.5] are classical in multivalued analysis;
hence, we keep off it.

Remark 5. For primary and surplus points on Fréchet spaces,
we refer the reader to [30].

For each 𝑥 ∈ V+∞, specify the set of selections forF by

𝑆F,𝑥 = {V ∈ 𝐿
1
(I,E) : V (𝑡)

∈ F(𝑡, 𝑥(𝑡,𝑥
𝑡
), ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑥(𝑠,𝑥
𝑠
)) 𝑑𝑠) for a.e. 𝑡

∈ I} .

(11)

For surplus points of benefit on multivalued maps, think
about the treatise of Castaing and Valadier [37] and Graef
et al. [38].

3. The Main Results

In this part, we prove the existence outcomes for the structure
(1). To commence, we delineate the mild solution for the
structure (1).

Definition 6. One affirms that the function 𝑥 : (−∞, +∞) →

E is a mild solution of the model (1) if 𝑥(𝑡) = 𝜍(𝑡) for all 𝑡 ≤
0, the constraint of 𝑥(⋅) to the period [0,∞) is continuous
and one can find V(⋅) ∈ 𝐿

1
(𝐽,E), in a way that V(𝑡) ∈ F(𝑡,

𝑥(𝑡,𝑥
𝑡
), ∫
𝑡

0
𝑒(𝑡, 𝑠, 𝑥(𝑠,𝑥

𝑠
))𝑑𝑠) a.e. 𝑡 ∈ [0,∞), and 𝑥 fulfills the

consecutive integral equation:

𝑥 (𝑡) = S (𝑡) [𝜍 (0) −G (0, 𝜍 (0))] +G (𝑡, 𝑥(𝑡,𝑥
𝑡
))

+ ∫

𝑡

0

S (𝑡 − 𝑠) V (𝑠) 𝑑𝑠

for every 𝑡 ∈ [0, +∞) .

(12)

Set

R (
−
) = { (𝑠, 𝜍) : (𝑠, 𝜍) ∈ I ×B,  (𝑠, 𝜍) ≤ 0} . (13)

We generally expect that  : I ×B → (−∞, 𝑏] is con-
tinuous. Moreover, we make the subsequent assumption:

(𝐻𝜍) function 𝑡 → 𝜍𝑡 is continuous from R(
−
) into B

and we can find a continuous and bounded function
𝐿
𝜍
: R(

−
) → (0,∞) in a way that

𝜍𝑡
B ≤ 𝐿

𝜍
(𝑡) ‖𝜍‖B for every 𝑡 ∈ R (

−
) . (14)

Lemma 7 (see [21, Lemma 3.1]). If 𝑥 : (−∞, 𝑏] → X is a
function to ensure that 𝑥0 = 𝜍, then
𝑥𝑠

B ≤ (D
∗

2
+ 𝐿
𝜍
) ‖𝜍‖B

+D
∗

1
sup {|𝑥 (𝜃)| : 𝜃 ∈ [0,max {0, 𝑠}]} ,

𝑠 ∈ R (
−
) ∪I𝑛,

(15)

where 𝐿𝜍 = sup
𝑡∈R(−)𝐿

𝜍
(𝑡).

The successive hypotheses will be required in whatever is
left of this paper.

(H1) The solution operator S(𝑡)𝑡∈I is compact for 𝑡 ≥ 0,
and we can findM > 0 in a way that

‖S (𝑡)‖𝐵(E) ≤ M for every 𝑡 ∈ I. (16)

(H2)

(i) The multivalued map F : I × B × E →

Pcp,𝑐(E) is Carathéodory and there is certainly
function 𝜗 ∈ 𝐿

1

loc(I,R+) and a continuous
nondecreasing function “ : R+ → (0,∞) in
a way that

F (𝑡, 𝑢, 𝑦)
 ≤ 𝜗 (𝑡)“ (‖𝑢‖B +

𝑦
) ,

for every (𝑡, 𝑢, 𝑦) ∈ I ×B × E.
(17)
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(ii) For allR > 0, we can find ℘R ∈ 𝐿
1

loc(I,R+) to
ensure that

𝐻𝑑 (F (𝑡, 𝑢, 𝑦) ,F (𝑡, 𝑢, 𝑦))

≤ ℘R (𝑡) (‖𝑢 − 𝑢‖B +
𝑦 − 𝑦

) ,

(18)

in which 𝑡 ∈ I, in addition to, for all 𝑢, 𝑢 ∈ B
in conjunctionwith {‖𝑢‖B, ‖𝑢‖B} ≤ R,𝑦, 𝑦 ∈ E

joined with

𝑑 (0,F (𝑡, 0, 0)) ≤ ℘R (𝑡) a.e. 𝑡 ∈ I. (19)

(H3)

(i) There is a function 𝑚 ∈ 𝐿
1

loc(I,R+) and a
continuous nondecreasing function Ω : R+ →

(0,∞) to ensure that

|𝑒 (𝑡, 𝑠, 𝑢)| ≤ 𝑚 (𝑠)Ω (‖𝑢‖B)

∀ (𝑡, 𝑠, 𝑢) ∈ I ×I ×B.

(20)

(ii) There is a constant 𝐶1 > 0 in a way that


∫

𝑡

0

[𝑒 (𝑡, 𝑠, 𝑢) − 𝑒 (𝑡, 𝑠, 𝑢)] 𝑑𝑠


≤ 𝐶1 ‖𝑢 − 𝑢‖B ,

for (𝑡, 𝑠) ∈ I, (𝑢, 𝑢) ∈ B.

(21)

(H4)

(i) Function G(𝑡, ⋅) is continuous on I, and there
are certainly positive constants 𝑐1, 𝑐2 in a way
that

|G (𝑡, 𝑢)| ≤ 𝑐1 ‖𝑢‖B + 𝑐2, for every (𝑡, 𝑢) ∈ I ×B. (22)

(ii) For every R > 0, there is a function ℘̃R(𝑡) ∈

𝐿
1

loc(I,R+) in a way that

|G (𝑡, 𝑢) −G (𝑡, 𝑢)| ≤ ℘̃R (𝑡) ‖𝑢 − 𝑢‖B ,

𝑡 ∈ I, 𝑢, 𝑢 ∈ B with {‖𝑢‖B , ‖𝑢‖B} ≤ R.

(23)

For each 𝑛 ∈ N, we delineate, in V+∞, the family of semi-
norms by

‖𝑥‖𝑛 = sup {𝑒−𝜏𝐿
∗

𝑛
(𝑡)
|𝑥 (𝑡)| : 𝑡 ∈ [0, 𝑛]} , (24)

in which 𝐿∗
𝑛
(𝑡) = ∫

𝑡

0
℘
∗

𝑛
(𝑠)𝑑𝑠, ℘∗

𝑛
(𝑡) = max{℘̃

𝑛
(𝑡)D∗
1
, ℘(𝑡)},

℘(𝑡) = M℘𝑛(𝑡)(1 + 𝐶1)D
∗

1
, and ℘∗

𝑛
= sup{℘∗

𝑛
(𝑡) : 𝑡 ∈ [0, 𝑛]}

and accept that (℘∗
𝑛
+1/𝜏) < 1 and ℘𝑛, ℘̃𝑛 are a function from

(H2)(ii) and (H4)(ii) appropriately.

Theorem8. Expect that (H1)–(H4) and (𝐻𝜍) hold, and believe
that 𝜇 = 1 − 𝑐1D∗1 > 0 and

∫

+∞

𝐶

𝑑𝑠

“ (𝑠) + Ω (𝑠)
> ∫

𝑛

0

] (𝑠) 𝑑𝑠 for 𝑛 ∈ N, (25)

in which 𝐶 = 𝑐𝑛 + (D
∗

1
/𝜇)[M|G(0, 𝜍(0))| + 𝑐1𝑐𝑛 + 𝑐2]. At that

point, model (1) has a mild solution on (−∞, +∞).

Proof. We will transmute the structure (1) into a fixed point
problem. Recognize the multivalued operator Υ : V+∞ →

P(V+∞) specified by Υ(ℎ) = {ℎ ∈ V+∞} with

ℎ (𝑡) =

{{

{{

{

𝜍 (𝑡) , 𝑡 ≤ 0;

S (𝑡) [𝜍 (0) −G (0, 𝜍 (0))] +G (𝑡, 𝑥(𝑡,𝑥
𝑡
)) + ∫

𝑡

0

S (𝑡 − 𝑠) V (𝑠) 𝑑𝑠, 𝑡 ∈ I,

(26)

where V ∈ 𝑆F,𝑥
(𝑠,𝑥𝑠)

. For 𝜍 ∈ B, we express function 𝑦(⋅) :
(−∞, +∞) → E by

𝑦 (𝑡) =
{

{

{

𝜍 (𝑡) , 𝑡 ≤ 0;

S (𝑡) 𝜍 (0) , 𝑡 ∈ I,

(27)

and then 𝑦0 = 𝜍. For every function 𝑧 ∈ V+∞ with 𝑧0 = 0, we
designate by �̃� the function clear by

�̃� (𝑡) =
{

{

{

0, 𝑡 ≤ 0;

𝑧 (𝑡) , 𝑡 ∈ I.

(28)

If 𝑥(⋅) fulfills (12), we are able to decompose it as 𝑥(𝑡) = 𝑧(𝑡)+
𝑦(𝑡), 𝑡 ∈ I, which suggests that 𝑥𝑡 = 𝑧𝑡 + 𝑦𝑡, for each 𝑡 ∈ I,
and also the function 𝑧(⋅) fulfills

𝑧 (𝑡) = G (𝑡, 𝑧(𝑡,𝑧
𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
)) −S (𝑡)G (0, 𝜍 (0))

+ ∫

𝑡

0

S (𝑡 − 𝑠) V (𝑠) 𝑑𝑠, 𝑡 ∈ I,

(29)

where V(𝑠) ∈ SF,𝑧
(𝑠,𝑧𝑠+𝑦𝑠)

+𝑦
(𝑠,𝑧𝑠+𝑦𝑠)

.
Let V0

+∞
= {𝑧 ∈ V+∞ : 𝑧(0) = 0 ∈ B}. For any 𝑧 ∈

V0
+∞

, we sustain

‖𝑧‖+∞ = sup {|𝑧 (𝑠)| : 0 ≤ 𝑠 < +∞} +
𝑧0

B

= sup {|𝑧 (𝑠)| : 0 ≤ 𝑠 < +∞} .

(30)
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Along these lines,V0
+∞

is a Banach space with the norm
‖ ⋅ ‖+∞. We delimit the operator Υ : V0

+∞
→ P(𝐵

0

+∞
) by

Υ(𝑧) = {ℎ ∈ V0
+∞

} with

ℎ (𝑡) = G (𝑡, 𝑧(𝑡,𝑧
𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
)) −S (𝑡)G (0, 𝜍 (0))

+ ∫

𝑡

0

S (𝑡 − 𝑠) V (𝑠) 𝑑𝑠, 𝑡 ∈ I,

(31)

where V(𝑠) ∈ 𝑆F,𝑧
(𝑠,𝑧𝑠+𝑦𝑠)

+𝑦
(𝑠,𝑧𝑠+𝑦𝑠)

.
It is vindicated that the operatorΥ has a fixed point if and

only if Υ has a fixed point. As a result, let us demonstrate that
Υ has a fixed point 𝑧 ∈ V0

+∞
.

Remark 9. (i) By condition (𝑃1) and Lemma 7 in the above
discussion, we have the subsequent estimates:


𝑧(𝑠,𝑧

𝑠
+𝑦
𝑠
) + 𝑦(𝑠,𝑧

𝑠
+𝑦
𝑠
)

B

≤

𝑧(𝑠,𝑧

𝑠
+𝑦
𝑠
)

B
+

𝑦(𝑠,𝑧

𝑠
+𝑦
𝑠
)

B

≤ D
∗

1
|𝑧 (𝑠)| + (D

∗

2
+ 𝐿
𝜍
)
𝑧0

B +D
∗

1

𝑦 (𝑠)


+ (D
∗

2
+ 𝐿
𝜍
) ‖𝜍‖B

≤ D
∗

1
|𝑧 (𝑠)| +D

∗

1
M𝐻‖𝜍‖B + (D

∗

2
+ 𝐿
𝜍
) ‖𝜍‖B

≤ D
∗

1
|𝑧 (𝑠)| + (D

∗

2
+ 𝐿
𝜍
+D
∗

1
M𝐻) ‖𝜍‖B

≤ D
∗

1
|𝑧 (𝑠)| + 𝑐𝑛,

(32)

where 𝑐𝑛 = (D
∗

2
+ 𝐿
𝜍
+D∗
1
M𝐻)‖𝜍‖B.

(ii)

|V (𝑡) − V (𝑡)| ≤ ℘𝑛 (𝑡) [

𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) − 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
)

B

+ 𝐶1

𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) − 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
)

B
] ≤ ℘𝑛 (𝑡)

⋅ [D
∗

1
|𝑧 (𝑡) − 𝑧 (𝑡)| + 𝐶1D

∗

1
|𝑧 (𝑡) − 𝑧 (𝑡)|] ≤ ℘𝑛 (𝑡)

⋅ (1 + 𝐶1)D
∗

1
|𝑧 (𝑡) − 𝑧 (𝑡)| ;

(33)

(iii)

ℎ (𝑡) − ℎ (𝑡)


≤

G (𝑡, 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
))

−G (𝑡, 𝑧(𝑡,𝑧
𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
))


+ ∫

𝑡

0

‖S (𝑡 − 𝑠)‖𝐵(E) |V (𝑠) − V (𝑠)| 𝑑𝑠 ≤ ℘̃
𝑛
(𝑡)

⋅D
∗

1
|𝑧 (𝑡) − 𝑧 (𝑡)|

+M∫

𝑡

0

℘𝑛 (𝑠) (1 + 𝐶1)D
∗

1
|𝑧 (𝑠) − 𝑧 (𝑠)| 𝑑𝑠

≤ ℘̃
𝑛
(𝑡)D
∗

1
|𝑧 (𝑡) − 𝑧 (𝑡)|

+ ∫

𝑡

0

℘
𝑛
(𝑠) |𝑧 (𝑠) − 𝑧 (𝑠)| 𝑑𝑠 ≤ [℘̃

𝑛
(𝑡)D
∗

1
𝑒
𝜏𝐿
∗

𝑛
(𝑡)
]

⋅ [𝑒
−𝜏𝐿
∗

𝑛
(𝑡)
|𝑧 (𝑡) − 𝑧 (𝑡)|]

+ ∫

𝑡

0

[℘
𝑛
(𝑠) 𝑒
𝜏𝐿
∗

𝑛
(𝑠)
] [𝑒
−𝜏𝐿
∗

𝑛
(𝑠)
|𝑧 (𝑠) − 𝑧 (𝑠)|] 𝑑𝑠

≤ ℘
∗

𝑛
(𝑡) 𝑒
𝜏𝐿
∗

𝑛
(𝑡)
‖𝑧 − 𝑧‖𝑛

+ ∫

𝑡

0

[℘
∗

𝑛
(𝑠) 𝑒
𝜏𝐿
∗

𝑛
(𝑠)
] ‖𝑧 − 𝑧‖𝑛 𝑑𝑠 ≤ (℘

∗

𝑛
+
1

𝜏
)

⋅ 𝑒
𝜏𝐿
∗

𝑛
(𝑡)
‖𝑧 − 𝑧‖𝑛 .

(34)

Presenting 𝑛 ∈ N, 𝑧 is ought to be a solution of the
inclusion 𝑧 ∈ 𝜆Υ(𝑧) for many 𝜆 ∈ (0, 1) and there may be V ∈
𝑆F,𝑧

(𝑠,𝑧𝑠+𝑦𝑠)
+𝑦
(𝑠,𝑧𝑠+𝑦𝑠)

in a way that, for any 𝑡 ∈ I𝑛, we maintain

|𝑧 (𝑡)| ≤ ‖S (𝑡)‖𝐵(E) |G (0, 𝜍 (0))| +

G (𝑡, 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
)

+ 𝑦(𝑡,𝑧
𝑡
+𝑦
𝑡
))

+ ∫

𝑡

0

‖S (𝑡 − 𝑠)‖𝐵(E)


F(𝑠, 𝑧(𝑠,𝑧

𝑠
+𝑦
𝑠
)

+ 𝑦(𝑠,𝑧
𝑠
+𝑦
𝑠
),

∫

𝑠

0

𝑒 (𝑠, 𝜏, 𝑧(𝜏,𝑧
𝜏
+𝑦
𝜏
) + 𝑦(𝜏,𝑧

𝜏
+𝑦
𝜏
)) 𝑑𝜏)


𝑑𝑠

≤ M |G (0, 𝜍 (0))| + 𝑐1

𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
)

B

+ 𝑐2 +M∫

𝑡

0

𝜗 (𝑠)“(

𝑧(𝑠,𝑧

𝑠
+𝑦
𝑠
) + 𝑦(𝑠,𝑧

𝑠
+𝑦
𝑠
)

B

+ ∫

𝑠

0

𝑚(𝜏)Ω (

𝑧(𝑠,𝑧

𝑠
+𝑦
𝑠
) + 𝑦(𝑠,𝑧

𝑠
+𝑦
𝑠
)

B
) 𝑑𝜏) 𝑑𝑠.

(35)

From Remark 9(i), we have

|𝑧 (𝑡)| ≤ M |G (0, 𝜍 (0))| + 𝑐1D
∗

1
|𝑧 (𝑡)| + 𝑐1𝑐𝑛 + 𝑐2

+M∫

𝑡

0

𝜗 (𝑠)“(D
∗

1
|𝑧 (𝑠)| + 𝑐𝑛

+ ∫

𝑠

0

𝑚(𝜏)Ω (D
∗

1
|𝑧 (𝑠)| + 𝑐𝑛) 𝑑𝜏) 𝑑𝑠

≤
1

𝜇
[M |G (0, 𝜍 (0))| + 𝑐1𝑐𝑛 + 𝑐2] +

M

𝜇
∫

𝑡

0

𝜗 (𝑠)

⋅“(D
∗

1
|𝑧 (𝑠)| + 𝑐𝑛

+ ∫

𝑠

0

𝑚(𝜏)Ω (D
∗

1
|𝑧 (𝑠)| + 𝑐𝑛) 𝑑𝜏) 𝑑𝑠.

(36)

Thus,

D
∗

1
|𝑧 (𝑡)| + 𝑐𝑛 ≤ 𝑐𝑛 +

D∗
1

𝜇
[M |G (0, 𝜍 (0))| + 𝑐1𝑐𝑛

+ 𝑐2] +
MD∗
1

𝜇
∫

𝑡

0

𝜗 (𝑠)“(D
∗

1
|𝑧 (𝑠)| + 𝑐𝑛

+ ∫

𝑠

0

𝑚(𝜏)Ω (D
∗

1
|𝑧 (𝑠)| + 𝑐𝑛) 𝑑𝜏) 𝑑𝑠.

(37)
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We conceive function 𝛽 characterized by

𝛽 (𝑡) = sup {D∗
1
|𝑧 (𝑠)| + 𝑐𝑛 : 0 ≤ 𝑠 ≤ 𝑏} ,

0 ≤ 𝑡 < +∞.

(38)

Permit 𝑡∗ ∈ [0, 𝑡] in a way that 𝛽(𝑡) = D∗
1
|𝑧(𝑡
∗
)| + 𝑐𝑛‖𝜍‖B.

Because of the aforementioned inequality, we maintain, for
𝑡 ∈ I𝑛,

𝛽 (𝑡) ≤ 𝑐𝑛 +
D∗
1

𝜇
[M |G (0, 𝜍 (0))| + 𝑐1𝑐𝑛 + 𝑐2]

+
MD∗
1

𝜇

⋅ ∫

𝑡

0

𝜗 (𝑠)“(𝛽 (𝑠) + ∫

𝑠

0

𝑚(𝜏)Ω (𝛽 (𝜏)) 𝑑𝜏) 𝑑𝑠.

(39)

Allow us to occupy the right-hand part of the overhead
inequality as 𝑤(𝑡). Then, we sustain 𝛽(𝑡) ≤ 𝑤(𝑡) for all 𝑡 ∈
[0, 𝑛]. Through the significance of V, we get

𝑤 (0) = 𝑐𝑛 +
D∗
1

𝜇
[M |G (0, 𝜍 (0))| + 𝑐1𝑐𝑛 + 𝑐2] = 𝐶. (40)

This leads us to the accompanying inequality for 𝑡 ∈ I𝑛,

𝑤 (𝑡) ≤ 𝑐𝑛 +
D∗
1

𝜇
[M |G (0, 𝜍 (0))| + 𝑐1𝑐𝑛 + 𝑐2]

+
MD∗
1

𝜇

⋅ ∫

𝑡

0

𝜗 (𝑠)“(𝑤 (𝑠) + ∫

𝑠

0

𝑚(𝜏)Ω (𝑤 (𝜏)) 𝑑𝜏) 𝑑𝑠,

(41)

where

𝑤

(𝑡)

≤
MD∗
1

𝜇
𝜗 (𝑡)“(𝑤 (𝑡) + ∫

𝑡

0

𝑚(𝑠)Ω (𝑤 (𝑠)) 𝑑𝑠) .

(42)

Next, we weigh the function

𝜔 (𝑡) = 𝑤 (𝑡) + ∫

𝑡

0

𝑚(𝑠)Ω (𝑤 (𝑠)) 𝑑𝑠. (43)

Then we bring forth 𝜔(0) = 𝑤(0) = 𝐶 and 𝑤(𝑡) ≤ 𝜔(𝑡) for
all 𝑡 ∈ I𝑛. Applying the nondecreasing character of “, we
receive

𝜔

(𝑡) = 𝑤


(𝑡) + 𝑚 (𝑡)Ω (𝑤 (𝑡))

≤
MD∗
1

𝜇
𝜗 (𝑡)“ (𝜔 (𝑡)) + 𝑚 (𝑡)Ω (𝜔 (𝑡)) ,

a.e. 𝑡 ∈ I𝑛.

(44)

We characterize the function ](𝑡) = max{(MD∗
1
/𝜇)𝜗(𝑡),

𝑚(𝑡)}, 𝑡 ∈ I𝑛, which suggests that

𝜔

(𝑡)

“ (𝜔 (𝑡)) + Ω (𝜔 (𝑡))
≤ ] (𝑡) . (45)

From condition (25), we acquire

∫

𝜔(𝑡)

𝜔(0) =𝐶

𝑑𝑠

“ (𝑠) + Ω (𝑠)
≤ ∫

𝑡

0

] (𝑠) 𝑑𝑠 ≤ ∫
𝑛

0

] (𝑠) 𝑑𝑠

< ∫

+∞

𝐶

𝑑𝑠

“ (𝑠) + Ω (𝑠)
.

(46)

Subsequently, for every 𝑡 ∈ I𝑛, we have a constant Λ 𝑛
∗

in a
way that 𝜔(𝑡) ≤ Λ 𝑛

∗

and, consequently, 𝛽(𝑡) ≤ Λ 𝑛
∗

. Due to
the fact that ‖𝑧‖𝑛 ≤ 𝛽(𝑡), we certainly have ‖𝑧‖𝑛 ≤ Λ 𝑛

∗

. Fix

U = {𝑧 ∈ V
0

+∞
: sup
0≤𝑡≤𝑛

|𝑧 (𝑡)| ≤ Λ 𝑛
∗

+ 1, ∀𝑛 ∈ N} . (47)

Evidently, U is a closed subset of V0
+∞

. We should demon-
strate thatΥ : U → P(V0

+∞
) is a contraction and an admis-

sible operator. Initially, we evaluate that Υ is a contraction.
In fact, consider 𝑧, 𝑧 ∈ V0

+∞
and ℎ ∈ Υ(𝑧). Then, there

may be V(𝑡) ∈ F(𝑡, 𝑧(𝑡,𝑧
𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
), ∫
𝑡

0
𝑒(𝑡, 𝑠, 𝑧(𝑠,𝑧

𝑠
+𝑦
𝑠
) +

𝑦(𝑠,𝑧
𝑠
+𝑦
𝑠
))𝑑𝑠) such that

ℎ (𝑡) = G (𝑡, 𝑧(𝑡,𝑧
𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
)) −S (𝑡)G (0, 𝜍 (0))

+ ∫

𝑡

0

S (𝑡 − 𝑠) V (𝑠) 𝑑𝑠, for every 𝑡 ∈ I𝑛.

(48)

From the hypotheses (H2)(ii) and (H3)(ii), we sustain

𝐻𝑑 (F(𝑡, 𝑧(𝑡,𝑧
𝑡
+𝑦
𝑡
)

+ 𝑦(𝑡,𝑧
𝑡
+𝑦
𝑡
), ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑧(𝑠,𝑧
𝑠
+𝑦
𝑠
) + 𝑦(𝑠,𝑧

𝑠
+𝑦
𝑠
)) 𝑑𝑠) ,

F(𝑡, 𝑧(𝑡,𝑧
𝑡
+𝑦
𝑡
)

+ 𝑦(𝑡,𝑧
𝑡
+𝑦
𝑡
), ∫

𝑡

0

𝑒 (𝑡, 𝑠, 𝑧(𝑠,𝑧
𝑠
+𝑦
𝑠
) + 𝑦(𝑠,𝑧

𝑠
+𝑦
𝑠
)) 𝑑𝑠))

≤ ℘𝑛 (𝑡) [

𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) − 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
)

B
+ 𝐶1


𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
)

− 𝑧(𝑡,𝑧
𝑡
+𝑦
𝑡
)

B
] .

(49)

As a result, there is 𝑤 ∈ F(𝑡, 𝑧(𝑡,𝑧
𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
), ∫
𝑡

0
𝑒(𝑡, 𝑠,

𝑧(𝑠,𝑧
𝑠
+𝑦
𝑠
) + 𝑦(𝑠,𝑧

𝑠
+𝑦
𝑠
))𝑑𝑠) so that

|V (𝑡) − 𝑤| ≤ ℘𝑛 (𝑡) [

𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) − 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
)

B

+ 𝐶1

𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) − 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
)

B
] .

(50)

RecognizeU∗ : [0, 𝑛] → P(E) specified by

U∗ (𝑡) = {𝑤 ∈ E : |V (𝑡) − 𝑤| ≤ ℘𝑛 (𝑡)

⋅ [

𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) − 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
)

B

+ 𝐶1

𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) − 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
)

B
]} .

(51)
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Considering the fact that the multivalued operator 𝑉∗(𝑡) =
U∗(𝑡) ∩ F(𝑡, 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
), ∫
𝑡

0
𝑒(𝑡, 𝑠, 𝑧(𝑠,𝑧

𝑠
+𝑦
𝑠
) +

𝑦(𝑠,𝑧
𝑠
+𝑦
𝑠
))𝑑𝑠) is measurable (see Proposition 3), there is

function V(𝑡), which is a measurable choice for 𝑉∗. So, V(𝑡) ∈
F(𝑡, 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
), ∫
𝑡

0
𝑒(𝑡, 𝑠, 𝑧(𝑠,𝑧

𝑠
+𝑦
𝑠
) + 𝑦(𝑠,𝑧

𝑠
+𝑦
𝑠
))𝑑𝑠),

and, from Remark 9(ii), we specify

|V (𝑡) − V (𝑡)| ≤ ℘𝑛 (𝑡) (1 + 𝐶1)D
∗

1
|𝑧 (𝑡) − 𝑧 (𝑡)| . (52)

For every 𝑡 ∈ [0, 𝑛], give us a chance to characterize

ℎ (𝑡) = G (𝑡, 𝑧(𝑡,𝑧
𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
)) −S (𝑡)G (0, 𝜍 (0))

+ ∫

𝑡

0

S (𝑡 − 𝑠) V (𝑠) 𝑑𝑠.
(53)

Again, from Remark 9(iii), we now have


ℎ (𝑡) − ℎ (𝑡)


≤

G (𝑡, 𝑧(𝑡,𝑧

𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
))

−G (𝑡, 𝑧(𝑡,𝑧
𝑡
+𝑦
𝑡
) + 𝑦(𝑡,𝑧

𝑡
+𝑦
𝑡
))


+ ∫

𝑡

0

‖S (𝑡 − 𝑠)‖𝐵(E) |V (𝑠) − V (𝑠)| 𝑑𝑠 ≤ (℘∗
𝑛

+
1

𝜏
) 𝑒
𝜏𝐿
∗

𝑛
(𝑡)
‖𝑧 − 𝑧‖𝑛 .

(54)

As a result


ℎ − ℎ

𝑛
≤ (℘
∗

𝑛
+
1

𝜏
) ‖𝑧 − 𝑧‖𝑛 . (55)

Being practically equivalent to the connection gotten by
exchanging the parts of 𝑧 and 𝑧, it takes after that

𝐻𝑑 (Υ (𝑧) , Υ (𝑧)) ≤ (℘
∗

𝑛
+
1

𝜏
) ‖𝑧 − 𝑧‖𝑛 , (56)

demonstrating that Υ is a contraction for all 𝑛 ∈ N and, from
the second aspect of [30, Theorem 3.4], we realize that Υ is
likewise admissible contraction operator. With the decision
of U, there is no 𝑧 ∈ 𝜕U in a way that 𝑧 = 𝜆Υ(𝑧) for many
𝜆 ∈ (0, 1). From the nonlinear alternative fixed point theorem
thanks to Frigon [1, Corollary 3.5], we realize that the operator
Υ has a fixed point 𝑧∗.This intimates that 𝑥∗(𝑡) = 𝑧∗(𝑡)+𝑦(𝑡),
𝑡 ∈ (−∞, +∞), is a fixed point of the operator Υ, which is a
mild solution of the structure (1).

4. Illustrative Example

To exemplify our theoretical results, we treat the FNIDI with
SDD of the structure

𝜕

𝜕𝑡
[𝑢 (𝑡, 𝜉) − 𝑔 (𝑡, 𝑢 (𝑡 − 𝜎 (𝑢 (𝑡, 0)) , 𝜉))]

∈ ∫

0

𝑡

(𝑡 − 𝑠)
𝛼−2

Γ (𝛼 − 1)
(
𝜕
2

𝜕𝜉2
− 𝑟) [𝑢 (𝑠, 𝜉)

− 𝑔 (𝑠, 𝑢 (𝑠 − 𝜎 (𝑢 (𝑠, 0)) , 𝜉))] 𝑑𝑠 + [𝑓1 (𝑡,

𝑢 (𝑡 − 𝜎 (𝑢 (𝑡, 0)) , 𝜉) ,

∫

𝑡

0

𝜂 (𝑡, 𝑠, 𝑢 (𝑠 − 𝜎 (𝑢 (𝑠, 0)) , 𝜉)) 𝑑𝑠) , 𝑓2 (𝑡,

𝑢 (𝑡 − 𝜎 (𝑢 (𝑡, 0)) , 𝜉) ,

∫

𝑡

0

𝜂 (𝑡, 𝑠, 𝑢 (𝑠 − 𝜎 (𝑢 (𝑠, 0)) , 𝜉)) 𝑑𝑠)] ,

𝑡 ∈ [0,∞) , 𝜉 ∈ [0, 𝜋] ,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 ∈ [0,∞) ,

𝑢 (𝜃, 𝜉) = 𝑢0 (𝜃, 𝜉) , 𝜃 ∈ (−∞, 0] , 𝜉 ∈ [0, 𝜋] ,

(57)

where 1 < 𝛼 < 2, (𝑢0, 𝜎) ∈ 𝐶(R[0,∞)), 𝐿𝜉 = (𝜕
2
/𝜕𝜉
2
−

𝑟), 𝑟 > 0 stands for the operator with respect to the special
variable 𝜉, 𝑓1, 𝑓2 : I ×B × E → R are measurable in 𝑡 and
continuous in 𝑥, 𝑔 : I ×B → R, and 𝜂 : I ×I ×B →

R are appropriate functions. We expect that, for each 𝑡 ≥ 0,
𝑓1(𝑡, ⋅, ⋅) is lower semicontinuous (i.e., the set {𝑥 ∈ B, 𝑦 ∈ E :

𝑓1(𝑡, 𝑥, 𝑦) > ]} is open for all ] ∈ R) and accept that, for each
𝑡 ≥ 0, 𝑓2(𝑡, ⋅, ⋅) is upper semicontinuous (i.e., the set {𝑥 ∈ B,

𝑦 ∈ E : 𝑓2(𝑡, 𝑥, 𝑦) < ]} is open for each ] ∈ R).
Recognize E = 𝐿

2
([0, 𝜋],R) and the operator A : 𝐿𝜉 :

𝐷(A) ⊂ E → E with domain

𝐷 (A) = {𝑢 ∈ E : 𝑢

∈ E, 𝑢 (0) = 𝑢 (𝜋) = 0} . (58)

Clearly,A is densely defined inE and is sectorial. Hence,A is
a generator of a solution operator on E. For the phase space,
we pick B = 𝐶𝛾 = {𝜍 ∈ 𝐶((−∞, 0] : X) : lim𝜃→−∞𝑒

𝛾𝜃
𝜍(𝜃)

exists inX} invested with the norm

|𝜍| = sup
−∞<𝜃≤0

𝑒
𝛾𝜃
|𝜍 (𝜃)| . (59)

Here, we note the phase space 𝐶𝛾 satisfying conditions (𝑃1),
(𝑃2), and (𝑃3). Set

𝑥 (𝑡) (𝜉) = 𝑢 (𝑡, 𝜉) , 𝑡 ≥ 0, 𝜉 ∈ [0, 𝜋] ,

𝜍 (0) (𝜉) = 𝑢0 (𝜃, 𝜉) , 𝑡 ≥ 0, 𝜃 ≤ 0,

G (𝑡, 𝜍) (𝜉) = 𝑔 (𝑡, 𝜍 (0, 𝜉)) , 𝑡 ≥ 0, 𝜉 ∈ [0, 𝜋] ,

F (𝑡, 𝜍, 𝑥) (𝜉)

= [𝑓1 (𝑡, 𝜍 (0, 𝜉) , ∫

𝑡

0

𝜂 (𝑡, 𝑠, 𝜍 (0, 𝜉)) 𝑑𝑠) ,

𝑓2 (𝑡, 𝜍 (0, 𝜉) , ∫

𝑡

0

𝜂 (𝑡, 𝑠, 𝜍 (0, 𝜉)) 𝑑𝑠)] ,

𝑡 ≥ 0, 𝜉 ∈ [0, 𝜋] ,

𝑒 (𝑡, 𝑠, 𝜍) (𝜉) = 𝜂 (𝑡, 𝑠, 𝜍 (0, 𝜉)) ,

 (𝑡, 𝜍) = 𝑡 − 𝜎 (𝜍 (0, 0)) .

(60)
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Themultivalued mapF is u.s.c. with compact convex values.
Thus, (H1) and (H2) are fulfilled.

Presently, the existence of mild solutions can be reasoned
from an immediate utilization of Theorem 8. In the perspec-
tive of phase space 𝐶𝛾 with the above examination, we have
the accompanying results.

Corollary 10. Let 𝜍 ∈ B = 𝐶𝛾 be continuous and bounded.
Then, there is certainly at least one mild solution of the model
(57) on (−∞, +∞).
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