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Abstract: In many real world problems, science fields such as biology, computer science, data mining,
electrical and mechanical engineering, and signal processing, researchers aim to compare and classify
several regression models. In this paper, a computational approach, based on the non-parametric
methods, is used to investigate the similarities, and to classify several linear and non-linear regression
models with symmetric errors. The ability of each given approach is then evaluated using simulated
and real world practical datasets.

Keywords: comparison; Friedman test; linear regression; nonlinear regression; sign test; symmetric
errors; Wilcoxon test

1. Introduction

In many situations, we aim to study the effects of variables X1, . . . , Xk on variable Y. Simple
and multiple regressions are data analysis techniques to model these effects. The authors of the
references [1,2] applied simple and multiple linear regression models in different science fields, such
as agriculture, biology, material, mechanical engineering, and signal processing. In many real world
problems, scientists want to compare the relationship between the dependent variable and independent
variables in several separate datasets.

The comparison of the correlation between the variables X and Y in two separate datasets, different
techniques was provided by [3–5]. The comparison of the correlation between the variables X and Y
in a dataset, and the correlation between the two variables X and W in another dataset, resulted in
different methods developed by [6–10]. The correlation between the variables X and Y in a dataset, and
the correlation between two variables W and Z in another dataset, were compared by different methods
in [9,11,12]. The comparison and classification of two, and more simple linear regression models, have
been considered in [13–16]. The comparison of two regression models has been reported in [14–22].

In the present research, we aim to compare and classify several linear and non-linear regression
models that fitted on several independent datasets. The non-parametric methods are used to construct
an approach to investigate the similarity and to classify the linear and non-linear regression models.
A given approach is then evaluated using simulation and real world studies. The introduced approach
is powerful and applicable in its ability to compare any linear or non-linear regression models.
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2. Models Comparing and Classification

Assume (X1 j, . . . , Xkj, Y j), j = 1, . . . , ni, is a sample dataset of size ni, from (X1, . . . , Xk, Y). The
equations of m linear or non-linear regression models can be written by:

Yi j = fi(X1 j, . . . , Xkj) + εi j, j = 1, . . . , ni, i = 1, . . . , m, (1)

such that for i = 1, . . . , m, εi j, j = 1, . . . , ni, are zero-mean symmetric random variables with unknown
and equal variance σ2

i .
By considering Equation (1), consequently, the conditional expectation of Y based on fi(X1, . . . , Xk),

that we show it by θi(X1, . . . , Xk ), is given by:

θi(X1, . . . , Xk ) = E
(
Y
∣∣∣ fi(X1, . . . , Xk)

)
= fi(X1, . . . , Xk). (2)

In real-word problems the aim is to test the hypothesis H0 : θ1(X1, . . . , Xk ) = θ2(X1, . . . , Xk ) =

. . . = θm(X1, . . . , Xk). Under the rejection of H0, we conclude that at least two models of the m
regression models are not statistically similar, and if H0 is accepted then it can be concluded that the m
regression models are statistically equal.

The regression equations can be represented by:

Yi = fi(X1, . . . , Xk) + εi, i = 1, . . . , m, (3)

such that Yi =
(
y1, . . . , yni

)T
, i = 1, . . . , m, are the values for the dependent variable Y, X1 =(

x11, . . . , x1ni

)T
, . . . , Xk =

(
xk1, . . . , xkni

)T
, i = 1, . . . , m are the values for the independent variables

(X1, . . . , Xk), fi(X1, . . . , Xk) =
(

fi(x11, . . . , xk1), . . . , fi(x1ni , . . . , xkni)
)T

, and εi =
(
εi1, . . . , εini

)T
, i =

1, . . . , m, are zero-mean random variables with unknown and equal variance σ2
i .

First, all m regression models are estimated by

Ŷi = f̂i(X1, . . . , Xk), i = 1, . . . , m, (4)

for all n = distinct points (n1 ∪ n2 ∪ . . .∪ nm) values of (X1, . . . , Xk), where Ŷi = (ŷi1, . . . , ŷin)
T, i =

1, . . . , m, are the estimated values for dependent variable Y, based on ith regression model. Since
εi, i = 1, . . . , m, are zero-mean symmetric random variables, consequently, ŷi1, . . . , ŷin, i = 1, . . . , m,
are unbiased estimators for θi(X1, . . . , Xk ), i = 1, . . . , m, respectively. In other words, ŷi1, . . . , ŷin, i =
1, . . . , m, are random variables with mean θi(X1, . . . , Xk ), i = 1, . . . , m.

Remark 1. n = distinct points (n1 ∪ n2 ∪ . . .∪ nm) means that the repeated points are assumed once.

Now, to compare the fitted regression models, the Friedman test [23–26] will be applied on n
couples (ŷ11, . . . , ŷm1), . . . , (ŷ1n, . . . , ŷm1).

The Friedman test that is a non-parametric alternative to the repeated measures is used to compare
related datasets (datasets that are repeated on the same subjects). This test is commonly applied when
dataset do not follow the parametric conditions, such as normality assumption.

Classification

In previous discussion, if H0 is false, then we conclude that the mechanism of one model or
mechanisms of some models are significantly different from the other models. However, to determine
which models are significantly different from each other, the sign test or Wilcoxon test are applied in
order to compare each of the regression model pairs.
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3. Simulation Study

This section assesses the ability of the introduced approach simulation datasets. First, the different
datasets from different regression models are produced. Then, we compute the values of the Estimated
Type I error probability (α̂) and the Estimated Power (π̂) of the introduced approach. For comparison,
the Wilcoxon and Friedman tests are applied. The simulations are accomplished after 1000 runs and
using the R 3.5.3 software (R Development Core Team, 2018) on a PC (Processor: Intel(R) CoreTM(2) Duo
CPU T7100 @ 1.80GHz 1.80GHz, RAM: 2.00GB, System Type: 32-bit).

Example 1. Assume the simple linear regression model:

Y = βX + ε, (5)

such that ε and X are independent.

Example 2. Let
Y = β0 + β1X + β2Xε, (6)

such that ε and X are independent.

Example 3. Assume:
Y = 1 + βX + ε, (7)

such that ε and X are independent.

Example 4. Assume the multiple linear regression model:

Y = β0 + β1X1 + 2β2X2 + ε, (8)

such that ε, X1 and X2 are independent.

Example 5. For the first dataset, assume the simple nonlinear regression model:

Y = eX + ε, (9)

such that ε and X are independent.

For the second and the third datasets let Y =
{
eX + ε, 1 + βX + ε

}
, and Y ={

eX + ε, 1 + βX + ε, 2X + ε
}
, respectively.

Figures 1 and 2 shows the density plots of the some parts of the response variable Y. As it can be
seen in these figures, the density plots are symmetric, but not necessarily normal (Figure 2).
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The values of α̂ (first four rows) and π̂ (other rows) for Examples 1 to 5 are summarized in
Tables 1–5, respectively. As Tables 1–5 indicate the values of α̂ are very close to size test (α = 0.05), and
consequently the introduced approach can be controlled the type I error. Also the values of π̂ show
that the given technique can distinguished between the null and alternative hypotheses.
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Table 1. The values of α̂ and π̂ for Example 1.

(n1, n2, n3)

ε X
β

(10, 10, 10) (20, 40, 60) (50, 75, 100) (75, 100, 150)
Second Third

Uni f orm (−2, 2) Normal (0, 0.25) 1 1 0.053 0.051 0.051 0.049
Uni f orm (−2, 2) Exponential (5) 1 1 0.052 0.052 0.051 0.048
Normal (0, 0.5) Normal (0, 0.25) 1 1 0.053 0.052 0.050 0.049
Normal (0, 0.5) Exponential (5) 1 1 0.053 0.052 0.050 0.049

Uni f orm (−2, 2) Normal (0, 0.25) 1 2 0.738 0.882 0.934 0.958
Uni f orm (−2, 2) Exponential (5) 1 2 0.753 0.801 0.950 0.981
Normal (0, 0.5) Normal (0, 0.25) 1 2 0.754 0.854 0.945 0.972
Normal (0, 0.5) Exponential (5) 1 2 0.749 0.889 0.913 0.970

Uni f orm (−2, 2) Normal (0, 0.25) 1 3 0.703 0.825 0.941 0.993
Uni f orm (−2, 2) Exponential (5) 1 3 0.710 0.859 0.917 0.975
Normal (0, 0.5) Normal (0, 0.25) 1 3 0.728 0.824 0.910 0.984
Normal (0, 0.5) Exponential (5) 1 3 0.707 0.864 0.934 0.953

Uni f orm (−2, 2) Normal (0, 0.25) 2 1 0.768 0.828 0.913 0.978
Uni f orm (−2, 2) Exponential (5) 2 1 0.703 0.824 0.928 0.951
Normal (0, 0.5) Normal (0, 0.25) 2 1 0.794 0.846 0.930 0.968
Normal (0, 0.5) Exponential (5) 2 1 0.794 0.800 0.903 0.955

Uni f orm (−2, 2) Normal (0, 0.25) 2 2 0.745 0.813 0.946 0.971
Uni f orm (−2, 2) Exponential (5) 2 2 0.718 0.858 0.937 0.981
Normal (0, 0.5) Normal (0, 0.25) 2 2 0.784 0.866 0.901 0.953
Normal (0, 0.5) Exponential (5) 2 2 0.726 0.821 0.944 0.999

Uni f orm (−2, 2) Normal (0, 0.25) 2 3 0.795 0.849 0.924 0.982
Uni f orm (−2, 2) Exponential (5) 2 3 0.755 0.856 0.928 0.961
Normal (0, 0.5) Normal (0, 0.25) 2 3 0.763 0.845 0.936 0.988
Normal (0, 0.5) Exponential (5) 2 3 0.710 0.865 0.914 0.975

Table 2. The values of α̂ and π̂ for Example 2.

(n1, n2, n3)

ε X
(β0, β1, β2)

(10, 10, 10) (20, 40, 60) (50, 75, 100) (75, 100, 150)
Second Third

Uni f orm (−1, 1) Normal (0, 1) (2, 1, 2) (2, 1, 2) 0.052 0.052 0.051 0.049
Uni f orm (−1, 1) Exponential (1) (2, 1, 2) (2, 1, 2) 0.053 0.051 0.050 0.049

Normal (0, 2) Normal (0, 1) (2, 1, 2) (2, 1, 2) 0.053 0.052 0.051 0.049
Normal (0, 2) Exponential (1) (2, 1, 2) (2, 1, 2) 0.052 0.052 0.051 0.049

Uni f orm (−1, 1) Normal (0, 1) (2, 1, 2) (0, 2, 1) 0.770 0.843 0.903 0.981
Uni f orm (−1, 1) Exponential (1) (2, 1, 2) (0, 2, 1) 0.743 0.817 0.909 0.979

Normal (0, 2) Normal (0, 1) (2, 1, 2) (0, 2, 1) 0.771 0.842 0.918 0.992
Normal (0, 2) Exponential (1) (2, 1, 2) (0, 2, 1) 0.791 0.855 0.934 0.967

Uni f orm (−1, 1) Normal (0, 1) (2, 1, 2) (3, 2, 1) 0.737 0.891 0.941 0.997
Uni f orm (−1, 1) Exponential (1) (2, 1, 2) (3, 2, 1) 0.798 0.860 0.932 0.988

Normal (0, 2) Normal (0, 1) (2, 1, 2) (3, 2, 1) 0.740 0.849 0.947 0.993
Normal (0, 2) Exponential (1) (2, 1, 2) (3, 2, 1) 0.712 0.827 0.916 0.997

Uni f orm (−1, 1) Normal (0, 1) (0, 2, 1) (2, 1, 2) 0.782 0.837 0.932 0.966
Uni f orm (−1, 1) Exponential (1) (0, 2, 1) (2, 1, 2) 0.780 0.830 0.936 0.960

Normal (0, 2) Normal (0, 1) (0, 2, 1) (2, 1, 2) 0.720 0.857 0.945 0.998
Normal (0, 2) Exponential (1) (0, 2, 1) (2, 1, 2) 0.767 0.897 0.902 0.958

Uni f orm (−1, 1) Normal (0, 1) (0, 2, 1) (0, 2, 1) 0.790 0.809 0.921 0.992
Uni f orm (−1, 1) Exponential (1) (0, 2, 1) (0, 2, 1) 0.741 0.814 0.935 0.992

Normal (0, 2) Normal (0, 1) (0, 2, 1) (0, 2, 1) 0.710 0.844 0.945 0.981
Normal (0, 2) Exponential (1) (0, 2, 1) (0, 2, 1) 0.760 0.871 0.906 0.972

Uni f orm (−1, 1) Normal (0, 1) (0, 2, 1) (3, 2, 1) 0.776 0.807 0.919 0.969
Uni f orm (−1, 1) Exponential (1) (0, 2, 1) (3, 2, 1) 0.701 0.875 0.928 0.963

Normal (0, 2) Normal (0, 1) (0, 2, 1) (3, 2, 1) 0.780 0.803 0.936 0.987
Normal (0, 2) Exponential (1) (0, 2, 1) (3, 2, 1) 0.720 0.886 0.923 0.960
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Table 3. The values of α̂ and π̂ for Example 3.

(n1, n2, n3)

ε X
β

(10, 10, 10) (20, 40, 60) (50, 75, 100) (75, 100, 150)
Second Third

Uni f orm (−1, 1) Geometric (0.4) 1 1 0.053 0.051 0.050 0.049
Uni f orm (−1, 1) Binomial (2, 0.7) 1 1 0.053 0.051 0.051 0.050
Normal (0, 0.5) Geometric (0.4) 1 1 0.053 0.051 0.051 0.050
Normal (0, 0.5) Binomial (2, 0.7) 1 1 0.053 0.051 0.051 0.050

Uni f orm (−1, 1) Geometric (0.4) 1 2 0.724 0.846 0.924 0.996
Uni f orm (−1, 1) Binomial (2, 0.7) 1 2 0.734 0.813 0.942 0.952
Normal (0, 0.5) Geometric (0.4) 1 2 0.737 0.818 0.914 0.959
Normal (0, 0.5) Binomial (2, 0.7) 1 2 0.764 0.819 0.949 0.998

Uni f orm (−1, 1) Geometric (0.4) 1 5 0.797 0.808 0.904 0.959
Uni f orm (−1, 1) Binomial (2, 0.7) 1 5 0.760 0.869 0.919 0.978
Normal (0, 0.5) Geometric (0.4) 1 5 0.793 0.843 0.917 0.988
Normal (0, 0.5) Binomial (2, 0.7) 1 5 0.765 0.876 0.910 0.983

Uni f orm (−1, 1) Geometric (0.4) 2 1 0.742 0.868 0.934 0.954
Uni f orm (−1, 1) Binomial (2, 0.7) 2 1 0.730 0.810 0.925 0.966
Normal (0, 0.5) Geometric (0.4) 2 1 0.725 0.867 0.911 0.981
Normal (0, 0.5) Binomial (2, 0.7) 2 1 0.769 0.868 0.930 0.996

Uni f orm (−1, 1) Geometric (0.4) 2 2 0.763 0.816 0.905 0.982
Uni f orm (−1, 1) Binomial (2, 0.7) 2 2 0.706 0.895 0.935 0.951
Normal (0, 0.5) Geometric (0.4) 2 2 0.723 0.866 0.909 0.981
Normal (0, 0.5) Binomial (2, 0.7) 2 2 0.765 0.857 0.903 0.974

Uni f orm (−1, 1) Geometric (0.4) 2 5 0.710 0.867 0.910 0.950
Uni f orm (−1, 1) Binomial (2, 0.7) 2 5 0.764 0.837 0.904 0.981
Normal (0, 0.5) Geometric (0.4) 2 5 0.778 0.891 0.933 0.987
Normal (0, 0.5) Binomial (2, 0.7) 2 5 0.726 0.819 0.946 0.967

Table 4. The values of α̂ and π̂ for Example 4.

(n1, n2, n3)

X1 X2
(β0, β1, β2)

(10, 10, 10) (20, 40, 60) (50, 75, 100) (75, 100, 150)
Second Third

Uni f orm (0, 2) Exponential (5) (2, 1, 2) (2, 1, 2) 0.052 0.052 0.050 0.049
Uni f orm (0, 2) Geometric (0.3) (2, 1, 2) (2, 1, 2) 0.053 0.052 0.050 0.049

Binomial (3, 0.5) Exponential (5) (2, 1, 2) (2, 1, 2) 0.052 0.052 0.051 0.049
Binomial (3, 0.5) Geometric (0.3) (2, 1, 2) (2, 1, 2) 0.052 0.051 0.050 0.048
Uni f orm (0, 2) Exponential (5) (2, 1, 2) (0, 2, 1) 0.734 0.893 0.923 0.961
Uni f orm (0, 2) Geometric (0.3) (2, 1, 2) (0, 2, 1) 0.787 0.887 0.947 0.964

Binomial (3, 0.5) Exponential (5) (2, 1, 2) (0, 2, 1) 0.766 0.813 0.943 0.973
Binomial (3, 0.5) Geometric (0.3) (2, 1, 2) (0, 2, 1) 0.762 0.897 0.909 0.993
Uni f orm (0, 2) Exponential (5) (2, 1, 2) (3, 2, 1) 0.706 0.866 0.936 0.966
Uni f orm (0, 2) Geometric (0.3) (2, 1, 2) (3, 2, 1) 0.746 0.882 0.946 0.960

Binomial (3, 0.5) Exponential (5) (2, 1, 2) (3, 2, 1) 0.716 0.875 0.948 0.975
Binomial (3, 0.5) Geometric (0.3) (2, 1, 2) (3, 2, 1) 0.757 0.811 0.939 0.950
Uni f orm (0, 2) Exponential (5) (0, 2, 1) (2, 1, 2) 0.792 0.866 0.936 0.985
Uni f orm (0, 2) Geometric (0.3) (0, 2, 1) (2, 1, 2) 0.768 0.824 0.902 0.995

Binomial (3, 0.5) Exponential (5) (0, 2, 1) (2, 1, 2) 0.773 0.841 0.933 0.983
Binomial (3, 0.5) Geometric (0.3) (0, 2, 1) (2, 1, 2) 0.795 0.801 0.940 0.992
Uni f orm (0, 2) Exponential (5) (0, 2, 1) (0, 2, 1) 0.790 0.891 0.912 0.953
Uni f orm (0, 2) Geometric (0.3) (0, 2, 1) (0, 2, 1) 0.784 0.855 0.924 0.951

Binomial (3, 0.5) Exponential (5) (0, 2, 1) (0, 2, 1) 0.739 0.842 0.908 0.961
Binomial (3, 0.5) Geometric (0.3) (0, 2, 1) (0, 2, 1) 0.749 0.880 0.905 0.963
Uni f orm (0, 2) Exponential (5) (0, 2, 1) (3, 2, 1) 0.745 0.854 0.918 0.956
Uni f orm (0, 2) Geometric (0.3) (0, 2, 1) (3, 2, 1) 0.739 0.825 0.946 0.955

Binomial (3, 0.5) Exponential (5) (0, 2, 1) (3, 2, 1) 0.743 0.883 0.926 0.960
Binomial (3, 0.5) Geometric (0.3) (0, 2, 1) (3, 2, 1) 0.734 0.840 0.918 0.976
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Table 5. The values of α̂ and π̂ for Example 5.

(n1, n2, n3)

ε X
Y

(10, 10, 10) (20, 40, 60) (50, 75, 100) (75, 100, 150)
Second Third

Uni f orm (−2, 2) Normal (0, 0.5) eX + ε eX + ε 0.052 0.051 0.051 0.048
Uni f orm (−2, 2) Poisson (5) eX + ε eX + ε 0.053 0.051 0.051 0.049
Normal (0, 0.25) Normal (0, 0.5) eX + ε eX + ε 0.052 0.051 0.051 0.049
Normal (0, 0.25) Poisson (5) eX + ε eX + ε 0.052 0.051 0.050 0.048
Uni f orm (−2, 2) Normal (0, 0.5) eX + ε 1 + βX + ε 0.787 0.895 0.901 0.965
Uni f orm (−2, 2) Poisson (5) eX + ε 1 + βX + ε 0.787 0.829 0.930 0.974
Normal (0, 0.25) Normal (0, 0.5) eX + ε 1 + βX + ε 0.725 0.848 0.912 0.991
Normal (0, 0.25) Poisson (5) eX + ε 1 + βX + ε 0.759 0.898 0.944 0.984
Uni f orm (−2, 2) Normal (0, 0.5) eX + ε 2X + ε 0.734 0.891 0.949 0.962
Uni f orm (−2, 2) Poisson (5) eX + ε 2X + ε 0.788 0.811 0.921 0.981
Normal (0, 0.25) Normal (0, 0.5) eX + ε 2X + ε 0.759 0.877 0.941 0.965
Normal (0, 0.25) Poisson (5) eX + ε 2X + ε 0.704 0.868 0.948 0.989
Uni f orm (−2, 2) Normal (0, 0.5) eX + ε eX + ε 0.798 0.845 0.908 0.956
Uni f orm (−2, 2) Poisson (5) eX + ε eX + ε 0.753 0.809 0.927 0.989
Normal (0, 0.25) Normal (0, 0.5) eX + ε eX + ε 0.731 0.865 0.910 0.990
Normal (0, 0.25) Poisson (5) eX + ε eX + ε 0.731 0.820 0.906 0.962
Uni f orm (−2, 2) Normal (0, 0.5) 1 + βX + ε 1 + βX + ε 0.723 0.897 0.934 0.960
Uni f orm (−2, 2) Poisson (5) 1 + βX + ε 1 + βX + ε 0.799 0.807 0.949 0.982
Normal (0, 0.25) Normal (0, 0.5) 1 + βX + ε 1 + βX + ε 0.713 0.877 0.916 0.952
Normal (0, 0.25) Poisson (5) 1 + βX + ε 1 + βX + ε 0.743 0.872 0.925 0.965
Uni f orm (−2, 2) Normal (0, 0.5) 1 + βX + ε 2X + ε 0.725 0.892 0.901 0.996
Uni f orm (−2, 2) Poisson (5) 1 + βX + ε 2X + ε 0.795 0.886 0.944 0.959
Normal (0, 0.25) Normal (0, 0.5) 1 + βX + ε 2X + ε 0.707 0.821 0.925 0.972
Normal (0, 0.25) Poisson (5) 1 + βX + ε 2X + ε 0.798 0.825 0.924 0.974

4. Real Data

In this section, a practical real data is considered to study the power of the introduced approach
in real world problems. Drought is a damaging natural phenomenon. To prevent this phenomenon,
the hydrologists model and predict the drought datasets in a standard time period. In this research,
the average monthly rainy days (1966–2010) at three Iranian synoptic stations (Fasa, Sarvestan, and
Shiraz) was considered and modeled.

To model and forecast the average monthly rainy days, different polynomial regression models of
orders 1 to 3 (linear, quadratic and cubic) and exponential model were fitted to datasets. The formulas
of the considered models are as following:

Linear model: Y = β0 + β1X + ε Quadratic model:

Y = β0 + β1X + β2X2 + ε. (10)

Cubic model : Y = β0 + β1X + β2X2 + β3X3 + ε. (11)

Exponential model : Y = β0 + β1eβ2X + ε. (12)

The numerical computations are done using the R 3.5.3 software (Library ‘nlstools’, lm() function
for linear regression and nls() function for nonlinear regression) and Minitab 18 software.

The results of fitted regression models are summarized in Table 6. It can be observed that, for all
of the stations, respectively, the polynomial regression of order 3 (cubic), and the exponential models,
had the most R-square (R2) and the least root mean square error (RMSE) between all fitted models.
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Table 6. Indices to evaluate the fitted regression models.

Model Station R Square RMSE

Linear
Fasa 0.624 1.693

Sarvestan 0.638 1.516
Shiraz 0.689 1.501

Quadratic
Fasa 0.734 1.350

Sarvestan 0.743 1.285
Shiraz 0.767 1.265

Cubic
Fasa 0.895 0.910

Sarvestan 0.899 0.855
Shiraz 0.976 0.529

Exponential
Fasa 0.767 0.978

Sarvestan 0.778 0.926
Shiraz 0.876 0.713

Now, we use the proposed approach to compare and classify these stations, for each model.
The result of Friedman test is shown in Table 7. This table indicated that the fitted cubic and exponential
models are significantly different in these stations (p < 0.05). Also, there is no significant difference
between the fitted linear and quadratic models in these stations (p > 0.05).

Table 7. Friedman test to compare the stations.

Model p

Linear 0.123
Quadratic 0.224

Cubic <0.001
Exponential <0.001

As Table 8 indicates, we can classify the stations in two clusters, for cubic and exponential models.
First cluster: Fasa and Sarvestan, and second cluster: Shiraz.

Table 8. Wilcoxon test to compare and classify the stations.

Model Stations p

Cubic
Pair 1 Shiraz - Fasa 0.011
Pair 2 Shiraz - Sarvestan 0.003
Pair 3 Fasa - Sarvestan 0.144

Exponential
Pair 1 Shiraz - Fasa 0.019
Pair 2 Shiraz - Sarvestan <0.001
Pair 3 Fasa - Sarvestan 0.112

5. Conclusions

In many real world problems, researchers wish to compare and classify the regression models
in several datasets. In this paper, the non-parametric methods were used to construct an approach
to investigate the similarity of some linear and non-linear regression models with symmetric errors.
Particular approaches were evaluated using simulation and practical datasets. A simulation study
indicated that the introduced approach controlled the Type I error. Also the proposed technique
distinguished well between null and alternative hypotheses. The introduced approach also had many
advantages. First, it was powerful. Second, it was not too computational. Third, it could be applied to
compare any linear or non-linear regression models. Fourth, this method did not need the normality of
errors and could be applied for all models with symmetric errors.
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