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1. Introduction

Painlevé and his school addressed a question raised by E. Picard concerning a second order first degree ordinary differ-
ential equation of the form

y'=F@zy.y), (1.1

where F is rational in y’, algebraic in y and locally analytic in z and has the property that singularities other than poles of any
of the solutions are fixed [1-5]. This property is known as the Painlevé property. Within the Mobius transformation, there are
fifty such equations, and six of them are irreducible and define classical Painlevé transcendents P; — Py;.

The first order first degree equation, which has the Painlevé property, is the Riccati equation. Before the work of Painlevé
and his school, Fuchs (see [4]) considered the equation of the form

Fiz.y.y') =0, (1.2)
where F is polynomial in y and y’ and locally analytic in z, such that the movable branch points are absent, that is, the gen-
eralization of the Riccati equation. Briot and Bouquet (see [4]) considered the subcase of (1.2), that is, first order binomial
equations of degree m € Z, :

)" +F(zy) =0, (1.3)

where F(z,y) is a polynomial of degree at most 2m in y. It was found that there are six types of equations of the form (1.3). All
of these equations, however, are either reducible to a linear equation or solvable by means of elliptic functions [4]. Second
order binomial-type equations of degree m > 3

"™ +F(zyy) =0, (1.4)
where F is polynomial in y and y’ and locally analytic in z, were considered by Cosgrove [6]. He found nine such classes. Only

two of these classes have arbitrary degree m and the others have degree three, four and six. All nine classes are solvable in
terms of the first, second and fourth Painlevé transcendents, elliptic functions or by means of quadratures.
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Second order second-degree Painlevé type equations of the following form

(y//)l :E(Z,y,y’)y”+F(Z,y.,y')7 (]5)
where E and F are assumed to be rational in y,y’ and locally analytic in z were the subject of the articles [7-11]. In [7,8], the
special form, E = 0, and hence F is polynomial in y and y’ of (1.5) was considered. In addition, in this case, no new Painlevé
type equation was discovered, since all of them can be solved either in terms of the known functions or one of the six Pain-
levé equations. In [9-11], it was shown that all the second-degree equations obtained in [7,8], and some of the new second-
degree equations such that E#0 can be obtained from P; — Py; by using the Riccati and Fuchsian type transformations, both of
which preserve the Painlevé property.

Chazy [12], Garnier [13] and Bureau [14] considered the third order differential equations possessing the Painlevé prop-
erty of the following form

yW:F(zayﬂy/>yN)> (16)
where F is assumed to be rational in y,y’,y” and locally analytic in z. In [14], the special form of F(z,y,y’,y")
Fzy.y.y') =h@yy +L@y)y) +Hzyy +fizy), (1.7)

where f(z,y) are polynomials in y of degree k with analytic coefficients in z, was considered. In this class, no new Painlevé
transcendents were discovered, and all of them were solvable either in terms of the known functions or one of the six Pain-
levé transcendents. The case in which F is a polynomial in y and its derivatives was also investigated in [15,16]. Eq. (1.6) with
F analytic in z and rational in its other arguments, was considered in [17-21]. Fourth and higher order equations with the
Painlevé property were investigated in many articles [14-16,22-32]. Kudryashov [23], Clarkson et al. [33], and Gordoa
et al. [34,35] obtained first, second and fourth Painlevé hierarchy, by using the non-isospectral scattering problems. In
[35] the associated linear equations (Lax pairs) for the second and fourth Painlevé hierarchies are given.
In this article, we consider the following equation

Y'Y +oy?) = By + ayyy' + @Y’y + a3y + asy’y? + asy*y’ + agy® + a7y°y" + asyy”? + aoy* + a10y%y’ + any’.
(1.8)

and determine the coefficients o, 8,5 and a;,i = 1,2,...,11 by using the Painlevé ODE test, singular point analysis. Singular
point analysis is an algorithm introduced by Ablowitz et al. [36,37] to test whether a given ordinary differential equation
satisfies the necessary conditions to be of Painlevé type. Some special cases of (1.8) were studied in the literature. Incomplete
investigation of the case p = 6 = 0 was given in [17], where some of the equations were incorrectly stated as being of Pain-
levé type. The case of f = = 0 was also considered in [21]. In [18] a special case of (1.8), and only for the leading order
m = —1 as z — zg was considered.

If we let z — zo + €z and take the limit as € — 0, (1.8) yields the following reduced equation

YY" = By"*; (1.9)
without loss of generality, one can take § = 1. If one lets v =y'/y, then (1.9) yields

2

v":ﬁ%+(2/ﬁ’—3)vv’+(ﬁ—l)v3. (1.10)

Eq. (1.10) was considered by Painlevé (see [4]) and Bureau [5], and it was shown that g should be either 1 or (y —1)/7,
nez-{-1,0}.
Substituting

y=Yo(z—20)", asz—z, meZ, (1.11)

where z; is arbitrary into (1.8), for certain values of m, two or more terms may balance (depending on y,), and the rest can be
ignored as z — z,. For each choice of m, the terms that can balance are called leading terms. In the following sections, the
simplified equations that retain only leading terms as z — zo will be considered for m = —1,—-2,—-3 and — 4 with distinct
Fuchs indices (resonances). For all cases of m, we search for the existence of at least one principal branch (a branch that
has two positive distinct integer resonances, except ro = —1). In the case of m = —1, it is possible to find at least one principal
branch. There is no principal branch when m = —3,4 and for certain cases of m = —2. In cases where there is no principal
branch, we consider the maximal branch [38,39] (a branch that has two distinct integer resonances, except ro = —1), but
for all cases, the compatibility conditions at the positive resonances are identically satisfied.

2. Leading order m = —1

For m = —1, the simplified equation is
V'Y +ay?) = By + ayyy' + ay’y' + ey’ + ay’y? + asy'y' + agy®. (2.1)
Two cases = 0 and 0 should be considered separately.

L. p=0:
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For = 0, reduced Eq. (1.9) implies that 6 = 0. Hence, if o = 0, (2.1) reduces to the second order equation of the following
form:

y'=Fy.y,2), (22)

where Fis a rational function in y’, algebraic in y with analytic coefficients in z. Eq. (2.2) was considered by Painlevé and his
school [1,3-5].
If a0, the simplified equation is

VY =ayyy + 6&y*Y + asy® + ay?y? + asy'y' + asy®. (2.3)
Eq. (2.3) was investigated by Exton [17], Martynov [19], and Mugan and Jrad [21].
1L. 0:
ILa.If 6 =0, and o = 0, (2.1) can be written as
Y2 =Ay.y.2)y' +By.y,2), (2.4)

where A and B are assumed to be rational in y and ¥’ and locally analytic in z. Eq. (2.4) was considered by Bureau [7], Cosgrove
and Scoufis [8], and Sakka and Mugan [9-11].

ILb. For § = 0, and «+0, there is no equation that possesses the Painlevé property [12].

ILc. If 60, o = 0, without loss of generality, we can take 6 = 1. Substituting

y2yz—20)" +K(z-20)"", (2.5)
where y,70, into (2.1), we obtain the following equations for the Fuchs indices r and y,
(r+ D)[r* + (a2y3 — a1y + 4B — 7)1 + asys — 2(as + 2a2)y2 + 3(2a; +as)y, — 8(28 - 3)] =0, (2.6)
asYg — asys + (aq +2a3)y3 + (600 — 24y — a3)y, +2(2f —3) =0, 2.7)
respectively. Eq. (2.7) implies that there are four branches if ag=0. Now, we determine yy;,j = 1,...,4and a;,i = 1,...,6, such
that at least one branch is the principal branch.
If we let
P(yg) H Tik = a5y0j 2(as + 2a2)y§j +3(2a1 + a3)yo; — 8(2 - 3), (2.8)

j=1,2,3,4. Then P(y;;) = P; satisfy the following Diophantine equation:

i—*— ! 1 (2.9)
P, T22p-3) 22+n) '

Depending on the number of branches, we have the following subcases:
ILc.i. In the case of the single branch, that is as = ag = 2a, + a4 = 0, Eqgs. (2.8) and (2.7) give

3
2 2
Py :Hrlk:2<1 +—>~, (2a1 + a3)yy :—2<1 +—>7 (2.10)
k=1 ’/’ ’7
respectively. Thus, # must divide 4, and we obtain the following equations:

yy"=3y", (r,112) = (0,
YY" =3y + 43, (rn,m) = (1
yy"=ay?43y® (o) = (1,
yy" =3y +2y% (rsr2) = (1,2).

By letting y' = w, (2.11).a-c can be reduced to second order equations, which all possess the Painlevé property [4]. By differ-

entiating once and letting y' = w, (2.11).d yields a third order equation, which has the Painlevé property [4].
ILc.ii. If as = as = 0 and 2a; + a4+0, then there are two branches. In this case y,;,j = 1,2 satisfies the following equation:

)

1)
7)

2.11
3), (2.11)

11,712

(a4 +2a3)y5 — (241 +a3)yp +2(28 — 3) = 0, (2.12)
and the resonances rj, i, j, k = 1,2 satisfy

4+ (aly(z)j — Yo +4f—7)r +P(yy) =0, j=1,2. (2.13)
From (2.12), one has

zaz_"_a‘l:(4[))76)7 (201 +a3):(4ﬁ76)(y01+y02)’ (214)

Yo1Yo2 Yo1Yo2
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and thus
7(4[376)<1 Jﬂ), P2:7(4[376)<1 Jﬂ). (2.15)
Yoz Yo
For P,P,#0, P; satisfy the following Diophantine equation:
1 1 n

R Tk (2.16)

For 1 = 5, 0o, there are no equations passing the Painlevé test. For # = 2, 3, 4, the following equations pass the Painlevé test.
Forn =2:

" /2

/ ] /Aol /. /! )

YY" =5y" 43y +6y° +2y%y" — 12y°y”,

(Tn,r]z) = (1 2) (r21.r22) = (—2.2)

yy" = y”2+ Wy + Oy + yy fﬂyzy’z
2 6 3 6 377

(T11.T12) = (1 3) (r21,r22) = (—473)

(2.17)
y/y/// _ 2y//2 +yyy + 3y/3 7y2y/27
(ri,ri2) =(1,3), (a1, 12) =(-3,4).
///1_1772 1 _8/3_13/r 82/2
yy 72y +3yyy §y §yy +§yy )
(r,r2) =(2,3), (rz,12) =(3,4).
For n=3:
1
I 12 gl 3 24242
vy 73y +3yyy +3y° —3yys, (2.18)
(ri,ri2) =(1,3), (rz1,72) =(-5,6).
For n =4:
/2yl 3 /1. /2ol /. /! /.
YY" =2y +5yyy" —10y° + 4y’y" - 5y,
(T117r12) = (2, 3) (r21,12) = (-2,-3).
1
I 12 3 D240 2.1,/2
Yy *43’ +2yyy -3y 2)’ Y+ 2y, (2.19)

(r1,m2) = (1,4), (ra,122) = (3,4).

M /2

/ 3 /! /!
Yy =gV 5y
(ri1,112) = (r21,122) = (2, 4).

ILc.iii. If as = 0 and as+0, there are three branches corresponding to the roots y,;,j = 1,2,3 of (2.7). Similar to the pre-
vious case, P; satisfy the following Diophantine equation:

3
Z T 17+2) (2.20)

and if [T P;#0, then

ﬁpj [ ’7‘*‘2} [(Yor = Yo2) Vo1 — }’03)0’02—}’03)]2. (2.21)

= VorYoaYos)’

As an example, we obtain the following equations, which have at least one principal branch and pass the Painlevé test for
1 =2,3,4,5 and all the equations for 17 = co. For = 2:

Yl ] /1. Y /! /. /. J
yy' =35y owy - vy 4y +6y*y? +yty,
(r1,m12) = (2,3), (ra,r2) =(2,5), (r31,132) = (-3,20).

(2.22)
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For n =3:
g1 2//2 10 ol 23// 23 /3 22/2 14/
yy :§y +?yyy +§yy —?y +§yy —§yy7 (2.23)
(r11,112) = (1,6),  (ra1,122) = (1,-30), (r31,132) = (-2, -3).
For n =4:
Yy = %y”z +(6-2vB)yyy" +(5-2VE)y’y' - (63 _51 Ng)}/“ - (31 _5] ME)J/ZA/2 + (7 _53 \@)y“y’, (2.24)
(ra,r2) = (1,4),  (ra1,12) = (1,=12), (r31,132) = (=2, -3).
For n =5:
w4, 28 16 5, (234480V5) 5 (336+160v5)\ , , (176 +80V5)\ ,
yy :gy +?yyy +?yy + <f)y + (f)y yo+ (f)y Y, (2.25)
(ra,r2) = (=2,-3), (r21,122) = (1,=7), (rs1,r3) = (1,3).
For n = oo:
VY =y? 420y - Yy —4y° + 29y + %y“y’,
(r,r12) = (1,6), (ra1,122) = (=3,-2),  (r31,7132) = (1,6). (2.26)

Ca, 24241 4 244280 5 . 4+8i ,
yy" =y =2iyyy" =21 +1)y’y" + +5 Ve +5 y2y2_+Ty4y7

(r1,r2) =(2,3), (rn,r2)=(-3,-4), (r31,rn)=(1,4).

ILc.iv. If ag+#0, then there are four branches corresponding to the roots y,;,j = 1,...,4 of (2.7), and product P; of the res-
onances for each branch satisfy the following Diophantine equation:

il: n_ (2.27)
22B 20 +2)

For 1 = 3,4, oo, there are no equations that pass the Painlevé test; for # = 2 we obtain the following equations:

/I 1 /2 5 /3 5 2., 1 6
VY =5y =3 +5%Y — 5y’

/ l /1.
YY" =5y + 5y -y,
with the resonances (ri1,r12) = (2,3),(r21,722) = (=2,7),(r31,1r32) = (12,-7), (ta1,742) = (2,3), and (r11,7112) = (2,3),
(ra1,722) = (2,3), (r31,132) = (—3,8), (ra1,742) = (—3,8) respectively. Differentiating the Eq. (2.28) once gives the following
equations

YW = =5yy" +5y%y" + 5yy”% — y°,

2.29
y& =10y%y" + 10yy” - 6y°, (2:29)
respectively. Eq. (2.29) were considered in [14,16,27,32]. For n = 5:
////_il//2+i //l+l31/7£l3+12/2+l4lii6
yy —5)’ myyy 10)’)’ 36y GOYY 20}’}’ 180)’ ) 5 30
(ri1,12) = (1,3),  (rz,122) = (=7,8), (2.30)
(r31,132) = (=2,-3), (ra1,792) = (1,-8).
IL.d. 6#0 and a#0. Without loss of generality, we may choose § = 1, then the simplified equation becomes
y///(y/ + {xyZ) — ﬁyuz + a]yy/y// 4 a2y3y// + a}y/3 + a4y2y/2 + a5y4y/ 4 aGyG- (231)
A special case of (2.31) was investigated in [18]. In this case, Fuchs indices satisfy the following equation:
(r+ D1 — oyo)r? + Hyo)r + G(¥o)] = O, (2.32)
where
H(yo) = @ay2 + (7o — a1y, + (48 — 7),
Vo) = @2y + ( 1Yo+ (@4p-7) (2.33)

G(Yo) = asyg — 2(aa + 2a2)y5 — 3(60t — 241 — a3)y, — 8(2f — 3),
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and y, satisfies
A6y — AsYg + (a4 + 202)yg + (6o — 2a1 — a3)y, +2(2f — 3) = 0. (2.34)

Without loss of generality, one may assume that one of the roots y,, of (2.34) is —1. Then, the equation for the resonances
corresponding to the branch y,, = —1 reads

(r1 + D[(o + 1)r? + Mr; —N] =0, (2.35)

where M = H(—1), and N = G(—1). In the following subsections, we consider the case of & = —1.
ILdii o = -1, and M = N = 0: The Eq. (2.31) takes the form of

v —2yy)
y/ _ y2
This case was considered in detail by Martynov [18]. The following equation was given in [18] (see eq. 41)):

y' =8 + Yy +y? + Yy + oyt (2.36)

7 (y” - 2yyl)2

:7+4 //72/27 237
y y—y2 Yy y ( )
but, it was incorrectly stated that the equation has a moving singular point. Let y be,
d v V' 1 1
2y =—|log| —= || =—— = ' 2.
Y dz{0g<v(1/—1)>} v <v+v—1)v’ (2.38)
where 2(z) is the general solution of the Schwartzian ordinary differential equation [4]
3 ., 1|1 1 1 4
J1 — /1. | _ )/ 2A39
ve 27 2|:Z/2+(y])2 v(v—l)}v’ (2:39)

or

v 3\l 1 11 1 1 1
[uz<y> ]ya—z{yz*(y_nzy(y_u} =3/ (2.40)
By letting ’ =d/dz, and " =d/dv, the Schwartzian ordinary differential Eq. (2.39) can be reduced to the hypergeometric
equation

kK k 3 Z** ‘1
By setting W(v) = z**/z* one gets the following Riccati equation
aw 1_, 1
Gy =W +3l). (242)

If we let W(v) = —2w*/w, then (2.42) yields the following linear equation for w:
v(v—l)w**+(20—])w*+}lW:0. (2.43)

Hence, (2.43), and consequently, (2.42), (2.39) and (2.37) have the Painlevé property.
ILd.ii. « = —1, and (M, N)##(0, 0): In this case, we consider the Eq. (2.31), which has at least one principal branch, the other
branches may be non-maximal branches [39] (a branch that has less than two distinct integer resonances, except ro = —1).
If as = ag = 0 and 2a, + a4 = 0, with the choice of y, = —1, then there is only one branch that is non-maximal, and the
corresponding equation is

I / 1 . /.
y'(y —yz):§y2—2y3, ry=-2. (2.44)

Note that ro = —1 is a root of (2.32).
If as = ag = 0 and 2a, + a47#0, then there are two branches, one of which is a non-maximal branch, and we have the fol-
lowing equations:

/11 / 1 /1. /oyl / /. /.
y'y -y :jyz—yyy +3y - 4y” +2y%y?,
m=-4, (ra,r2)=>1,4), (2.45)

2

V'Y =y =y"? =3y + Y'Y,
r=-2, (ra,m)=(1,4).

If as = 0, as#0, then there is one non-maximal branch corresponding to y,; = —1 and two maximal branches, one of which is
a principal branch corresponding to yy;,j = 2, 3. For # = 2,4, co, we obtain the following equations:
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For n =2:

1 2 8 10 28

/" /_2:7//2_7 N 3., 4.,
y'y -y R A A 0 3yy+3y +3yy - 8y%y,
ri=-6, (ra,1m2)=3,4), (31,r2)=(2,3),

/1 / 1 /1. i 8 /A /. /. /
y'(y —yz):iyz—Zyyy —4§y3y +6y° +12y°y2 - 8y'y’,
rm=-2, (,m2)=03,4), (,r)=>1,6),

(2.46)
e 1., 14 ., 28 5, 38 5 44 ., .
V'V =y =5yt =gy Yy -5y -5y 16y,
rm=-6, (ra,r2)=03,-4), (31,r32)=(>1,3),
v / ] /1. 2n+3 /2yl 6n+1 1 3 /. 3 ) 2 /
V'V =Y =5yt =T WY Y =y - Sy Yy, nel,
rm=-4, (ra,r2)=(-2,2), (r3,r32)=(1,2).
For n = 4:
7 3//2 Tl—l N 2n-1 3y 3Tl—4,3 4n-1 2/2_34/
Y'Y -y = y —n wy 3—112 yy +3—n y +3—n2 yy nzyy’
rin=1, (ra1,r2)=(-3,-2), (rs31,r)=(1,6),
/1 / 3 /1. +] Sl n+3 /! 9 /. 6 9
Yy -y =37 -3y 30 2y syt 3T 2y Sy,
rm=-2, (r,1m2)=03,4), (,rm)=>1,4), (2.47)
1 (o) 2 3 /2 n+1 1 2n+1 8 /3 15 21,02 9 4 .
V' =Y ) =gyt -2y 3 vy + 12y =3 YV VY,
m=-3, (ra,r2)= (—372), (T317T32) =(1,2),
3 1 5 3
yr//(y/ _yZ) — Zy//Z _ Zyy/y// _ my3y// +yr3 +ﬁy2y’2 n2 y4y
rip=-3, (ra1,r2) = (31,132) = (2,3),
where n ¢ 7.
For 1 = oo
(v //2 /3 20,2 4
Y'Y -y =y? = Ty? +12y°y7 - 9yt (2.48)

=1, (7’217r22) =(=3,-2), (r31,m2) = (1,3).

In each of the above cases, the compatibility conditions at the positive resonances are identically satisfied. For # = 3 and 5,
there are no equations that pass the Painlevé test.

If ag#0, there are four branches. Similar to the previous case, one branch is non-maximal, and the others are maximal. We
consider the cases in which one of the maximal branches is a principal branch. In this case, P;,j = 2, 3, 4 satisfy the following
equation:

1 1 1 2n+2) (2.49)

45t = ,
P, P; P, n

where P; = rj;1j; and is given as
Py = —06Y0; Vo2 — Yo3) Vo2 = Yoa)»  P3 = —06Y03(Vo3 — Yo2) Vo3 — Yoa); (2.50)
Py = —a6Y04(Yoa — Y02) Voa — Yo3)-

As an example, we obtain the following equations with a principal branch for # = 2,3,4 and .
For n =2:

1
y///(y/_yZ) :Ey//z+3Oyy/y//+40y3y//_5-l(y/3 +y2y/2)_15y4y/_25_)’57 (2 51)
rm=1, (ra,r2)=(-2,3), (r,r2)=01,4), (a,re)=(-2,-3).
For n=3:
ey 2, 433 _13 1863 , 1649 , ,
V'Y -y = 3V g WY 2yy +55Y" T —y2y? 1 540y’ — 225y, (2.52)

rm =35, (ra,r2)=01,3), (r3,r)=(-6,3), (ra,re)=(-3,-15).
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For n = 4:
3 39 9 27
"oy v2) — /2 Il 3/ _ 2 3 2.,/2 Tvhy o 2h
YOV =YT) =gy A Owyy 18y Y = (VT YY) A5 VY -5 Y, (2.53)
=1, (ra,m2)=(-2,3), (r31,r2)=(1,3), (ra,r2)=(-2,-3).
For 1 = oo
y///(yr _yZ) :y//z + 8y3y// _ 6y/3 _ 6y2y/2 _ 8}/6, (254)

=1, (ra,m2)=(1,2), (r31,r2)=02,3), (ra,re)=(-2,3).
If we let y = w//2w in (2.54), and integrate once, then we obtain
kw'" = 2ww’ — 3w?, (2.55)

where k is an integration constant, and (2.55) was considered by Chazy [12].

3. Leading order m = -2

For leading order m = —2, there are two simplified equations corresponding to 6 = 0, and « = 0:
(xy/// _ a]yy/y// + a3y/37
5y/ym _ ﬂ 112 + a7y2y// + asnyZ +(19_]/47

respectively. (3.1).a was studied in [15]. In this section, we consider (3.1).b. Without loss of generality, we may choose § = 1.
Substituting

(3.1)

y=yo(z—20) 2+ K(z—20)> (3.2)
in (3.1).b gives the following equations of the resonances r and y,

(r+1)[2r2 + (a7yo + 12 — 20)r — (6a; + 4ag)y, + 96 — 72] = 0, (3.3)

agy§ + (6a; + 4as)y, — 48 + 364 =0, (34)

respectively. In general, there are two branches if ag=#0. Now, we determine yg,j = 1,2,. According to the number of
branches, the following cases should be considered separately.

I.ag = 0:

In this case, there is one branch, and if the resonances are ry,r,, then rir, =24-188=6+ % Thus,
1 = oo, +2,+3,46,+9,+18. The equations with a principal branch that pass the Painlevé test are as follows:

For 11 = -2, there is no principal branch, and we have the following equation with a maximal branch:

Yy = %y”z +6y%y" - Z%yy’{ (r1,12) = (=3,1). (3-5)
Forn =2:

yy" = %y”z - 18y%y" + %yyﬂ, (ri,12) = (1,15), (3.6)

yy" = %y”z -2y + 271}/}/’2, (r1,12) = (3,3). |
For n = -3:

Yy =3vh )= (0.2) 37)
For n =3:

yy" = %y”z —14y%y" +27yy?,  (r1,r2) = (1,12),

yy" = %y”z —4y%y" +12yy°, (r1,12) = (2,6), (38)

yy" = %y”z —20%y? + 9%, (r1,12) = (3,4).
For n = —6:

Yy = %y”Z — 2%y + gyy’z, (r1,r2) = (1,3). (3-9)
For n =6:

yy' =2y 10py + Dwn () = (1,9) (3.10)
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For n = -9:

Yl 10 /1. 10 /! /.
yy :§y2—7y2y +7yy2, (r1,12) = (1,4). (3.11)
Forn =9:

7 8 772726 24,01

yy"=sy? =2y +17yy?%, (r1.12) = (1,8),
9 3
3 g (3.12)
yy' = gy”z - §y2y” +8yy?,  (r1,12) = (2,4).
For n=-18:
/ ///_]9 /12 8 24,/ 13 /2 _
Y=gV 3y Y 5wt (nir) =(1,5). (3.13)
For n = 18:
g1 717 12 22 24,0 29 12 _
YW=V 3 yY 5wt (i) =1.7). (3.14)
IL. ay#0:

There are two branches corresponding to the roots y,;,j = 1,2 of (3.4). In this case, we examine the equations when
n==2,3,4,5.
For n = -2:

" /2

/ 3 /! /.

YY" =Sy A2y - Ayt -2y,

(ri1,112) = (=2,2),(ra1,12) = (-2,6),
3

y/y :Ey”2+12y2y/l—24yy12+18y47

11

(3.15)

(ri1,r2) = (=2,-3), (ra1,r2) =(-2,1),

/ ///7% //271 4
yYy —2y Gy )

(ri1,12) = (=2,3), (ra1,122) = (=2,3).

Forn=2:

/2yl 1 /1. /! /.
YY" =5y - ayly" 4 14yy? - 2y,
(r1,m2) = (2,7), (rn,r2) = (-5,42),

I 1 /12 /2 4

(r,r2) = 3,4), (rn,r2)=(-5,12),
/a1 1 /1. /.

yy" =5y" +10yy* —10y",

(ri,m2) = (2,5), (rz,m2) =(-3,10).

The canonical forms (equations that also contain the non-dominant terms as z — z,) of (3.16).b and (3.16).c are given in
[20],[40].

For n =3,
/ ///7% 12 2.4,/ 2 4
YY" =3y 27y + Gyt - 12y, (3.17)
(r,m2) = (2,3), (ra1,m2) = (-2,6).
For n =4,
N 3 /12 Y 2 4
yy' =gy =3y 10yt -y (3.18)
(ri1,12) = (2,5), (rz,122) = (=5,42).
Forn =5,
////75/2_&2// /2 é4

(r117r12) = (275)7 (r21,r22) = (—30, —8)

For 17 = oo, no equation passes the Painlevé test.
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4. Leading order m = -3, -4

When m = —3, there are two simplified equations corresponding to 6 =0, and o« =0

/11

w?y” = aryy'y" + asy”® + agy*,
Syy'y" = By + aioy’y,

respectively. (4.1).a was studied in [15], and hence we consider (4.1).b. Without loss of generality, we may choose § = 1.
Substituting

(4.1)

/11

Y 2yz—20) > +K(z—20)> (4.2)
in (4.1.b) gives the following equations of the resonances r and y,:

(r+1)[r* + (88— 13)r — 48+ 60] =0, (4.3)

a0y — 48+ 60 = 0. (4.4)

There is only one branch, and 5 + (8/#) should be integer in order to have integer resonance. That is, = £2, +4, +8, cc.
For these values of #, there is no principal branch, and only for # = —2 is there a maximal branch. The equation for = —2
is as follows:

yy'= %y”z +120%, (r1.12) = (=3,4). (4.5)
Similar to the previous case, for the leading order m = —4, the simplified equation with o = 0 is

Yy =By +any’. (4.6)
Substituting

y2yo(z—20) "+ K(z —20)"" (4.7)
into (4.6), we obtain the following equations for the Fuchs indices r and y,

(r+1)[r?* + (108 — 16)r — 1008 + 120] = 0, (4.8)
and

a1y, +400p — 480 =0, (4.9)

respectively. Therefore, for 7 = £2,+5,+10, oo, there are integer resonances. None of these values of # gives rise to an equa-
tion with a principal branch. We have only the following equation with a maximal branch, and it passes the Painlevé test:

3
y/ym _ zy//Z _ 120_)/3, (rhrz) — (_576) (410)

5. Conclusion

In conclusion, we investigated the equation of form (1.8), which is more general than equations considered previously in
the literature, so that it passes the Painlevé test. In the second, third and fourth sections, we investigated the simplified equa-
tions with leading orders of m = —1,m = —2 and m = —3, —4, respectively, subject to the condition of the existence of the at
least one principal branch. In the case of more than one branch however, the compatibility conditions at the positive reso-
nances for the secondary branches are identically satisfied for each case. For m = —1, there exists a principal branch, but for
the case of m = -2 (see Eq. (3.5)), and for m = —3, —4, there is no principal branch. In those cases, we considered the max-
imal branches. The canonical form of all of the given simplified equations can be obtained by adding appropriate non-dom-
inant terms with the coefficients analytic in z. The coefficients of the non-dominant terms can be determined from the
compatibility conditions at the positive resonances. Instead of having positive, distinct integer resonances (principal branch),
one can consider the case of distinct, negative integer resonances (maximal branch). In this case, it is possible to obtain equa-
tions that belong to Chazy classes.
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