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We consider a system of boundary value problems for fractional differential equation given by Df+ ¢,(Dgeu)(t) = Aya, (t) f (u

v(t)),t € (0,1), D ¢p(D v)(t) =

either to the boundary conditions Dy, u(0) = Dg,u(1) = 0, u(0) = 0, Dﬁ1 u(l) - £ 2al,D 14(81,) = 0, D3 v(0) =
D% u(1) = 0, u(0) = 0, Dﬁlu(l)
Dﬁlv(l) -z azIDﬁ‘v(le) =y,(v), whereO <P <La-B-1= Oand v, ¥, 1 C([0,1]) — [0, 00) are

¥(0) = 0, DEv(1) = =" %a, D w(E,,) = 0 or DE,u(0) =

Dg.v(1) = 0, v(0) =

Aya, () fo(u(t), v(t)), t € (0,1), where 1 <, B <2,2 <+ f3<4, A, A, are eigenvalues, sub)ect

D§+V( ) =0,
m2ay DPuE,) = vy (), DEv(0) =

continuous functions The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for
both fractional boundary value problems. As an application, an example is given to demonstrate some of main results.

1. Introduction

Fractional calculus is the field of mathematical analysis which
deals with the investigation and applications of integrals and
derivatives of arbitrary order; the fractional calculus may be
considered an old and yet novel topic.

Recently, fractional differential equations have found
numerous applications in various fields of physics and engi-
neering [1, 2]. It should be noted that most of the books and
papers on fractional calculus are devoted to the solvability of
initial value problems for differential equations of fractional
order. In contrast, the theory of boundary value problems
for nonlinear fractional differential equations has received
attention quite recently and many aspects of this theory need
to be explored. For more details and examples, see [3-9] and
the references therein; moreover, fractional derivative arises
from many physical processes, such as a charge transport
in amorphous semiconductors [10]; electrochemistry and
material science are also described by differential equations

of fractional order [11-15]. In [16], Bai and Li considered
the boundary value problem of fractional order differential
equation

Dyiu(t) + f (£, u(f) =0,
u(0)=u(l) =

te(0,1), W

where Dg. is the standard Riemann-Liouville fractional
derivative oforder 1 < < 2and f: [0, 1]x[0,00) — [0, 00)
is continuous.

In [17], Salem considered the following nonlinear m-
point boundary value problem of fractional type:

D§x(t) +q(t) f (t,x (1) =0,

a€(n-1,n],
0)=---=
x (1) = 228 x (),

a.e. on [0,1],

n=2,

2)

x(0) = x' (0) = x" X" (0)=0



where 0 < 11, < =+ < 7,5 < L& > 0with ' 2E757" < 1,
q is a real valued continuous function, and f is a nonlinear
Pettis integrable function.

The turbulent flow in a porous medium is a fundamental
mechanics problem. For studying this type of problems,
Leibenson [18] introduced the p-Laplacian equation as fol-
lows:

(3, (¥ ®)) = F(£x 0,5 ®), )

where ¢’P(S) = |s|P72s, p > 1. Obviously, ¢, is invertible and
its inverse operator is ¢, where g > 1 is a constant such that
(1/g)+(1/p) = 1.

Ahmad et al. [19] also considered the existence of solu-
tions for the following three-point boundary value problem
of Langevin equation with two different fractional orders:

D (D +1)x () = £ t.x (1),
0<t<l, 1<f<2 0<a<l, (4)

x(0)=0, x(7)=0, x(1)=0, 0<n<l,

where D is the Caputo fractional derivative, f: [0, 1] xR —

R is a given continuous function, and A is a real number.
Dai [20] considered the following problem of ordinary

differential equations:

(¢,()) =ra) faw), te),

u(0) =u(l)=0.

©)

By means of global bifurcation techniques and the approxi-
mation of connected components, existence and multiplicity
results for positive solutions were obtained.

Motivated by the works above, our purpose in this paper
is to show the existence of at least one positive solution for the
following fractional p-Laplacian system:

DE.¢, (D) (£) = Ayay () f (u(8) v (1)), te(0,1),

DE.¢, (D§v) () = My, (1) fo (D), v (D), te(0,1),
(6)

where 1 < a, f < 2,2 < a+ f3 <4, D, is the Riemann-
Liouville fractional derivative of order a, A{, A, > 0, and m >
2 is integer.
We first consider the problem (6) with following bound-
ary condition:
Dyiu(0) = Dyou(1) =0, u(0) =0,
Dhu (1) - = %a, Dftu (&) =0, o
7

Dgy:v(0) = Dgiv(1) =0, v(0)=0,

DEy (1) - 520, Dby (8,) = 0.
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We then consider the case in which the boundary conditions
are changed to
Dyiu(0) = Dyou (1) =0, u(0) =0,
Du (1) - 27, Dhtu () =y, (),
(8)

Dyv(0) = Dgiv(1) =0, v(0)=0,

DPv (1) - 2 2a, Dl (&) = v, (1),

where v, ¥, : C([0,1]) — [0, 00) are continuous functions,
where C([0,1]) means the set of continuous, real valued
functions on the unit interval [0, 1].

In the cases, we assume that 0 < §; < 1, a — 8, =1 > 0.

In the past few decades, many important results relative
to (6) with certain boundary value conditions have been
obtained; we refer the reader to [21-25] and the references
therein.

The following conditions will be used in this paper:

(H1) ¢,(s) = Is|”%s, p > 1 is a p-laplacian operator.
Obviously, ¢, is invertible and ¢, = ¢, where g > 1
is a constant such that (1/g) + (1/p) = 1;

(H2) 0 < Ejl < £j2 < e
L2,...,m-2and Y72 a8 <1, j= 1,2

(H3) f; : [0,+00) x [0,+00) — [0,+00) is a given

continuous function and a; is a positive real valued
continuous function, j = 1,2.

< &mo <1l oa;>0foris=

The rest of the paper is organized as follows: in Section 2,
we will recall certain results from the theory of the contin-
uous fractional calculus; in Section 3, we will provide some
conditions under which the problem (6) and (7) has at least
one positive solution; in Section 4, by suitable conditions, we
will prove that the problem (6) and (8) has at least one positive
solution; finally, in Section 4, we will provide some numerical
examples, which will explicate the applicability of our results.

2. Preliminaries

In this section, we present some notations and preliminary
lemmas that will be used in the proofs of the main results.

Definition I. Let X be areal Banach space. A nonempty closed
set P C X is called a cone of X if it satisfies the following
conditions:

(1) x € P, u > 0, implies yx € P,

(2) x € P, —x € P, implies x = 0.

Definition 2 (see [26, 27]). 'The Riemann-Liouville fractional

integral operator of order & > 0 of function f € L'(R*) is
defined as

Iy f@t)= ﬁ L (t— )" f(s)ds, (9)

where T'(:) is the Euler gamma function.
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Definition 3 (see [26, 27]). The Riemann-Liouville fractional
derivative of order ¢« > 0 of a continuous function
f:(0,00) — Risdefined as

1

Dy f (t) = m

d "t n—a—1
<E> Jo(t—s) F(s)ds, (10)

wheren = [a] + 1.

Lemma 4 (see [28]). The equality D!, 1. f(t) =
holds for f € L'(0,1).

f@,y >0,

Lemma 5 (see [28]). Let o > 0. Then the differential equation
Dyiu=0 (11)

—-1

has a unique solution u(t) = c,t* ' +6,t* >+ +¢,t* ", ¢ € R,

i=1,....,n, wheren—-1< «a < n.

Lemma 6 (see [28]). Let « > 0. Then the following equality
holds for u € L'(0,1), Dgiu € L'(0,1),

DFu(®) =u() + ot + ot P+ vt (12)

GeR,i=1,...,n, wheren—1<a<n.

In the following, we present the Green function of
fractional differential equation boundary value problem.
Let

y (t) = ~¢, (Dgu) (1), (13)
then, the problem

DE.¢, (Dgu) (1) =h(t), 1<B<2, te(01),

(14)

Dy:u (0) = Dgu (1) = 0,

where h € CI0, 1], is turned into problem
Dy +h(t)=0, 1<f<2 te(01), )

y(0)=y(1)=0.

Lemma 7. Suppose that h € C[0, 1], then the boundary value
problem (15) has a unique solution

y(t) = Jl H (t,s)h(s)ds, (16)
0
where
H(t,s)
B-1(1 _ B 1 _ (4 _ o\B1
£ S)r(ﬁ)(t ) , 0<s<t<l, (17)
= 8- B~
%, O<t<s<l.

Proof. The proof is similar to that of Lemma 2.3 in [16], so we
omit it here. O

3
Lemma 8 (see [16]). For A > -1 and « > 0,
r(y+1
Dg.t" = Lt“‘ (18)
r (y -+ 1)

Lemma 9 (see [29]). Suppose that g € LY0,1) and a, B are
two constants such that 0 < 3 < 1 < «; then,

T (oc)

( - J (t - s)“_ﬁ_lg (s) ds.

(19)

Doﬁ+ L (t-9)""g(s)ds =

Lemma 10. Suppose that (H1) and (H2) hold. Then, for y €
C[0, 1], the boundary value problem

Dyu(t)+¢,(y(®)=0, te(0,1), 1<a<2,

u(© =0, Dju()- a;Dhu(g;) =0,
0< ﬁl < 1)
(20)
has a unique solution
1
u(t) = L G(t,5) ¢, (y(5))ds
a—1 1 (21)
¢ m—2
ey ], 6 ) s
j
WhereAj = ZZIZ ]zf‘x Al #1,forj=1,2,
G(t,s)
a-1 _oya-Bi-l el
(1 -s) (t-s) Cpescicl
r@
a—1 a—p,-1
%) 0<t<s<l,
I (a)
G, (t,9)
a—Pi-li7 _ ~a=Pi-1 _ (o ya—Pi-1
: L= =) , 0<s<t<],
, L@
a—Pi-1r7 _ ya—pi-1
: L > 0<t<s<l1
I'(a)
(22)

Proof. By applying Lemma 6, (20) is equivalent to the follow-
ing integral equation:

u(t) = r(l )J (t=9)""¢, (y(s)ds -t czt“_:, |
23

for some arbitrary constants ¢;, ¢, € R.
By the boundary condition u(0) = 0, we conclude that
¢, = 0; then we have

u(t) = r(l ) J (t—s)"" 1¢q (y(s))ds—ct*".  (24)



It follows from Lemmas 8 and 9 that

Dy = 5
1

x L (=979, (y(s)ds  (25)

F(oc) a—p-1
Ta-g)

So, by the boundary condition D wu(l) - Z:”lzaﬂDﬁ1 u(€;) =
0, we obtain that

o= -

1 1 .
IR T d
e b 0o

1 m—2

’ T (o) (1- AJ.)Z":‘ % (26)

Ei"' a—pB;-1
XL (fji—s) g ‘/’q(y(s))ds-

Then, the unique solution of (20) is given by the formula

F— r N1 - s)“f’glflqbq (y(s))ds

Jl 7t - s)“7ﬁ1’1¢q (y(s))ds
0

¢, (y(s))ds
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1 e a—Pi- o
=—UO [ (1= 9P = (- %]
x ¢y (¥ (s)) ds

1
+ J 7l -
t

toc—l
' (1-4,)T(®

S)a7ﬁ171¢q (y (S)) d5:|

1 ! a— a—P— o
=—U0 [ (1 - 9P = (- %]
><</>q(y(s))ds

1
+ Jt (1 - s)“7ﬁ71¢q (y(s) ds]

oc 1
(1 J)r(“)
m—2 £
4 a—p- 1 Lo pi-1
X ,zlaﬂ “0 —s)*
~(&i-9)"" ] By (7 (9) ds

[ agen

ji

% gjia—ﬁl—l(l)q ()/ (S)) ds]

1
= L G(t,s) ¢, (v (9)ds
ttx—l m-2 Jl
" aji | Gy (&jis s))ds
(1-a)5"h L (8is) &g (v (5)
(27)
Then, the proof is completed. =

Lemma 11. Assumea—f3; —1 > 0, then; for all (t,s) € [0, 1] x
[0, 1], we have
()0 < Gt,s) < (/T()* P -
G(t,s) < G(s,s), forany t,s € [0, 1];
(ii) there exists a positive function g € Cl0,1] such that
minystgaG(t, s) = g(s)G(s,s), s € (0, 1),

s)"‘_ﬂl_l, 0 <
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where
a-lcq _ a—Bi-1 _ AT
(1 -5s) a_ﬁ((i s) el
g =9 ST A=9TH (28)
<Z> , selr1),
s
withy <r <.
Proof. (i) If0 < s <t <1, we have
0‘ Bi-1 —-Bi-1 a—pi-1
t, 1- —(t -
G, (t,s) = F( ) (1-9)" (t-s)
> 0‘ Bi-1 1-— a—p-1 _ _ a—p-1
> F( ) (1-y9) (t —ts)
_ a-f;-1 1— a=fi-1 _ 1- a—f-1Y\ _
T ((x)t (1-s) 1-9*P ) =0
(29)
IfO<t<s<1,weget
G, (t,s) = 1Pl =Pt s, (30)

(06)

Thus, G,(t,s) > 0, for any (t,s) € [0,1] x [0, 1]. It is obvious
that G, (t,s) < (1/T(a))t* P71 (1 — 5)a Pt

Now, we show that 0 < G(t,s) < G(s,s) for any t,s €
[0, 1]. We define

~ ta—l(l _ S)tx—ﬁl—l _ (t _ S)oc—l
91 (t’ S) - r ((X) >
0<s<t<l,
1 Bi-1 (31
(L=
9 (t,5) = T(@) ,
0<t<s<l1.
One can get
g1 (t9) 2 1~( [ =g ™
) (32)
= m [ta71 ((1 - S)“75171 - (1 - S)“il)] >0,

on the other hand, it is obvious that g,(t,s) > 0,0 <t <s < 1.
Thus

G(t,s)=0, V(ts)e[0,1]x[0,1]. (33)

Forany0 <s<t <1,

ag, (t, s)

_ a—f-1
ot r( ) s

[(@-D (1
~(a-1)(t-9"7]

_; _ a2
—r()((x 1t

o] o

< %(a—nt‘“

x [(1 —) AT (1 - s)“_z]
<0,

then, g,(t,s) is nonincreasing with respect to t on [s, 1];
hence, we obtain that

g, (t,s)<g,(s,5), VO<s<t<l. (35)

Also, we have

ag, (t, s) 1
ot F( )

then, g, (¢, s) is increasing with respect to t on [0, s]. Then, by
the fact that g,(s, s) = g,(s, s), we have

G(t,s) <G(s,s), Vt,se[0,1]. (37)

[(a-Dt 1 -9*"P"] 20, (36)

(ii) Since g, (-,s) is nonincreasing and g, (-, s) is nonde-
creasing, for all s, ¢ € [0, 1], we have

i ming, (t,s), se0,y],
y<t<é
mlrgG (t,s) = 1 ;mn {916,9),9,t.9)}, selyd],
Y<t<
ming, (,s), e [6,1],
ky<t<6
’mlngl (t,s), se]lo0,r],
_ Jystso
B ming, (t,s), sel[r1],
y<t<d
- {91 (6,s), se0,r],
g (ps), selndl,
_[eta- )P (8-, selo0,r],
C yta- s) Al se[r1],
(38)

where y < r < § is the solution of
80‘71(1 _ r)tX*,BI*I _ (6 _ r)ocfl _ sz—l(l _ r)(x—ﬁlfl’ (39)
so, we get

gtiS%G (t,s)2g(s)G(s,s), Vsel0,1], (40)

where g(s) is given in (28). This completes the proof. O



Remark 12. If y € (0,1/4) and § = 1 — y, then Lemma 11
satisfies.

In this paper, we assume thaty € (0,1/4) and 6 = 1 — y.

Now, we consider system (6). Assume that (HI), (H2),
and (H3) hold; then, by applying Lemmas 7 and 10, (u,v) €
C(0,1) x C(0,1) is a solution of system (6) if and only if
(u,v) € C[0,1] x C[0,1] is a solution of the following
nonlinear integral system:

1
u(t) = J G(t,s)qbq

0

1
< (4 [ Hn@Of o dr )
0

a—1
t m-2

+ mzizl ay;
x L Gy (&15>9) ¢,

X </\1 jl H (s,7)ay(r)

0

xfi (w(r),v(r) dr> ds,

1
v (t) = J G(t5),

0

1
X </\2 J. H(s,r)a, (r) f, (u (r),v(r))dr> ds
0

a—1
t m-2

+ mzm B
1
x Jo Gy (&55) ¢,
1
X ()LZ Jo H(s,r)a,(r)

xf w(r),v(r)) dr) ds.
(41)
We next recall the Krasnoselskii’s fixed point theorem (see
[30]). This lemma will be of use in Sections 3 and 4 of this
paper.

Theorem 13. Let E be a Banach space and let K € E be a cone.
Assume that Q, and Q, are open sets contained in E such that

0 € Q,andQ, € Q,. Assume, further, that T : KN(Q,\Q,) —
K is a completely continuous operator. If eigher
M Iyl < Iyl for y € K noQ, and |Tyll = lly| for
y e KNoQ, or
@) Tyl = Iyl for y € K n0Qy and [Tyl < Iyl for
y € KNoQ,,

then, T has at least one fixed point in K N (Q, \ Q).

V

N
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3. Existence of a Positive Solution: Case I
Lety € (0,1/4) and 6 = 1 — y, and define

1 = min {g ()},

<t<d
! (42)

0 = min {11, y“_l} .
In this section, we consider the following assumption:

(L1) There exist numbers f," and f,, with f]", f;7 €
(0, +00), such that

fl (u> V) — f*
(u,v) — (0*,0*) (PP (Ll + V) b
(u,v) )
A = fz*'

() - (0*,0%) (/)P (u+v)

(L2) There exist numbers f,"* and f,~, with f"*, f,* €
(0, +00), such that

f1 (u,v) _ f**
() = (0,00 P, (1 + V) e
(44)
f2 (I/l,V) —f;*.

() > (0000 ¢, (U +V)

(L3) There are numbers M i and m i where

1

M; = 3 [LIG(S,S)¢q<LIH(s,r)aj (r) (fj*)dr>ds

m-2
X, aj;

) -1
X <L H(s,r)a;(r) (fj*)dr) ds] ,

1 8
m; = % [J G(S>S)¢q<J H(s,r)aj(r)(fj**)dr)ds

0 Y

(1may)

x J G, (fji’s) ¢,

0
5 1
x(J H(s,r)aj(r)(fj**)dr)ds] ,

y
(45)

such that ¢P(mj) < Aj < ng(Mj),j =1,2.

The basic space used in this paper is a real Banach space
E = C([0,1], R) xC([0, 1], R) with the norm ||(zs, v)|| := [|ull +
[vll, where [u]l = max;cjq 1 u(t)].
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Then, choose a cone K ¢ E, by

K= {(u,v) €E|u(t)=0,v(t) =0,

(46)
min (u () +v () 2 S I}
and define an operator T : E — E by
T () (1) = (T, () (), T, (w,0) (), Ve € (0,1),
(47)

where

1

T, () (8) = L G(t.5),
1
X (Al Jo H(s,r)a,(r)

xfy u(r),v(r)) dr) ds

1
x L Gy (§1>9) ¢,
1
X </\1 L H (s,7)a,(r)
xf1w(r),v(r)) dr) ds,
1
T, () (8) = L G(t.5),
1
X (Az L H(s,1)a,(r)

X f (u (7’)>V(1’))dr> ds

1
x L G (&5) ¢,
x (Az jol H (s, a, (1)

X fo W (r),v(r)) dr> ds.
(48)

Lemma 14. Suppose that (H1), (H2), and (H3) hold. Then, the
operator T : K — K is well defined, that is, T(K) € K.

Proof. For any (u,v) € K, by (H1), (H2), (H3) and Lemma 11,
T, (u,v)(t) = 0, T,(u, v)(t) > 0, ¢ € [0, 1], and it follows from
(47) that

1
[T, w,v)|| = L G(s,5) ¢,
1

X (Al J H(s,r)a,(r)
0

xfi (w(r),v(r) dr) ds

1

+ mzﬁizau
1

x Ll Gy (§11>9) ¢,
X (Al Jol H(s,r)a,(r)
x fi(u(r),v(r) dr) ds
[l0)

<(6694,

X

x (L H0 f @) () dr) ) ds

1 -
+ mzﬁlzau
1

(+11)
<(61 G4,

X </\1 Ll H(s,r)a,(r)
X f1 (wu(r),v(r) dr>) ds

<3 “;G(s,s) ¢, </\1 J-Ol H(s,1) a,(r)

xfi(u(r),v(r)) dr> ds

1 m-2
+ ——Z ay

(1-4,)

x Jj Gy (&15) ¢,



X (Al Jl H (s,r)a,(r)

0
Xﬁ@NﬂmODW)&}
(49)

Thus, for any (u,v) € K, it follows from Lemma 11 and (49)
that

minT; (u,v) (t)
y<t<d

1
= min {J G(t,s)(/)q

y<t<é (Jo

1
X <)L1 L H(s,r)a,(r)

x fi(u(r),v(r) dr) ds
ta—l

PR 5
(-ay ™™

x Jol Gy (§11>9) ¢,

X (/\1 JIH(s,r)al(r)

0

x fiu(r),v(r) dr> ds]»
1
> L g(s)G(s,s) ¢q

1
X </\1 J. H(s,r)a,(r) f; (u (r),v(r))dr> ds
0

VOH 2
3"
Tlaoa,) M

1
X Jo Gy (§11>9) N
1
X (Al Jo H(s,r)a,(r) f, (u(r),v(r)) dr> ds

s
an G(s,s)qbq

Y

1
X (Al Jo H(s,r)a,(r) f, (u (r),v(r))dr> ds

oa—1
y m—2
Iy ay

oA

)
x L Gy (§11>9) N
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1
X </\lj H(s,r)a,(r) f, (u (r),v(r))dr) ds

0

s
20’|:J G(s,s)</>q
Y

1
X (Al J H(s,r)a,(r) f, (u(r),v(r)) dr) ds
0

1 -2
"
(=ay)

8
X J Gy (§15>9) ¢,
y

+

X </\1 IIH(s,r) a,(r)

0

x fiu(r),v(r)) dr) ds]

z%%www
(50)
In the same way, for any (u, v) € K, we have
. o
minT, W ®) =7 | T, (,v)] - (51)
Therefore,
}{Isltis% (Ty (u,v) (1) + T, (u,v) (1))
2 2T )] + 5 1T ()] (52)

- g ||(T1 (M, V) ’TZ (1/[, V))” °

From the above, we conclude that T'(u, v)(t) = (T} (u, v)(t),
T,(u, v)(t)) € K, that is, T(K) c K. This completes the proof.
O

It is clear that the existence of a positive solution for
system (6) is equivalent to the existence of a nontrivial fixed
point of T in K.

Theorem 15. Assume that (L1), (L2), and (L3) are satisfied.
Then, system (6) and (7) has at least one positive solution.

Proof. It follows from Lemma 14 that T : K — K. Further-
more, by the application of the Ascoli-Arzela theorem, which
we omit, T is a completely continuous operator.

Condition (L3) implies that there is € > 0 sufficiently
small such that

¢, (1) < J G(s,5) ¢,

0

N | =

X (JOI H(s,r)a;(r) (f]* + e) dr) ds

1 _
(o)

+
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X Ll Gy (§15) &,
X <J01 H (s, 1) a; (r)

X (fj* +e) dr) ds]_l,

j: 172)

Jl G(s,$) qu

0

3
b (’\j) 2 20 [
B}
x (J H(s,r)a;(r) (f]** —e)dr) ds
Y
! "2

(1-a,)" "
1
XJ G, (Eji’s)(/)q

0

+

s
X <L H (s, 7) a; (r)

x(fj** —e)dr)ds] ,

=12
(53)

Now given this ¢, it follows from condition (L1) that there
exists some number r; > 0 such that

fiwv) < (ff +e)¢, w+v), (54)

whenever [|(u,v)|| < r|. Similarly, by condition (L1), for the
same e, there exists some number r; > 0 such that

fHwv)<(fy +€)¢, wm+v), (55)
whenever [(u,v)|| < ;. In particular, by putting r* =
min{r;,r, }, we conclude that both (54) and (55) hold when-
ever ||(u, v)|| < r*. So, define Q, by

Q, ={wv) e K:|wv)| <r'}. (56)
Then, for (1, v) € K N 0L, we have

||T1 (u, v)|| = 62{3 T, (u,v) (1)

1
= (I)lgltas)i {L G(t,s) (pq

1
X </\1 L H (s,r)a,(r)

X fr(u(r),v(r)) dr> ds

tot—l )
+ ——3" "ay;
(1 _ A]) i=1 ay;

1
X L Gy (&19) ¢,
1
X </\1 J H(s,r)ay(r)
0
xfi(u (r),v(r))dr> ds}
1
= ¢q (/\1) {J;) G(S’S) ¢q
1
X <L H(s,r)ay(r)

xfi (w(r),v(r) dr> ds
1 m-2
+ mZi:I ay;
1
X Jo G, (&15>9) ¢,
1
X (L H(s,r)a,(r)
Xf (u(r),v(r) dr) ds]»
1
< (pq (/\1) {J;) G(S’S) ¢q
X <Ll H(s,r)a,(r) (f; +¢)
X, (u(r) +v(r)) dr) ds
1 -2

+ miil ay;

1
X Jo G, (&15>9) ¢,

X (Ll H(s,r)a,(r) (f] +€)
X, (u(r) +v(r)) dr) ds}

<5,00{[ G699,

x <J.01 H(s,r)a,(r) (f; +¢€)

%8, (lal + 171 dr) ds
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1
" 2a,,
(-ay) =™

x L Gy (§11>9) ¢,

+

x (Ll H(s,r)a,(r) (f; +€) ¢,
X (lull + IvID d”) ds}
= ¢, (1) {LIG(S,S) ¢,

x (j Hsna ) (f; +e)dr )
 (Jul + 1) ds
e
<[ 6 Ens)e,
x(j a0 +e)dr)
(ul + 1) ds|
= 5,00{[ 6.9,
v <Ll H(s,r)a,(n)(f] +e€) dr) ds

1 _
+ mzﬁzau
1

1
X L Gy (§11>9) ¢,
1
«([ Hnaw
0
x(f) +e€) dr) ds}
vl
< Sl
(57)
Also, by similarly argument, we get
1
| T, (u,v)| < 5 [| (e, VI s (58)

Abstract and Applied Analysis

for (u,v) € K N 0Q;,. Thus, for (1, v) € K N 0Qy, we have

IT (u,v)|| = ”(Tl (w,v), T2 (u, V))"

= |7y @) + T, (. v)] (59)

< %nw,v)u N % 1)l = NVl

On the other hand, letting ¢ > 0 be the same number
selected at the beginning this proof, it follows from condition
(L2) that there exists number r** > 0 such that

fl (u,V)Z (fl**_€)¢p(u+v)>

L)z (f," —e) ¢, w+v),
whenever u + v > r**. Let
r = max {21’*, 3 } . (61)
o
Moreover, let
Q, ={(w,v) e K:||(u,v)| < r}. (62)

Then, O, € Q,.
If (u,v) € K N 0Q,, then it follows that for any ¢ € [y, ],

ut)+v(t) = rr[lirg] [u@®+v®] = < w2 (63)

te| s

W[ Q

Thus, (63) shows that for (u,v) € K N 0Q,, (60) holds,
whenever ¢ € [y, §].
So, for each (1, v) € K N 0LQ,, we have

IT2 @) = maxTy (u,v) (1)
1
= ¢q (A’l) {J,O G(S’S)¢q
1
x (L H(sr)a,(r)

X fi (w(r),v(r) dr) ds

1 ~
+ mz?ilzali
1

x Ll Gy (§11>9) ¢,
X <Ll H(s,r)a,(r)

xf1 @ (r),v(r)) dr)ds}
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1
= ¢q ("1) {JO G(S’S) ¢q

5
X (J H (s,r)a,(r)

Y
xf1w(r),v(r)) dr) ds

1 m-2
+ —Zay

(1-4,)

x J'(: Gy (§11>9) ¢,

5
X (J H (s,7)a,(r)

Y

X f, (u (r),v(r))dr> dS}
1
20,001 [ 6699,
1
X (J H (s, 1) al(r) (fl** - 6) ¢p
Y

X (u(r)+v(r)) dr) ds

1 m-2

> .
(1 _Al) i=1 ay;

x Jo Gy (&5) o8

+

5
x(jfﬂaﬂadﬂ(ﬁ*‘@¢p
Y
x(u(r)+V(7’))d”) ds}’
1
20,00 { [ 6694,
5
x (J H(s,r)a,(r)(fy" —¢)
Y

by (S 101 ) ) s

1 m—2
+—2ay

(1-4,)

x Ll Gy (§11>9) ¢,

B}
X (J H(s,r)a,(r) (fi" —¢)
y

1

x¢P<§H0Lvm)dr)ds}
1
= ¢, (L) % { L G(s,9) ¢,
S
X (J H (s,r)a,(r)
Y

XQﬁ—qm)m

m—2
X ay

(1-4,)

1
X _L Gy (§1i>9) ¢,

5
X (J H (s,r)a,(r)

Y

(7" -e)ar ) as]

3 (N9
> 2.
(64)
Similarly, we obtain that
1
72 @)l = 5 I, (65)
for (u,v) € K N 0Q,. Thus, for (1, v) € K N 0Q,, we have
IT )l = (T} (,v), T, ()]
= |7 W) + T, (wv)] (66)

I\

G+ 5 16 9 = 1 D

Thus, all conditions of Theorem 13 are satisfied. Conse-
quently, we conclude that T' has a fixed point on K. This
is a positive solution of systems (6) and (7). The proof is
completed. O

4. Existence of a Positive Solution: Case 11

In this section, we assume that y € (0,1/4) and d = 1 —y.
We now provide a set of conditions under which the problem
(6) and (8) will have at least one positive solution. we need
conditions (L1) and (L2) in this section. furthermore, we use
notations #, 0, and K which were defined in Section 3. we will
introduce new conditions.
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(L4) The functionals v, (1) and y,(v) are continuous in u
and v and nonnegative for u, v > 0 and satisfy

v, (u) _

0, 67
= 0% [lua] (67)

o) _, (68)
vl — oIV

(L5) There are numbers N; and n;, where

szl“()lc(s,s)%

4
X (Ll H(s,r)a;(r) (fj*)dr> ds

+ mﬁﬁizaﬁ
J

1
X L Gy (&) &,
) 1
><<J0 H(s,r)aj(r)(fj*)dr)ds] ,
3 1
n;= Py [ L G(s,9) ¢
x(J-sH(s,r)aj(r) (fj**)dr>ds
Y

()

1
x (J’(SH(s,r) a; (r) (fj**)dr) ds] ,

y
(69)
such that ¢,(n;) < Aj <¢,(Nj),j=12.

Remark 16. Condition (67) in (L4) is true only if for each y >
0 there is ¥ > 0 such that whenever 0 < |u| < r, it follows
that 0 < v, (u)/|ull < p. The same is true for condition (68)
involving y,.

By repeating the way that we used in Section 3, with a
minor modification, we can get that (1, v) € C(0,1) x C(0, 1)
is a solution of systems (6) and (8) if and only if (u,v) €
C[0,1] x CJ[0,1] is a solution of the following nonlinear
integral system:

1
u)= | G99,

X </\1 Jl H(s,r)a,(r) f, (u (r),v(r))dr> ds

0
ta—l

Abstract and Applied Analysis
1
x JO Gy (§15>9) ¢,
1
X <A1 J H(s,r)a,(r)
0

xfi (u(r),v(r) dr> ds

T(a-B) !

+ (1 _ AI)Iw(“)IVI(u)’

v(t) = Ll G(t,s) ¢, ()LZ J: H (s, 1)

xay(r) f, (u (r),v(r»dr) ds

a-—1
t m-2

+ mzizl D
1
X Jo G, (&) ¢,
1
X </\2 J.o H(s,r)a, (r)

X fo (u(r),v(r) dr) ds

T(a- ﬁl) !
st
(70)
Thus, we define S : E — E defined by S(u,v) = (S;(u,v),
S,(u,v)), where

1

Sy (u,v) = L G(t,s) ¢,
1
X (Al L H(s,r)a,(r) f, (u(r),v(r)) dr) ds

m-2
X ay

1
X L Gy (§159) ¢,
1
X </\1 L H (s,r)a(r)

xf1 W (r),v(r)) dr) ds

[ (a-By) !

Taoayr@" ™

(71)
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1

S, (u,v) = L G (t,s) ¢q

1
X </\2 L H(s,r)a, (r) f, u(r),v(r)) dr) ds

ta—l
+
(1-4,)

X L Gy (&0 9) ¢,

m-2
Zi:l i

X </\2 JOI H(s,r)a,(r)

X f, (u (r),v(r))dr) ds

N T (a—p)t*"

(1—A2ﬁXa)WZWL

(72)

Lemma 17. Suppose that (H1), (H2), and (H3) hold. Then, the
operator S : K — K is well defined, that is, S(K) <€ K.

Proof. Forany (u,v) € K, by (H1), (H2), (H3), and Lemma 11,
S;w,v)(t) =0, S,(u, v)(t) = 0,t € [0, 1], and it follows from
(71) that

1
||S1 (u, v)|| = L G (s,s) ¢q
1
X </\1 J H (s,r)a,(r)
0

xf1 w(r),v(r)) dr) ds

1 m-2
+—
(1-a,)""

ay;
1
x JO Gy (§11>9) ¢,
1
X </\1 L H(s,r)a,(r)

xfy @ (r),v(r)) dr) ds

+ [(a-B)
(1 _Al)r(“)

([0 0)

<(6694,

v, (w)

1
X (Al L H (s,r)a,(r)

< Sy @) dr) ) ds

13

1 _
Ay

[(F-1-1)

X (Gl(flvs) ¢,

1
X (Al L H(s,r)a,(r)

<, o) v dr) ds]

I (a-B)

(1 —AI)F(oc)% (u)

é
33“ G (59,

Y

1
X </\1 L H (s,r)ay(r)

Xf (u(r),v(r) dr) ds

1 _
+ mzﬁlzau
1

)
x J Gy (§1i>9) N
y
1
X <A1 L H(s,r)a,(r)

xf1 (u(r),v(r)) dr> ds

I'(x—B)

+3(1—A1)r(a)"’1(“)]'

(73)

Thus, for any (4, v) € K, it follows from Lemma 11 and (73)
that

min$; (u,v) (t)
p<t<d

1
= min { J-o G(t,5) ¢,

p<t<é
1
X (/\1 L H (s,r)a,(r)

x f1 (u (r),v(r))dr) ds

a—1
3 m-2

+ —X ay
(1-4,) = v

x Ll Gy (&5) ¢,
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1
X ()Ll Jo H (s,7)a,(r)

xfi (u(r),v(r) dr) ds

I'(a-B) !

(uAgnm%w%

1

> L g()G(s,8) ¢,

1
X </\1 J- H(s,r)a,(r) f; (u (r),v(r))dr) ds
0

1
X </\1 j H(s,r)a,(r) f, (u (r),v(r))dr) ds
0

T(a-p) YOH

+ (1 —AI)F(OC) 1//1 (Ll)

s
> UJ G(s,5) ¢,

Y

1
X </\1 J- H(s,r)a,(r) f, (u (r),v(r))dr) ds
0

o—1
y m—2
+ —2i=1 ay;

(1-4,)

s
X J G, (&9) ¢,
Y

1
x(AIJ;I{(ar)aﬂr)ﬁ(u(ﬂ,v(ﬂ)dr)ds

+ r(“‘ﬁl))’a_l

30-a)r@"®

8
> O[J G(s,s)¢q

Y
1
x(AIL)ffuﬂaagr)ﬂ(u(n,v(ﬂ)dr>ds

1 m-2
+ iy

(1-4,)

)
x L Gy (§11>9) ¢,

X ()Ll J:H (s,r)a,(r) f, (u(r),v(r) dr> ds

Abstract and Applied Analysis

'(a-B)

sa-ayr@®

o
23 [S1 (. )| -

(74)
In the same way, for any (u, v) € K, we have
. o
minS, (u,v) (t) = = ||S2 (u, v)|| . (75)
y<t<é 3
Therefore,
min (S (W) (1) + S, () (1))
o o
> 2 [S$i @+ 318 @) (76)

= 2168 )., @ )]

From the above, we conclude that S(u, v)(¢) = (S;(u, v)(t),
S,(u,v)(t)) € K, that is, S(K) ¢ K. This completes the
proof. 0

It is obvious that existence of a solution for the problem
(6) and (8) is equivalent to existence of a fixed point for S on
K.

Theorem 18. Suppose that conditions (L1), (L2), (L4), and
(L5) hold. Then, systems (6) and (8) has at least one positive
solution.

Proof. Lemma 17 shows that § : K — K. Moreover, from
continuity of y,, ¥,, G, and f, it is obvious that both §; and S,
are completely continuous operators by the application of the
Ascoli-Arzela theorem. Then, S is a completely continuous
operator. Also, condition (L3) implies that there is € > 0
sufficiently small such that

1 1
s ()<1|[ 6699,

1
X (L H (s,r)a;(r) (f]* +e)dr>ds

X (Jol H(s,r)a;(r)
-1

x(fj* +e)dr>d5] ,

=12,
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3 1
8,02 | [ ceoe

x (JaH(s,r)aj (r) (f]** - e) dr) ds

Y

(77)

Now given this €, just as before, conditions (54) and (55)
remain true whenever ||(u, v)|| < r*, exactly as in the proof of
Theorem 15. It follows from (L4) and Remark 16 that there is
ry ™" such that y; (u) < pllull whenever 0 < |lul| < r{**, and

thereisr, " such that y,(v) < pvll whenever 0 < |v|| < r,
In particular and without loss of generality, let us suppose that

1-A;)T(x)
0<M<%, j=12. (78)
2T (- ;)
Now, let r; = minf{r",r/"",r;**}. Observe that for any

(u,v) € K we have that |ul|, |v] < |[(«,v)|. Then, we obtain
that for all (1, v) € K satisfying 0 < ||(u, v)|| < r, we have

fiw,v) < (fl* +€)¢p(”+v)>
fowv) < (f; +€)‘/’p(u+V),

(1-A,)T () ] (79)
2T (a = By) ’

(1-4,)T(a)
2T (a - By)

So, define O, by Oy = {(u,v) € K : 0 < [(w, )| < r;}. We
obtain for (1, v) € K N0, that

Yy (u) <
v, (v) < vl
||S1 (u, v)|| = (r)rsltas)%sl (u,v) (t)

erQ%

= max
0<t<1 0

1
X (Al JO H (s,7)a,(r)

x fi (w(r),v(r) dr> ds

15

toc—l 5
-
+ 2 ay

(1-4y)

1
x L Gy (§11>9) ¢,
1
X (Al Jo H (s,7)a,(r)

xf1 W (r),v(r)) dr) ds

ta_lr(“ ‘ﬁl)
Tw-a)" (”)}

<5,00{[ G699,
X (JOI H (s,7)a,(r)

x fi(u(r),v(r) dr) ds

1 —
(1- AI)Zfilzau

= J-Ol Gy (§11-9)

X ¢, (JOI H(s,r)a,(r)

< () v ) dr ) ds|

T (- 51)

umu-mﬂ“w

< ¢, (1) {jolG<s,s>¢q

X (Jl H(s,r)a,(r) (f] +€)

0
X, (u(r) +v(r)) dr> ds

1 m—2

>, .
(-ay =™

1
x L G, (&15>5) ¢,
X (Jol H(s,r)a,(r) (f +¢)

x¢,, w((r)+v(r)) dr> ds}

+ > lull
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< ¢, (A1) {Ll G(s,9) ¢,
X (J: H(s,r)a,(r) (f +¢)

x, (Il + ||v||)dr) ds

1 m—2

>, .
(-ay) =™

1
X L G, (&>9) ¢,

1
><<J H(s,r)a,(r)(f] +¢) ¢,

0
X (flull + IIVII)dr> dS}

vl
-0 [ G0,

X (J: H (s,7)a,(r)

x(fi +e) dr) (llull + vl ds

1 _
ZmZ )
(1 _Al) i=1 ay;

X Ll G, (&9) ¢,
X (J: H(s,r)a,(r) (f +¢) dr)

X (flull + IIVII)dS}

+ 2
1
= ¢q ()Ll) {JO G(S’S)(/)q

X (J: H(s,r)a(r) (fy +¢€) dr) ds

1 _
ZmZ )
(1-A) ! i

1
X L G, (&9) ¢,
X <Ll H(s,r)a,(r)

X(f] +e€) dr> ds}

Abstract and Applied Analysis

1
@)+ Sl
< T1G I+ ful.
(80)
Also, by similarly argument, we obtain that
1 1
I$: )l < G+ S I (81)

for (u,v) € KN 0Q,. Thus, for (u,v) € K N 0Q,, we have

”S (M, V)" = "(Sl (M, V) > Sz (Lt, V))"

(NNCROIRE SACRY

AN

1 1 1 1
< — v+ =1 v)|+ - lul+ - |v
2 @+ 2@ vl + Sl + = vl

2 WGl + 5 (lad + Il

% )] + % 1)l = 1)l
(82)

This implies that for (1, v) € K N 0Q,;, we have
IS (VI < NG, v (83)

On the other hand, letting € > 0 be the same number
selected at the beginning this proof, as before, condition (L2)
implies that there exists number r** > 0 such that

Fian) = (£ -€) ¢, w+v),

(84)
Frwn) 2 (f;" - )+,
whenever u + v > r**. Let
T**
r, = max {21’1, } . (85)
o
Moreover, if we let
Q, ={wv) e K: | < 1.}, (86)

then, O, € Q,.
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If (u,v) € K N 0Q,, then, it follows that for any ¢ € [y, ],

u(t)+v(t) = min [u(t)+v(t)]
te[y,0]

(87)

*

>~ =r*.

wia &

Thus, (87) shows that for (u,v) € K n 0Q,, (84) holds,

whenever ¢ € [y, d].
In addition, recall that by condition (L4), v, and vy, are

assumed to be nonnegative for (1, v) € K. So, for each (u,v) €
K noQ,, we have

[$1 G W) = max S, (u,v) (1)
1
= ¢q (/\1) {L G (5>5) ¢q
1
x (L H (s,7) ay(r)

xf1 u(r),v(r)) dr) ds

1
(1-4))

x L Gy (§11>9) ¢,

m-2
iy 4y

+

X (Ll H (s,r)a,(r)

X f, (), v (1)) dr) ds}

T'(a-p)
[(a)(1-4,)

> ¢, (1) { L G(s,9) ¢,

vy (u)

s
X <J H (s,r)a,(r)
Y

xf1 u(r),v(r)) dr) ds

1 m-2

+ mzizl ay;
x Jo Gy (&5) ¢,

s
X (J H (s,7)a,(r)
y

xfy W (r),v(r)) dr) ds]»

17

1
= ¢q ("1) { JO G(5’5)¢q

s
X <J H(s,r)a,(r) (fy" —¢)
%

X, (u(r) +v(r)) dr) ds

1 m—2

+ mzi:1 ayi
1
X Jo G, (flps) ¢q
§
X <J H (s,r)a,(r) (fl** - 6) (/’p
Y

X (u(r)+v(r)) dr) ds]»

> ¢, (A1) { JO G(s,5) ¢,

5
X (J H (s,r)a;(r) (f1** —€) ¢P
Y

X <g |78 v||> dr) ds
3

1 2
ay

Ay
x Jo Gy (§1>9) ¢,

s
X <J H(s,r)a,(r)(fy" —¢)
y

X, <g [[78 v||> dr> ds}
¢q (Al) : % { J;) G (s,s) ¢q

5
X (J H (s,r)a,(r)
y

< (fr* —e)dr)ds

1

+ mzzﬁf%
1

1
X JO G, (&9 ¢,
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5
X <J H(s,r)a,(r)
Y

< (fi* =€) dr) ds}

N
> 26
(88)
Similarly, one can get
1
IS, (u,v)| = 2 1@l (89)

for (u,v) € KN 0Q,. Thus, for (u, v) € K N 0Q,, we have
IS (u, V)|l = ||(Sl (w,v), Sz (u, V))”

=[Sy @ v + ]IS, (v (90)

v

ﬂmm+ﬂmmwme

Thus, all conditions of Theorem 13 are satisfied. Conse-
quently, we conclude that S has a fixed point on K. This
is a positive solution of systems (6) and (8). The proof is
completed. O

5. Application

Example 19. Consider the following singular boundary value
problem:

D¢, (DYPu) () = Myay () fy (u (1), v (1)),

te(0,1),
(o1
D*¢, (D2v) (1) = Myay (8) f (u(t), v (1)),
te(0,1),
subject to the boundary conditions
Du(0) = D)?u(1) =0, u(0)=0,
1/2 1 4 (1 L 2 (1) _
Dfu (- 5y (5) - 50 () =0
(92)
Dy*v(0) = Dyv(1) =0, v(0) =
1/2V(1) _D1/2 <l> B 1D312v<%) _o.
3 5 3

Here,a« = f =3/2,8, =1/2, p =2, m = 4, a;,, = 1/2,
ap = 1/3;%1 = 3/4,(122 = 1/5:611 = 1/4,512 = l/zale = 1/3
and &,, = 2/3. Now, we have g = 2,

495
fl (u, V) = (u + V) (500 - m)
B a 990 (93)
fo(u,v) = (u+v)<1000 a1 1),
a (t)=t, a,(t) =2t

Abstract and Applied Analysis

It is easy to check that f}, f, [0,00) X [0,00) —
[0, 00) are continuous. The functions a,(t) and a,(t) are
obviously nonnegative for all t € [0, 1]. We now check that
all conditions of Theorem 15 hold. By definition of functions

f1 and f,, we get
fi(w,v)

() — (0*,0%) gbp (u+v)

495
= 111’1’1 (500 - #) = 5,
(u,v)—»(O*,O*) us+ve+1
(94)
im fz (u,v)
() — (0*,0%) gbp (u+v)
990
(u,v)a(O*,O*) us+ve+1
Thus, let
fi =5, f, =10. (95)
On the other hand, we have
f1(w,v)
(u,v) = (00,00) (/)P (u + V)
495
= lim (500 - ) =500,
(4,v) = (00,00) u? +12+1
(96)
fo(w,v)
(u,v) = (00,00) (/)p (1/! + V)
990
= lim <1000 - —) =1000.
(t,v) = (00,00) uw?+12+1
Thus, let
£ =500, £, =1000. (97)

It follows from (94)-(97) that conditions (L1) and (L2) hold.
Choose y = 1/4, 8 = 3/4. Then, by direct calculations, we
can obtain that # = 0.3780, 0 = 0.3536, and

A, =0.8333, A, =0.9500,

m; = 0.0168, m, = 0.0014, (98)

M, =0.1976, M, = 0.0164.

Then, for 0.0168 < A, < 0.1976 and 0.0014 <
A, < 0.0164, condition (L3) holds. Thus, all conditions
of Theorem 15 hold. Hence, system (91) with boundary
conditions (92) has at least one positive solution.

Now, consider the problem (91) with following boundary
conditions:

D u(0) = Dgizu(l):o, u(0) =

oruto-30u(2) - 2ou(3)
(99)

DPv(0) = 3/21/(1) 0, v(0)=0

piv- 20 (1) Loy (2) =y,
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where
1 2
naw=(u(3))
3 3
no=(v(3))
In this case, we check that all conditions of Theorem 18 hold.

It follows from (94)-(97) that conditions (L1) and (L2) hold.
‘We now show that (L4) and (L5) hold:

(100)

v (W) _ (u(1/4))*
lal =0t Jull  ul—ot  Jull
2
< lul® = lim |ul| =0,
lul —0* |luef| Nl — 0"
, (101)
i ‘/’2(V)= (v(3/4)
=0t vl wi—ot vl
3
< lim L4/ IvlI* = 0.
wl—o* vl Ivi—o*

So, condition (L4) is satisfied. Now, by direct calculation, one
can get

n, =0.0168,  n, = 0.0014,

(102)

N, =0.0998, N, =0.0082.

Then, for 0.0168 < A, < 0.0998 and 0.0014 < A, < 0.0082,
condition (L5) holds. Thus, all conditions of Theorem 18 hold.
Hence, system (91) with the boundary conditions (99) has at
least one positive solution.
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