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We discuss the existence of solutions for a class of some separated boundary differential inclusions of fractional orders 2 < 𝛼 < 3

involving the Caputo derivative. In order to obtain necessary conditions for the existence result, we apply the fixed point technique,
fractional calculus, and multivalued analysis.

1. Introduction

In recent years a great interest was devoted to the study
of (singular and Neumann) boundary-value problems of
fractional order [1–8], see also [9–12]. In the literature of
fractional calculus, there are several definitions of fractional
derivative that can be used. However, themost popular senses
are the Riemann-Liouville and Caputo fractional derivatives;
see, for instance, [13–19].

In this paper, we use the Caputo’s fractional derivative
since mathematical modeling of many physical problems
requires initial and boundary conditions. These demands are
satisfied using the Caputo fractional derivative. For more
details we refer the reader to [20, 21] and references therein.

The importance of fractional boundary-value problems
stems from the fact that they model various applications
in fluid mechanics, viscoelasticity, physics, biology, and
economics which cannot be modeled by differential equa-
tions with integer derivatives [21–23].

Delbosco and Rodino [24] considered the existence of
a solution for the nonlinear fractional differential equation
𝑑
𝛼

𝑥(𝑡)/𝑑𝑡
𝛼

= 𝑓(𝑡, 𝑥), where 0 < 𝛼 < 1 and 𝑓 : [0, 𝑎] × R →

R, 0 < 𝑎 ≤ +∞, is a given function, continuous in (0, 𝑎) ×R.
They obtained results for solutions by using the Schauder
fixed point theorem and the Banach contraction principle.
Qiu and Bai [25] considered the existence of positive solution
for equation:

𝑑
𝛼

𝑥 (𝑡)

𝑑𝑡
𝛼

+ 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑥 (0) = 𝑥


(1) = 𝑥


(0) = 0,

(1)

where 2 < 𝛼 ≤ 3 and 𝑓 : (0, 1] × [0,∞) → [0,∞) with 𝑓

being singular at 𝑡 = 0 (i.e., lim
𝑡→0
+𝑓(𝑡, ⋅) = +∞), by using

Krasnoselskii’s fixed point theorem and nonlinear alternative
of Leray-Schauder type in a cone. Recently, Aitaliobrahim
[26] considered the existence of solutions to the boundary-
value problem:

𝑥


(𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡)) , a.e. on [0, 1] ,

𝑥


(0) = 𝑟, 𝑥


(1) = 𝑠,

(2)
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where 𝐹 is a closed multifunction, measurable in the first
argument, and Lipschitz continuous in the second argument,
by using fixed point theory for multivalued maps.

Motivated by the previous results, in this work we
establish the existence result of a new version of fractional
separated boundary-value problem:

𝑑
𝛼

𝑥 (𝑡)

𝑑𝑡
𝛼

∈ 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡) , 𝑥


(𝑡)) , a.e. on [0, 1] ,

𝑥 (0) = 0, 𝑥


(1) = 𝑠, 𝑥


(0) = 𝑟,

(3)

where 2 < 𝛼 ≤ 3, 𝐹 is nonconvex, closed multifunction,
measurable in the first argument, and Lipschitz continuous
in the second argument, and 𝑟, 𝑠 are in a Banach space 𝑋.
The work is organized as follows. In Section 2, we recall
some preliminary facts that we need in the sequel while in
Section 3, we give themain result. Finally in Section 4we give
example to illustrate the application of our results.

2. Preliminaries

In this section, we present basic definitions of fractional
calculus and some essential facts from multivalued analysis
that will be used in this work to obtain our main results.

Definition 1. A real function 𝑓(𝑡), 𝑡 > 0, is said to be in the
space𝐶

𝜇
, 𝜇 ∈ R, if there exists a real number 𝑝 > 𝜇, such that

𝑓(𝑡) = 𝑡
𝑝

𝑓
1
(𝑡), where 𝑓

1
(𝑡) ∈ 𝐶[0,∞), and it is said to be in

the space 𝐶𝑚
𝜇
if 𝑓(𝑚) ∈ 𝐶

𝜇
, 𝑚 ∈ N.

Definition 2. The leftRiemann-Liouville fractional integral of
order 𝛼 > 0, of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is defined by

𝐼
𝛼

𝑓 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0. (4)

Definition 3. For 𝛼 > 0, 𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ N, 𝑡 > 0, and
𝑓 ∈ 𝐶

𝑚

−1
, the left Caputo fractional derivative is defined by

𝐷
𝛼

𝑓 (𝑡) =
1

Γ (𝑚 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝑚−1−𝛼

𝑓
(𝑚)

(𝑠) 𝑑𝑠, (5)

where Γ is the well-known Gamma function.

The Caputo derivative defined in (5) is related to the
Riemann-Liouville fractional integral, 𝐼𝛼, of order 𝛼 ∈ R+,
by

𝐷
𝛼

𝑓 (𝑡) = 𝐼
𝑚−𝛼

𝑓
(𝑚)

(𝑡) . (6)

It is known (see [20]) that

𝐼
𝛼

(𝐷
𝛼

𝑓 (𝑡)) = 𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

𝑐
𝑘
𝑡
𝑘

, (7)

𝐷
𝛼

𝐼
𝛼

𝑓 (𝑡) = 𝑓 (𝑡) , (8)

where in (7), 𝑐
𝑘
= 𝑓
(𝑘)

(0+)/𝑘!, 0 ≤ 𝑘 ≤ 𝑚 − 1.

Now, let 𝑋 be a real separable Banach space with the
norm ‖ ⋅ ‖. We denote by C([0, 1], 𝑋) the Banach space
of continuous functions from [0, 1] to 𝐸 equipped with
the norm ‖𝑥(⋅)‖

∞
:= sup{‖𝑥(𝑡)‖; 𝑡 ∈ [0, 1]}. For 𝑥 ∈ 𝑋

and for nonempty sets 𝐴, 𝐵 of 𝑋 we denote 𝑑(𝑥, 𝐴) =

inf{𝑑(𝑥, 𝑦); 𝑦 ∈ 𝐴}, 𝑒(𝐴, 𝐵) := sup{𝑑(𝑥, 𝐵); 𝑥 ∈ 𝐴}, and
𝐻(𝐴, 𝐵) := max{𝑒(𝐴, 𝐵), 𝑒(𝐵, 𝐴)}. A multifunction is said to
be measurable if its graph is measurable.

Also, we recall the following results that will be used in
this paper.

Definition 4 (see [26]). Let 𝑇 : 𝑋 → 2
𝑋 be a multifunction

with closed values:

(i) 𝑇 is 𝑘-Lipschitz if𝐻(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝑘‖𝑥 − 𝑦‖ for each
𝑥, 𝑦 ∈ 𝑋,

(ii) 𝑇 is a contraction if it is 𝑘-Lipschitz with 𝑘 < 1,

(iii) 𝑇 has a fixed point if there exists 𝑥 ∈ 𝑋 such that 𝑥 ∈

𝑇(𝑥).

Lemma 5 (see [26]). If 𝑇 : 𝑋 → 2
𝑋 is a contraction with

nonempty closed values, then it has a fixed point.

Lemma 6 (see [26]). Assume that 𝐹 : [𝑎, 𝑏] × 𝑋 → 2
𝑋

is a multifunction with nonempty closed values satisfying the
following:

(i) for every 𝑥 ∈ 𝑋, 𝐹(⋅, 𝑥) is measurable on [𝑎, 𝑏];

(ii) for every 𝑡 ∈ [𝑎, 𝑏], 𝐹(𝑡, ⋅) is (Hausdorff) continuous on
𝐸.

Then for any measurable function 𝑥(⋅) : [𝑎, 𝑏] → 𝑋, the
multifunction 𝐹(⋅, 𝑥(⋅)) is measurable on [𝑎, 𝑏].

Definition 7 (see [26]). A measurable multivalued function
𝐹 : [0, 1] → 2

𝑋 is said to be integrably bounded if there exists
a function ℎ ∈ 𝐿

1

([0, 1], 𝑋) such that for all V ∈ 𝐹(𝑡), ‖V‖ ≤

ℎ(𝑡) for almost every 𝑡 ∈ [0, 1].

Definition 8 (see [26]). A function 𝑥(⋅) : [0, 1] → 𝑋 is said
to be a solution of (3) if 𝑥(⋅) is absolutely continuous on [0, 1]
and satisfies (3).

Lemma 9 (see [25]). Given 𝜑 ∈ 𝐶[0, 1] and 2 < 𝛼 ≤ 3, the
unique solution of

𝑑
𝛼

𝑦 (𝑡)

𝑑𝑡
𝛼

+ 𝜑 (𝑡) = 0, 0 < 𝑡 < 1,

𝑦 (0) = 𝑦


(1) = 𝑦


(0) = 0

(9)

is

𝑦 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝜑 (𝑠) 𝑑𝑠, (10)



Advances in Mathematical Physics 3

where

𝐺 (𝑡, 𝑠)

=

{{{

{{{

{

(𝛼 − 1) 𝑡(1 − 𝑠)
𝛼−2

− (𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡(1 − 𝑠)
𝛼−2

Γ (𝛼 − 1)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(11)

Obviously, 𝐺(𝑡, 𝑠) is continuous on [0, 1] × [0, 1] and 0 <

𝐺(𝑡, 𝑠) ≤ 𝜆, for each 𝑡, 𝑠 ∈ [0, 1] and some 𝜆.

3. Main Results

Now we are in a position to state and prove the main results
of this paper.

Theorem 10. Let 𝐹 : [0, 1]×𝑋 ×𝑋 ×𝑋 → 2
𝑋 be a set-valued

map with nonempty closed values satisfying the following:

(i) for each (𝑥, 𝑦, 𝑧) ∈ 𝑋 × 𝑋 × 𝑋, 𝑡 → 𝐹(𝑡, 𝑥, 𝑦, 𝑧) is
measurable and integrably bounded;

(ii) there exists a function 𝑚(⋅) ∈ 𝐿
1

([0, 1],R+) such that
for all 𝑡 ∈ [0, 1] and for all 𝑥

1
, 𝑥
2
, 𝑦, 𝑧 ∈ 𝑋

𝐻 (𝐹 (𝑡, 𝑥
1
, 𝑦, 𝑧) , 𝐹 (𝑡, 𝑥

2
, 𝑦, 𝑧)) ≤ 𝑚 (𝑡)

𝑥1 − 𝑥
2

 . (12)

Then, if ∫1
0

(1 + 𝑚(𝑠))𝑑𝑠 < 1/𝜆, for all 𝑟, 𝑠 ∈ 𝑋, the problem (3)
has at least one solution on [0, 1].

Proof. For the proof of this theorem, we use the similar steps
as those of [26, Theorem 2.6] together with the theory of
fractional calculus. Let 𝑟, 𝑠 be in 𝑋. We introduce first the
function 𝜌 : [0, 1] → 𝑋 defined by

𝜌 (𝑡) = (𝑟 + 𝑠) 𝑡 −
1

2
𝑟𝑡
2

, ∀𝑡 ∈ [0, 1] , (13)

and themultifunction𝐻 : [0, 1]×C([0, 1], 𝑋) → 2
𝑋 defined

by

𝐻(𝑡, 𝑦 (⋅))

= 𝜑 (𝑡) − 𝐹 (𝑡, 𝑦 (𝑡) + 𝜌 (𝑡) , 𝑦


(𝑡)

+ 𝜌


(𝑡) , 𝑦


(𝑡) + 𝜌


(𝑡)) ,

(14)

for all (𝑡, 𝑦(⋅)) ∈ [0, 1] ×C([0, 1], 𝑋). Consider the following
problem:

−
𝑑
𝛼

𝑦 (𝑡)

𝑑𝑡
𝛼

+ 𝜑 (𝑡) ∈ 𝐻 (𝑡, 𝑦 (⋅)) , a.e. on [0, 1] ,

𝑦 (0) = 𝑦


(1) = 𝑦


(0) = 0.

(15)

We should note that the function 𝑦(⋅) is a solution of (15),
if and only if the function 𝑥(𝑡) = 𝑦(𝑡) + 𝜌(𝑡) is a solution of
(3), for all 𝑡 ∈ [0, 1].

Next, by Lemma 6, for 𝑦(⋅) ∈ C([0, 1], 𝑋), 𝐹(⋅, 𝑦(⋅), 𝑦


(⋅),

𝑦


(⋅)) is closed and measurable; then it has a measurable

selection which, by hypothesis (i), belongs to 𝐿
1

([0, 1], 𝑋).
Thus the set

𝑆
𝐹,𝑦(⋅)

:= {𝑓 ∈ 𝐿
1

([0, 1] , 𝑋) :

𝑓 (𝑡) ∈ 𝐹 (𝑡, 𝑦 (𝑡) , 𝑦


(𝑡) , 𝑦


(𝑡)) for a.e. 𝑡 ∈ [0, 1]}

(16)

is nonempty. Let us transform problem (15) into a fixed point
problem. Consider the multivalued map

𝑇 : C ([0, 1] , 𝑋) → 2
C([0,1],𝑋) (17)

defined as follows, for 𝑦(⋅) ∈ C([0, 1], 𝑋):

𝑇 (𝑦 (⋅))

= {𝑧 (⋅) ∈ C ([0, 1] , 𝑋) :

𝑧 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, ∀𝑡 ∈ [0, 1] , ℎ ∈ 𝑆
𝐻,𝑦(⋅)

} ,

(18)

where

𝑆
𝐻,𝑦(⋅)

:= {ℎ ∈ 𝐿
1

([0, 1] , 𝑋) :

ℎ (𝑡) ∈ 𝐻 (𝑡, 𝑦 (⋅)) for a.e. 𝑡 ∈ [0, 1] } .

(19)

Wewill show that𝑇 satisfies the assumptions of Lemma 5.
The proof will be given in two steps.

Step 1 (T has nonempty closed values). Indeed, let (𝑦
𝑝
(⋅))
𝑝≥0

∈

𝑇(𝑦(⋅)) such that (𝑦
𝑝
(⋅))
𝑝≥0

converges to 𝑦(⋅) in C([0, 1], 𝑋).
Then 𝑦(⋅) ∈ C([0, 1], 𝑋) and for each 𝑡 ∈ [0, 1],

𝑦
𝑝
(𝑡) ∈ ∫

1

0

𝐺 (𝑡, 𝑠)𝐻 (𝑠, 𝑦 (⋅)) 𝑑𝑠, (20)

where ∫1
0

𝐺(𝑡, 𝑠)𝐻(𝑠, 𝑦(⋅))𝑑𝑠 is the Aumann integral of 𝐺(𝑡, ⋅)
𝐻(⋅, 𝑦), which is defined as

∫

1

0

𝐺 (𝑡, 𝑠)𝐻 (𝑠, 𝑦 (⋅)) 𝑑𝑠

= {∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, ℎ ∈ 𝑆
𝐻,𝑦(⋅)

} .

(21)

Using the fact that the set-valued map 𝐹 is closed and by (14),
we conclude that the set

∫

1

0

𝐺 (𝑡, 𝑠)𝐻 (𝑠, 𝑦 (⋅)) 𝑑𝑠 (22)

is closed for all 𝑡 ∈ [0, 1]. Then

𝑦 (𝑡) ∈ ∫

1

0

𝐺 (𝑡, 𝑠)𝐻 (𝑠, 𝑦 (⋅)) 𝑑𝑠. (23)
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So, there exists ℎ ∈ 𝑆
𝐻,𝑦(⋅)

such that

𝑦 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠. (24)

Hence 𝑦(⋅) ∈ 𝑇(𝑦(⋅)). So 𝑇(𝑦(⋅)) is closed for each 𝑦(⋅) ∈

C([0, 1], 𝑋).

Step 2 (T is a contraction). Indeed, let 𝑦
1
(⋅), 𝑦
2
(⋅) ∈

C([0, 1], 𝑋) and consider 𝑧
1
(⋅) ∈ 𝑇(𝑦

1
(⋅)). Then there exists

ℎ
1
∈ 𝑆
𝐻,𝑦
1
(⋅)
such that

𝑧
1
(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ℎ
1
(𝑠) 𝑑𝑠, ∀𝑡 ∈ [0, 1] . (25)

Using (14), there exists 𝑓
1
∈ 𝑆
𝐹,𝑦
1
(⋅)
such that

ℎ
1
(𝑡) = 𝑦

1
(𝑡) − 𝑓

1
(𝑡) , ∀𝑡 ∈ [0, 1] . (26)

On the other hand, let 𝜀 > 0 and consider the valued map
𝑈
𝜀
: [0, 1] → 2

𝑋, given by

𝑈
𝜀
(𝑡) = {𝑥 ∈ 𝑋 :


𝑓
1
(𝑡) − 𝑥


≤ 𝑚 (𝑡)


𝑦
1
(𝑡) − 𝑦

2
(𝑡)


+ 𝜀} .

(27)

We claim that 𝑈
𝜀
(𝑡) is nonempty, for each 𝑡 ∈ [0, 1]. Indeed,

let 𝑡 ∈ [0, 1]; then we have

𝐻(𝐹 (𝑡, 𝑦
1
(𝑡) , 𝑦


1
(𝑡) , 𝑦


1
(𝑡)) , 𝐹 (𝑡, 𝑦

2
(𝑡) , 𝑦


2
(𝑡) , 𝑦


2
(𝑡)))

≤ 𝑚 (𝑡)
𝑦1 (𝑡) − 𝑦

2
(𝑡)

 .

(28)

Hence, there exists 𝑥 ∈ 𝐹(𝑡, 𝑦
2
(𝑡), 𝑦


2
(𝑡), 𝑦


2
(𝑡)), such that

𝑓1 (𝑡) − 𝑥
 ≤ 𝑚 (𝑡)

𝑦1 (𝑡) − 𝑦
2
(𝑡)

 + 𝜀. (29)

The multifunction

𝑉 : 𝑡 → 𝑈
𝜀
(𝑡) ∩ 𝐹 (𝑡, 𝑦

2
(𝑡) , 𝑦


2
(𝑡) , 𝑦


2
(𝑡)) is measurable.

(30)

Then there exists a measurable selection for 𝑉 denoted by 𝑓
2

such that, for all 𝑡 ∈ [0, 1],

𝑓
2
(𝑡) ∈ 𝐹 (𝑡, 𝑦

2
(𝑡) , 𝑦


2
(𝑡) , 𝑦


2
(𝑡)) (31)

and

𝑓1 (𝑡) − 𝑓
2
(𝑡)

 ≤ 𝑚 (𝑡)
𝑦1 (𝑡) − 𝑦

2
(𝑡)

 + 𝜀. (32)

Now, for all 𝑡 ∈ [0, 1], set ℎ
2
(𝑡) = 𝑦

2
(𝑡) − 𝑓

2
(𝑡) and

𝑧
2
(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ℎ
2
(𝑠) 𝑑𝑠. (33)

We have
𝑧1 (𝑡) − 𝑧

2
(𝑡)



≤ ∫

1

0

‖𝐺 (𝑡, 𝑠)‖
ℎ1 (𝑠) − ℎ

2
(𝑠)

 𝑑𝑠

≤ 𝜆∫

1

0

𝑦1 (𝑠) − 𝑦
2
(𝑠)

 𝑑𝑠 + 𝜆∫

1

0

𝑓1 (𝑠) − 𝑓
2
(𝑠)

 𝑑𝑠

≤ 𝜆∫

1

0

𝑦1 (𝑠) − 𝑦
2
(𝑠)

 𝑑𝑠

+ 𝜆∫

1

0

𝑚(𝑠)
𝑦1 (𝑠) − 𝑦

2
(𝑠)

 𝑑𝑠 + 𝜆𝜀

≤ 𝜆
𝑦1 (⋅) − 𝑦

2
(⋅)
∞

∫

1

0

(1 + 𝑚 (𝑠)) 𝑑𝑠 + 𝜆𝜀.

(34)

So, we conclude that

𝑧1 (⋅) − 𝑧
2
(⋅)
∞

≤ 𝜆
𝑦1 (⋅) − 𝑦

2
(⋅)
∞

∫

1

0

(1 + 𝑚 (𝑠)) 𝑑𝑠 + 𝜆𝜀.

(35)

By an analogous relation, obtained by interchanging the roles
of 𝑦
1
(⋅) and 𝑦

2
(⋅), it follows that

𝐻(𝑇 (𝑦
1
(⋅)) , 𝑇 (𝑦

2
(⋅)))

≤ 𝜆
𝑦1 (⋅) − 𝑦

2
(⋅)
∞

∫

1

0

(1 + 𝑚 (𝑠)) 𝑑𝑠 + 𝜆𝜀.

(36)

By letting 𝜀 → 0, we obtain

𝐻(𝑇 (𝑦
1
(⋅)) , 𝑇 (𝑦

2
(⋅)))

≤ 𝜆
𝑦1 (⋅) − 𝑦

2
(⋅)
∞

∫

1

0

(1 + 𝑚 (𝑠)) 𝑑𝑠.

(37)

Consequently, if ∫1
0

(1 + 𝑚(𝑠))𝑑𝑠 < 1/𝜆, 𝑇 is a contraction. By
Lemma 5, 𝑇 has a fixed point which is a solution of (15).

4. Example

In this section we present an example to illustrate the appli-
cations of our main results, and we consider the following
fractional inclusion boundary-value problem:

𝑑
𝛼

𝑥 (𝑡)

𝑑𝑡
𝛼

∈ 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡) , 𝑥


(𝑡)) , 𝑡 ∈ [0, 1], 2 < 𝛼 ≤ 3,

𝑥 (0) = 0, 𝑥


(1) = 𝑠, 𝑥


(0) = 𝑟,

(38)

where 𝑟 and 𝑠 are arbitrary real numbers and 𝐹 : [0, 1] × R ×

R ×R → P(R) is a multivalued map given by

𝐹 (𝑡, 𝑥, 𝑦, 𝑧) = [0,
sin𝑥

(1 + 𝑡)
2
+ cos (𝑦𝑧)] . (39)
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Then we have

sup{|𝑢| : 𝑢 ∈ 𝐹 (𝑡, 𝑥, 𝑦, 𝑧)} ≤ 1 +
1

(1 + 𝑡)
2
,

𝐻 (𝐹 (𝑡, 𝑥, 𝑦, 𝑧) , 𝐹 (𝑡, 𝑥, 𝑦, 𝑧)) ≤
1

(1 + 𝑡)
2
|𝑥 − 𝑥| .

(40)

Let 𝑚(𝑡) = 1/(1 + 𝑡)
2. Then ∫

1

0

(1 + 𝑚(𝑠))𝑑𝑠 = 3/2 < 1/𝜆

for some 𝜆 > 2/3.
By Theorem 10 the problem (38) has at least one solution

on [0, 1].
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