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fer.
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Introduction

Various transport phenomena in nano-scale [1-3] cannot be described by smooth con-

tinuum approach and need the fractal nature of the objects to be taken into account, for example

in nanoscale porous materials [4] and they are termed Cantor materials. In case of fractal objects

the fractal Fourier law should be used [5-7] in contrast to the continuous case when both the

classical and the fractional versions are valid [8-18]. For other fractional differential equations

see [19]. When the transport is performed in fractal objects the local temperature depends on the

fractal dimensions and examples for that exist in well-known media such as polar bear hair [17,

20] and wool [21]. In these cases the fractional calculus assuming smooth functions [9-15] due

to the continuum concept and the memory effects is not applicable. The problem invokes appli-

cation of local fractional models and relevant solution approaches providing adequate physical

results. The present paper shows how the local version of the variational iteration method [22]

can be applied to local fractional heat conduction equation relevant to a fractal heat transfer.

Local fractional heat conduction equation

Local fractional heat conduction equation with no heat generation in fractal media

reads [5-7]:
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In eq. (1a), the transport coefficient K2a is the fractal thermal conductivity related to

fractal dimensions of materials [5-7]:
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The fractal heat diffusivity of the medium is defined as aa = raca/K2a.

The local fractional derivative of T(x) of order a at x = x0 is given by [5-7, 22-24]:

D T x
d T x

x

T x T x

x x
x

x x
x x

( ) ( )
( )

lim
[ ( ) ( )]

(

a
a

a

a

0
0

0
0

� �
�

��
�d

D

0 )a
(1c)

where Da[T(x) – T(x0)] ��	 (1 + a
�[T(x) – T(x0)].

The local fractional integral of T(x) of order a in the interval [a, b] is defined by [5-7,

22-24]:
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In eq. (1d) Dtj = tj+1 – tj, Dt = max{Dt1, Dt2, Dtj, ...} and [tj, tj+1], j = 0, ..., N –1, t0 = a, tN =

b, is a partition of the interval [a, b]. In order to facilitate the presentation of the solution ap-

proach developed we consider the case of the non-dimension which yields:
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with a fractal boundary condition:
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Local fractional variation iteration method: solution

The non-linear local fractional eq. (2a) reads as a sum of linear La and non-linear Na

local fractional operators, LaT + NaT = 0 which allows the following correction functional to be

constructed. We can construct a correction functional as [22]:
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In eq. (3)
~
Tn is a restricted local fractional variation, while xa is a fractal Lagrange mul-

tiplier. The determination of xarequire stationary conditions of the functional, that is da
~
Tn � 0

[5, 22].

Following eq. (3) the local fractional functional becomes [6]:
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and the stationary condition yield:
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Then, the Lagrange multiplier is:
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Hence, the successive interaction formula is:
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Assuming an initial approximation T(x,t) = xaEa(ta)/G(1 + a), we get:
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Consequently, the local fractional series solution T T
n
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Then we can derive in a compact form:

T x t E t
x

kn

k

k

n

( , ) lim ( )
( ( ) )

( )

�
� �

�

�
�

�

�
��

�

�
�

�

a
a

a

a

2 1

0 1 2 1G
� E t xa

a
a

a( )sinh ( ) (9b)

where
sinh ( )

( ) ( )
a

a a
a

a
a

x
E x E x

�
� �

2
(9c)

As is known, the temperature field can be written in the form:
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Hence, the fractal dimensions of both Ea(ta) and sinh
a
(xa) are equal to a. It is shown

that the temperature describes transports processes in fractal media.

Conclusions

This paper presents a local fractional iteration method by an example solving local

heat-conduction equation relevant to fractal media. The method is derived on the basis of the lo-

cal fractional calculus [6, 22-24]. It differs from the fractional iteration method [25-29] based on

both fractional and the classical integer calculus [22]. The compact solution developed is effec-

tive and in describing transports in fractal media.
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